NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 20, 2024.

Search: Author = T.Duguet

Found 87 matches.

Back to query form

2024LI18      Phys.Rev. C 109, 034312 (2024)

B.D.Linh, A.Corsi, A.Gillibert, A.Obertelli, P.Doornenbal, C.Barbieri, T.Duguet, M.Gomez-Ramos, J.D.Holt, B.S.Hu, T.Miyagi, A.M.Moro, P.Navratil, K.Ogata, S.Peru, N.T.T.Phuc, N.Shimizu, V.Soma, Y.Utsuno, N.L.Achouri, H.Baba, F.Browne, D.Calvet, F.Chateau, S.Chen, N.Chiga, M.L.Cortes, A.Delbart, J.-M.Gheller, A.Giganon, C.Hilaire, T.Isobe, T.Kobayashi, Y.Kubota, V.Lapoux, H.N.Liu, T.Motobayashi, I.Murray, H.Otsu, V.Panin, N.Paul, W.Rodriguez, H.Sakurai, M.Sasano, D.Steppenbeck, L.Stuhl, Y.L.Sun, Y.Togano, T.Uesaka, K.Wimmer, K.Yoneda, O.Aktas, T.Aumann, L.X.Chung, F.Flavigny, S.Franchoo, I.Gasparic, R.B.Gerst, J.Gibelin, K.I.Hahn, N.T.Khai, D.Kim, T.Koiwai, Y.Kondo, P.Koseoglou, J.Lee, C.Lehr, T.Lokotko, M.MacCormick, K.Moschner, T.Nakamura, S.Y.Park, D.Rossi, E.Sahin, D.Sohler, P.-A.Soderstrom, S.Takeuchi, H.Tornqvist, V.Vaquero, V.Wagner, S.T.Wang, V.Werner, X.Xu, Y.Yamada, D.Yan, Z.Yang, M.Yasuda, L.Zanetti

Onset of collectivity for argon isotopes close to N=32

doi: 10.1103/PhysRevC.109.034312
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2024PO06      Phys.Rev. C 109, 044315 (2024)

A.Porro, G.Colo, T.Duguet, D.Gambacurta, V.Soma

Symmetry-restored Skyrme-random-phase-approximation calculations of the monopole strength in deformed nuclei

doi: 10.1103/PhysRevC.109.044315
Citations: PlumX Metrics

2024TI03      Phys.Lett. B 851, 138571 (2024)

A.Tichai, P.Demol, T.Duguet

Towards heavy-mass ab initio nuclear structure: Open-shell Ca, Ni and Sn isotopes from Bogoliubov coupled-cluster theory

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180Sn; calculated ground-state and two-neutron separation energies using three different values for the harmonic oscillator frequency around the empirical minimum. Controlled ab initio Bogoliubov coupled cluster (BCC) method. Comparison with available data.

doi: 10.1016/j.physletb.2024.138571
Citations: PlumX Metrics

2023BE01      Phys.Rev. C 107, L021302 (2023)

Y.Beaujeault-Taudiere, M.Frosini, J.-P.Ebran, T.Duguet, R.Roth, V.Soma

Zero- and finite-temperature electromagnetic strength distributions in closed- and open-shell nuclei from first principles

NUCLEAR STRUCTURE 16O, 28Si, 46Ti, 56Fe; calculated zero-temperature dipole polarizability. 56Fe; calculated thermal evolution of mean excitation energies of the dipole modes, low-lying total electromagnetic response (E1+M1) at finite temperatures (kT=0, 1 and 2 MeV). Ab-initio Hartree-Fock-Bogoliubov quasiparticle random-phase approximation (HFB-QRPA). Comparison to available experimental data.

NUCLEAR REACTIONS 16O, 28Si, 46Ti(γ, X), E<50 MeV; calculated integrated isovector E1 photoabsorption σ(E). 56Fe(γ, X), E<40 MeV; calculated electric E1 and magnetic M1 components of integrated photoabsorption σ at different finite temperatures. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.L021302
Citations: PlumX Metrics

2023DU01      Eur.Phys.J. A 59, 13 (2023)

T.Duguet, J.-P.Ebran, M.Frosini, H.Hergert, V.Soma

Rooting the EDF method into the ab initio framework PGCM-PT formalism based on MR-IMSRG pre-processed Hamiltonians

NUCLEAR STRUCTURE 20Ne; calculated energy levels, J, π using the empirical nuclear energy density functional (EDF) method rooted into the recently formulated ab initio many-body perturbation theory built on top of the projected generator coordinate method (PGCM-PT), whenever the latter employs an effective Hamiltonian resulting from a multi-reference in-medium similarity renormalization group (MR-IMSRG) transformation of the nuclear Hamiltonian at play in chiral effective field theory. Comparison with available data.

doi: 10.1140/epja/s10050-023-00914-y
Citations: PlumX Metrics

2023LO09      Phys.Lett. B 845, 138149 (2023)

J.Lois-Fuentes, B.Fernandez-Dominguez, X.Pereira-Lopez, F.Delaunay, W.N.Catford, A.Matta, N.A.Orr, T.Duguet, T.Otsuka, V.Soma, O.Sorlin, T.Suzuki, N.L.Achouri, M.Assie, S.Bailey, B.Bastin, Y.Blumenfeld, R.Borcea, M.Caamano, L.Caceres, E.Clement, A.Corsi, N.Curtis, Q.Deshayes, F.Farget, M.Fisichella, G.de France, S.Franchoo, M.Freer, J.Gibelin, A.Gillibert, G.F.Grinyer, F.Hammache, O.Kamalou, A.Knapton, Tz.Kokalova, V.Lapoux, B.Le Crom, S.Leblond, F.M.Marques, P.Morfouace, J.Pancin, L.Perrot, J.Piot, E.Pollacco, D.Ramos, D.Regueira-Castro, C.Rodriguez-Tajes, T.Roger, F.Rotaru, M.Senoville, N.de Sereville, R.Smith, M.Stanoiu, I.Stefan, C.Stodel, D.Suzuki, J.C.Thomas, N.Timofeyuk, M.Vandebrouck, J.Walshe, C.Wheldon

Cross-shell states in 15C: A test for p-sd interactions

NUCLEAR REACTIONS 2H(16C, t), E=17.2 MeV/nucleon; measured reaction products, Eγ, Iγ; deduced σ(θ), level energies, J, π, experimental level scheme, single-particle strength, normalised spectroscopic factors. Comparison with the ab initio self-consistent Green's function method employing the NNLOsat interaction. TIARA Silicon array, three MUST2 telescopes, GANIL.

doi: 10.1016/j.physletb.2023.138149
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022BA10      Phys.Rev. C 105, 044330 (2022)

C.Barbieri, T.Duguet, V.Soma

Gorkov algebraic diagrammatic construction formalism at third order

doi: 10.1103/PhysRevC.105.044330
Citations: PlumX Metrics

2022FR04      Eur.Phys.J. A 58, 64 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, B.Bally, H.Hergert, T.R.Rodriguez, R.Roth, J.M.Yao, V.Soma

Multi-reference many-body perturbation theory for nuclei, III. Ab initio calculations at second order in PGCM-PT

doi: 10.1140/epja/s10050-022-00694-x
Citations: PlumX Metrics

2022FR05      Eur.Phys.J. A 58, 63 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, B.Bally, T.Mongelli, T.R.Rodriguez, R.Roth, V.Soma

Multi-reference many-body perturbation theory for nuclei, II. Ab initio study of neon isotopes via PGCM and IM-NCSM calculations

doi: 10.1140/epja/s10050-022-00693-y
Citations: PlumX Metrics

2022FR06      Eur.Phys.J. A 58, 62 (2022)

M.Frosini, T.Duguet, J.-P.Ebran, V.Soma

Multi-reference many-body perturbation theory for nuclei, I. Novel PGCM-PT formalism

doi: 10.1140/epja/s10050-022-00692-z
Citations: PlumX Metrics

2022HA19      Phys.Rev. C 105, 064311 (2022)

G.Hagen, S.J.Novario, Z.H.Sun, T.Papenbrock, G.R.Jansen, J.G.Lietz, T.Duguet, A.Tichai

Angular-momentum projection in coupled-cluster theory: Structure of 34Mg

NUCLEAR STRUCTURE 8Be; calculated energies using symmetry-unrestricted Hartree-Fock and HF-RVAP as a function of the mass quadrupole moment q20. 20Ne, 34Mg; calculated the norm kernels and Hamiltonian kernels as function of the rotation angle using Hartree-Fock and CCD theories. 8Be, 20Ne, 34Mg; calculated projected coupled-cluster energies of the ground and excited states as a function of oscillator frequency using CCD, SLD, and SQD approximations. 44,46,48Ti, 48,50Cr; calculated low-lying states of J=0, 2 and 4 using projection-after-variation Hartree-Fock (PAV HF), variation-after-projection Hartree-Fock (VAP-HF), and projected CCD, SLD, and SQD methods, and compared to FCI results. Angular-momentum projection after variation with the disentangled coupled-cluster formalism and a Hermitian approach. Comparison with two-nucleon interaction from chiral effective field theory and for pf-shell nuclei within the traditional shell model, and with experimental data.

doi: 10.1103/PhysRevC.105.064311
Citations: PlumX Metrics

2022KO06      Phys.Lett. B 827, 136953 (2022)

T.Koiwai, K.Wimmer, P.Doornenbal, A.Obertelli, C.Barbieri, T.Duguet, J.D.Holt, T.Miyagi, P.Navratil, K.Ogata, N.Shimizu, V.Soma, Y.Utsuno, K.Yoshida, N.L.Achouri, H.Baba, F.Browne, D.Calvet, F.Chateau, S.Chen, N.Chiga, A.Corsi, M.L.Cortes, A.Delbart, J.-M.Gheller, A.Giganon, A.Gillibert, C.Hilaire, T.Isobe, T.Kobayashi, Y.Kubota, V.Lapoux, H.N.Liu, T.Motobayashi, I.Murray, H.Otsu, V.Panin, N.Paul, W.Rodriguez, H.Sakurai, M.Sasano, D.Steppenbeck, L.Stuhl, Y.L.Sun, Y.Togano, T.Uesaka, K.Yoneda, O.Aktas, T.Aumann, L.X.Chung, F.Flavigny, S.Franchoo, I.Gasparic, R.-B.Gerst, J.Gibelin, K.I.Hahn, D.Kim, Y.Kondo, P.Koseoglou, J.Lee, C.Lehr, B.D.Linh, T.Lokotko, M.MacCormick, K.Moschner, T.Nakamura, S.Y.Park, D.Rossi, E.Sahin, P.-A.Soderstrom, D.Sohler, S.Takeuchi, H.Toernqvist, V.Vaquero, V.Wagner, S.Wang, V.Werner, X.Xu, H.Yamada, D.Yan, Z.Yang, M.Yasuda, L.Zanetti

A first glimpse at the shell structure beyond 54Ca: Spectroscopy of 55K, 55Ca, and 57Ca

NUCLEAR REACTIONS 1H(56Ca, 2p)55K, (56Ca, np)55Ca, E=250 MeV/nucleon; 1H(58Sc, 2p)57Ca, E not given, [secondary 56Ca and 58Sc beams from 9Be(70Zn, X), E=345 MeV/nucleon, followed by selection of fragments of interest using the BigRIPS separator through the TOF-ΔE-Bρ method at RIBF-RIKEN facility]; measured reaction products using the by SAMURAI magnetic spectrometer, protons, Eγ, Iγ, (proton)γ-coin using thick liquid hydrogen target system MINOS and DALI22 array of 226 NaI(Tl) scintillator detectors. 55K, 55,57Ca; deduced levels, J, π, level half-lives, exclusive population σ, spectroscopic factors, short-lived state in 57Ca. Comparison with state-of-the-art theoretical calculations using different approaches such as large-scale shell model (LSSM), valence-space in-medium similarity renormalization group (VS-IMSRG), full-space self-consistent Green's function (SCGF) with NNLOsat and NN+3N(lnl) interactions.

doi: 10.1016/j.physletb.2022.136953
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022MA04      Phys.Rev.Lett. 128, 022502 (2022)

S.Malbrunot-Ettenauer, S.Kaufmann, S.Bacca, C.Barbieri, J.Billowes, M.L.Bissell, K.Blaum, B.Cheal, T.Duguet, R.F.Garcia Ruiz, W.Gins, C.Gorges, G.Hagen, H.Heylen, J.D.Holt, G.R.Jansen, A.Kanellakopoulos, M.Kortelainen, T.Miyagi, P.Navratil, W.Nazarewicz, R.Neugart, G.Neyens, W.Nortershauser, S.J.Novario, T.Papenbrock, T.Ratajczyk, P.-G.Reinhard, L.V.Rodriguez, R.Sanchez, S.Sailer, A.Schwenk, J.Simonis, V.Soma, S.R.Stroberg, L.Wehner, C.Wraith, L.Xie, Z.Y.Xu, X.F.Yang, D.T.Yordanov

Nuclear Charge Radii of the Nickel Isotopes 58-68, 70Ni

NUCLEAR MOMENTS 58,59,60,61,62,63,64,65,66,67,68Ni, 70Ni; measured frequency-time spectrum; deduced isotope shifts, mean-square charge radii. Comparison with ab initio approaches. Collinear laser spectroscopy beam line COLLAPS, ISOLDE/CERN.

doi: 10.1103/PhysRevLett.128.022502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022PO09      Eur.Phys.J. A 58, 197 (2022)

A.Porro, T.Duguet

On the off-diagonal Wick's theorem and Onishi formula - Alternative and consistent approach to off-diagonal operator and norm kernels

doi: 10.1140/epja/s10050-022-00843-2
Citations: PlumX Metrics

2022TE06      Few-Body Systems 63, 67 (2022)

I.Tews, Z.Davoudi, A.Ekstrom, J.D.Holt, K.Becker, R.Briceno, D.J.Dean, W.Detmold, C.Drischler, T.Duguet, E.Epelbaum, A.Gasparyan, J.Gegelia, J.R.Green, H.W.Griesshammer, A.D.Hanlon, M.Heinz, H.Hergert, M.Hoferichter, M.Illa, D.Kekejian, A.Kievsky, S.Konig, H.Krebs, K.D.Launey, D.Lee, P.Navratil, A.Nicholson, A.Parreno, D.R.Phillips, M.Ploszajczak, X.-L.Ren, T.R.Richardson, C.Robin, G.H.Sargsyan, M.J.Savage, M.R.Schindler, P.E.Shanahan, R.P.Springer, A.Tichai, U.van Kolck, M.L.Wagman, A.Walker-Loud, C.-J.Yang, X.Zhang

Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives

doi: 10.1007/s00601-022-01749-x
Citations: PlumX Metrics

2022TI02      Eur.Phys.J. A 58, 2 (2022)

A.Tichai, P.Arthuis, H.Hergert, T.Duguet

ADG: automated generation and evaluation of many-body diagrams

doi: 10.1140/epja/s10050-021-00621-6
Citations: PlumX Metrics

2021BO06      Eur.Phys.J. A 57, 42 (2021)

V.Bontems, T.Duguet, G.Hagen, V.Soma

Topical issue on the tower of effective (field) theories and the emergence of nuclear phenomena

doi: 10.1140/epja/s10050-021-00356-4
Citations: PlumX Metrics

2021FR06      Eur.Phys.J. A 57, 151 (2021)

M.Frosini, T.Duguet, B.Bally, Y.Beaujeault-Taudiere, J.-P.Ebran, V.Soma

In-medium k-body reduction of n-body operators; A flexible symmetry-conserving approach based on the sole one-body density matrix

doi: 10.1140/epja/s10050-021-00458-z
Citations: PlumX Metrics

2021LI58      Phys.Rev. C 104, 044331 (2021)

B.D.Linh, A.Corsi, A.Gillibert, A.Obertelli, P.Doornenbal, C.Barbieri, S.Chen, L.X.Chung, T.Duguet, M.Gomez-Ramos, J.D.Holt, A.Moro, P.Navratil, K.Ogata, N.T.T.Phuc, N.Shimizu, V.Soma, Y.Utsuno, N.L.Achouri, H.Baba, F.Browne, D.Calvet, F.Chateau, N.Chiga, M.L.Cortes, A.Delbart, J.-M.Gheller, A.Giganon, C.Hilaire, T.Isobe, T.Kobayashi, Y.Kubota, V.Lapoux, H.N.Liu, T.Motobayashi, I.Murray, H.Otsu, V.Panin, N.Paul, W.Rodriguez, H.Sakurai, M.Sasano, D.Steppenbeck, L.Stuhl, Y.L.Sun, Y.Togano, T.Uesaka, K.Wimmer, K.Yoneda, O.Aktas, T.Aumann, F.Flavigny, S.Franchoo, I.Gasparic, R.-B.Gerst, J.Gibelin, K.I.Hahn, N.T.Khai, D.Kim, T.Koiwai, Y.Kondo, P.Koseoglou, J.Lee, C.Lehr, T.Lokotko, M.MacCormick, K.Moschner, T.Nakamura, S.Y.Park, D.Rossi, E.Sahin, D.Sohler, P.-A.Soderstrom, S.Takeuchi, N.D.Ton, H.Tornqvist, V.Vaquero, V.Wagner, H.Wang, V.Werner, X.Xu, Y.Yamada, D.Yan, Z.Yang, M.Yasuda, L.Zanetti

Investigation of the ground-state spin inversion in the neutron-rich 47, 49Cl isotopes

NUCLEAR REACTIONS 1H(50Ar, 2p)49Cl, (50Ar, 2n2p)47Cl; 1H(52K, n3p)49Cl; 1H(48Cl, np)47Cl, [secondary ion beams from 9Be(70Zn, X), E=345 MeV/nucleon primary reaction at RIBF-RIKEN facility, followed by separation of ions by BigRIPS separator using Bπ-ΔE-TOF measurement and MINOS hydrogen target system]; measured reaction products, A/Q versus Z plot, scattered ions of 47Cl and 49Cl using the SAMURAI spectrometer and identified by A/Q and Z, Eγ, Iγ, γγ-coin using DALI2+ array of 226 NaI(Tl) detectors. 47,49Cl; deduced levels, J and π for 49Cl, parallel and transverse momentum distributions and L-transfers for 49Cl, inclusive cross sections. Comparison of experimental level structure with shell-model calculations using SDPF-MU interactions, and IMSRG calculation. Comparison of momentum distributions with distorted-wave impulse approximation (DWIA), and transfer to continuum (TC) methods. Comparison of inclusive cross sections with LISE++ theoretical calculations. 49Cl; calculated levels, J, π, T1/2 of levels, B(E2), B(M1) using SDFP-MU shell-model. 45,47,49Cl; calculated levels, J, π, spectroscopic factors using shell-model and ab initio approaches. 41,43,45,47Cl; spin inversion issue not settled. Comparison of experimental and theoretical (from CGF) energy difference between the first 1/2+ and 3/2+ states in 35,36,37,38,39,40,41,43,45,47,49,51,53Cl, 37,38,39,40,41,43,45,47,49,51,53,55K.

doi: 10.1103/PhysRevC.104.044331
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2021PO10      Eur.Phys.J. A 57, 297 (2021)

A.Porro, V.Soma, A.Tichai, T.Duguet

Importance truncation in non-perturbative many-body techniques - Gorkov self-consistent Green's function calculations

NUCLEAR STRUCTURE 40,44Ca, 44Ti; calculated binding energies, number of three-quasiparticle configurations, ground-state energy errors.

doi: 10.1140/epja/s10050-021-00606-5
Citations: PlumX Metrics

2021SO14      Eur.Phys.J. A 57, 135 (2021)

V.Soma, C.Barbieri, T.Duguet, P.Navratil

Moving away from singly-magic nuclei with Gorkov Green's function theory

NUCLEAR STRUCTURE Z=18-24; calculated binding and two-neutron separation energies, one- and two-proton separation energies, two-neutron shell gaps, root mean square charge radii within the Gorkov self-consistent Green's function approach at second order and make use of two state-of-the-art two- plus three-nucleon Hamiltonians. Comparison with available data.

doi: 10.1140/epja/s10050-021-00437-4
Citations: PlumX Metrics

2020DE11      Phys.Rev. C 101, 041302 (2020)

P.Demol, T.Duguet, A.Ekstrom, M.Frosini, K.Hebeler, S.Konig, D.Lee, A.Schwenk, V.Soma, A.Tichai

Improved many-body expansions from eigenvector continuation

NUCLEAR STRUCTURE 3H, 18O; calculated ground state energies using many-body perturbation theory (MBPT)-based eigenvector continuation (EC) resummation method for 3He, and Bogoliubov many-body perturbation theory (BMBPT)-based EC resummation method for 16O, using realistic nuclear two-body interaction derived from chiral effective field theory. Comparison with MBPT, BMBPT, and MBPT-based Pade approximation calculations.

doi: 10.1103/PhysRevC.101.041302
Citations: PlumX Metrics

2020DR02      Eur.Phys.J. A 56, 119 (2020)

M.Drissi, T.Duguet, V.Soma

Renormalization of pionless effective field theory in the A-body sector

doi: 10.1140/epja/s10050-020-00097-w
Citations: PlumX Metrics

2020DU12      Phys.Rev. C 102, 044328 (2020)

T.Duguet, W.Ryssens

Zero-pairing and zero-temperature limits of finite-temperature Hartree-Fock-Bogoliubov theory

NUCLEAR STRUCTURE 18,19,22,26O; calculated quasiparticle energy associated with the valence shells as function of inverse temperature, neutron-number variance, entropy, pairing energy, and Routhians as functions of effective pairing strength and inverse temperature. Combined zero-pairing and zero-temperature limits of the finite-temperature Hartree-Fock-Bogoliubov (FTHFB) formalism for open-shell systems.

doi: 10.1103/PhysRevC.102.044328
Citations: PlumX Metrics

2020DU16      Phys.Rev. C 102, 054320 (2020)

T.Duguet, B.Bally, A.Tichai

Zero-pairing limit of Hartree-Fock-Bogoliubov reference states

NUCLEAR STRUCTURE 18,22,26O, 44Ca; calculated zero pairing energies, valence shell canonical pairing gap, nondegenerate elementary excitations, zero particle-number variances, weights of Slater determinants associated with a given particle number, neutron-number variance of the constrained HFB solution, pairing gaps and average occupation of neutron canonical states near Fermi energy. 40,42,44,46,48Ca; calculated pairing energies in the zero-pairing limit, and compared with analytical prediction. Zero-pairing limit of an even-number parity Bogoliubov state solution of Hartree-Fock-Bogoliubov (HFB) equation with a two-nucleon interaction derived within the framework of chiral effective field theory.

doi: 10.1103/PhysRevC.102.054320
Citations: PlumX Metrics

2020MO25      Phys.Rev. C 102, 014301 (2020)

M.Mougeot, D.Atanasov, C.Barbieri, K.Blaum, M.Breitenfeld, A.de Roubin, T.Duguet, S.George, F.Herfurth, A.Herlert, J.D.Holt, J.Karthein, D.Lunney, V.Manea, P.Navratil, D.Neidherr, M.Rosenbusch, L.Schweikhard, A.Schwenk, V.Soma, A.Welker, F.Wienholtz, R.N.Wolf, K.Zuber

Examining the N=28 shell closure through high-precision mass measurements of 46-48Ar

ATOMIC MASSES 46,47,48Ar; measured Ramsey-type time-of-flight ion-cyclotron-resonances (TOF-ICR), mass excesses using the ISOLTRAP Penning trap mass spectrometer at CERN-ISOLDE. Comparison with previous experimental results, and with AME2016 and AME2012 evaluations. Radioactive argon isotopes produced in U(p, F), E=1.4 GeV reaction, and separated using ISOLTRAP on-line mass spectrometer and the ISOLDE High-Resolution Separator (HRS). Comparison with ab initio calculations using the valence space in-medium similarity renormalization group (VS-IMSRG) with self-consistent Green's function approach, and with the predictions from the UNEDF0 density functional, SDPF-U shell model. Systematics of S(2n) and pairing gaps in N=24-32 S, Cl, Ar, K, and Ca isotopes.

doi: 10.1103/PhysRevC.102.014301
Citations: PlumX Metrics

2020RI01      Eur.Phys.J. A 56, 40 (2020)

J.Ripoche, A.Tichai, T.Duguet

Normal-ordered k-body approximation in particle-number-breaking theories

doi: 10.1140/epja/s10050-020-00045-8
Citations: PlumX Metrics

2020SO01      Phys.Rev. C 101, 014318 (2020)

V.Soma, P.Navratil, F.Raimondi, C.Barbieri, T.Duguet

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

NUCLEAR STRUCTURE 3H, 3,4,6,8He, 6,7,9Li, 7,8,9,10Be, 10,11B, 12,13,14C, 14N, 14,16O, 36Ca, 68Ni; calculated ground-state energies. 6,7,9Li, 8,9Be, 10,11B, 12,13C; calculated levels, J, π. 12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28O, 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,70Ca, 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78Ni; calculated total binding energies, S(2n), rms charge radii. 16O, 40Ca, 58Ni; calculated charge density distribution. 47,49,53,55Ca, 53K, 55Sc; calculated levels, J, π populated in one-neutron removal and addition from and to 48Ca and 54Ca. 37,39,41,43,45,47,49,51,53,55K; calculated energies of the first excited states. 16O, 36Ca, 56Ni; calculated binding energies. 18O, 52Ca, 64Ni; calculated rms charge radii. 39K, 49,53Ca; calculated one-nucleon separation energies. 16,22,24O, 36,40,48,52,54,60Ca, 48,56,68Ni; calculated binding energy per particle for doubly closed-shell nuclei. State-of-the-art no-core shell model and self-consistent Green's function approaches with NN+3N(lnl) interaction, and with comparisons made with NNLOsat and NN+3N(400) interactions, and with experimental data.

doi: 10.1103/PhysRevC.101.014318
Citations: PlumX Metrics

2020SU06      Phys.Lett. B 802, 135215 (2020)

Y.L.Sun, A.Obertelli, P.Doornenbal, C.Barbieri, Y.Chazono, T.Duguet, H.N.Liu, P.Navratil, F.Nowacki, K.Ogata, T.Otsuka, F.Raimondi, V.Soma, Y.Utsuno, K.Yoshida, N.Achouri, H.Baba, F.Browne, D.Calvet, F.Chateau, S.Chen, N.Chiga, A.Corsi, M.L.Cortes, A.Delbart, J.-M.Gheller, A.Giganon, A.Gillibert, C.Hilaire, T.Isobe, T.Kobayashi, Y.Kubota, V.Lapoux, T.Motobayashi, I.Murray, H.Otsu, V.Panin, N.Paul, W.Rodriguez, H.Sakurai, M.Sasano, D.Steppenbeck, L.Stuhl, Y.Togano, T.Uesaka, K.Wimmer, K.Yoneda, O.Aktas, T.Aumann, L.X.Chung, F.Flavigny, S.Franchoo, I.Gasparic, R.-B.Gerst, J.Gibelin, K.I.Hahn, D.Kim, T.Koiwai, Y.Kondo, P.Koseoglou, J.Lee, C.Lehr, B.D.Linh, T.Lokotko, M.MacCormick, K.Moschner, T.Nakamura, S.Y.Park, D.Rossi, E.Sahin, D.Sohler, P.-A.Soderstrom, S.Takeuchi, H.Tornqvist, V.Vaquero, V.Wagner, S.Wang, V.Werner, X.Xu, H.Yamada, D.Yan, Z.Yang, M.Yasuda, L.Zanetti

Restoration of the natural E(1/2+1)-E(3/2+1) energy splitting in odd-K isotopes towards N = 40

NUCLEAR REACTIONS 52,54Ca(p, 2p)51K/53K, E ∼ 250 MeV/nucleon; measured reaction products, Eγ, Iγ; deduced γ-ray energies, J, π, partial σ. Comparison with ab initio and shell-model calculations with improved phenomenological effective interactions.

doi: 10.1016/j.physletb.2020.135215
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2020TI05      Eur.Phys.J. A 56, 272 (2020)

A.Tichai, R.Wirth, J.Ripoche, T.Duguet

Symmetry reduction of tensor networks in many-body theory

doi: 10.1140/epja/s10050-020-00233-6
Citations: PlumX Metrics

2019QI02      Phys.Rev. C 99, 044301 (2019)

Y.Qiu, T.M.Henderson, T.Duguet, G.E.Scuseria

Particle-number projected Bogoliubov-coupled-cluster theory: Application to the pairing Hamiltonian

doi: 10.1103/PhysRevC.99.044301
Citations: PlumX Metrics

2019TI03      Phys.Rev. C 99, 034320 (2019)

A.Tichai, R.Schutski, G.E.Scuseria, T.Duguet

Tensor-decomposition techniques for ab initio nuclear structure calculations: From chiral nuclear potentials to ground-state energies

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated size of the singular values of the Hamiltonian tensor, relative error in Hamiltonian tensor hypercontraction (THC) decomposition for both 2- and 3-nucleon interactions, data compression factor, and relative error in tensor-decomposed ground-state energy correction. Tensor-decomposition techniques within the frame of ab initio nuclear structure theory.

doi: 10.1103/PhysRevC.99.034320
Citations: PlumX Metrics

2019TI05      Eur.Phys.J. A 55, 90 (2019)

A.Tichai, J.Ripoche, T.Duguet

Pre-processing the nuclear many-body problem

doi: 10.1140/epja/i2019-12758-6
Citations: PlumX Metrics

2018BA07      Phys.Rev. C 97, 024304 (2018)

B.Bally, T.Duguet

Norm overlap between many-body states: Uncorrelated overlap between arbitrary Bogoliubov product states

doi: 10.1103/PhysRevC.97.024304
Citations: PlumX Metrics

2018RI03      Phys.Rev. C 97, 064316 (2018)

J.Ripoche, T.Duguet, J.-P.Ebran, D.Lacroix

Combining symmetry breaking and restoration with configuration interaction: Extension to z-signature symmetry in the case of the Lipkin model

doi: 10.1103/PhysRevC.97.064316
Citations: PlumX Metrics

2018TI07      Phys.Lett. B 786, 195 (2018)

A.Tichai, P.Arthuis, T.Duguet, H.Hergert, V.Soma, R.Roth

Bogoliubov many-body perturbation theory for open-shell nuclei

NUCLEAR STRUCTURE 14,16,18,20,22,24,26,28O, 34,36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni; calculated absolute ground-state binding energies and two-neutron separation energies. A Rayleigh–Schrodinger many-body perturbation theory (MBPT) approach.

doi: 10.1016/j.physletb.2018.09.044
Citations: PlumX Metrics

2017DU03      Phys.Rev. C 95, 034319 (2017)

T.Duguet, V.Soma, S.Lecluse, C.Barbieri, P.Navratil

Ab initio calculation of the potential bubble nucleus 34Si

NUCLEAR STRUCTURE 34Si, 36S; calculated ground-state energies, rms charge radii, point-proton, point-neutron, matter and charge rms radii, point-proton and point-neutron density distributions, proton and neutron natural orbital occupations, point-proton depletion factor, angular dependence of form factor in (e, e') at 300 MeV, one-nucleon addition and removal spectral strength distributions and associated effective single-particle energies, reduction of 1/2- to 3/2- spin-orbit splitting, and effective single-particle energies within the ADC(1), ADC(2) and ADC(3) approximations. 35Si, 37S, 33Al, 35P; calculated low-lying levels, J, π from one-neutron addition via (d, p) reaction and via one-proton knock-out reactions. 34Si, 36S; reduction of 1/2- to 3/2- spin-orbit splitting, effective single-particle energies. Semibubble or bubble structures. Performed ab initio self-consistent Green's function many-body calculations with a combination of two-nucleon (2N) and three-nucleon (3N) interactions obtained by chiral effective field theory (χEFT) at next-to-next-to leading order (N2LO). Comparison with available experimental data.

doi: 10.1103/PhysRevC.95.034319
Citations: PlumX Metrics

2017RI01      Phys.Rev. C 95, 014326 (2017)

J.Ripoche, D.Lacroix, D.Gambacurta, J.-P.Ebran, T.Duguet

Combining symmetry breaking and restoration with configuration interaction: A highly accurate many-body scheme applied to the pairing Hamiltonian

doi: 10.1103/PhysRevC.95.014326
Citations: PlumX Metrics

2016DU11      Few-Body Systems 57, 319 (2016)


A Theoretical Analysis of Mid-Mass Neutron Halos; What Changes Going from Few- to Many-Body Systems Regarding Neutron Halos?

NUCLEAR STRUCTURE 54,56,58,60,62,64,66,68,70,72,74,76,78,80Cr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174Sn; calculated neutron densities, halo factor parameter, total neutron root-mean-square radius. Comparison with available data.

doi: 10.1007/s00601-016-1071-7
Citations: PlumX Metrics

2015DU11      Phys.Rev. C 92, 034313 (2015)

T.Duguet, H.Hergert, J.D.Holt, V.Soma

Nonobservable nature of the nuclear shell structure: Meaning, illustrations, and consequences

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60Ca; calculated effective single-particle energies (ESPEs), energies of first 2+ states using Shell model. 22,24O; calculated Fermi gap in the ESPE spectrum and the first 2+ excitation energy using microscopic shell model based on realistic 2N and 3N interactions. 74Ni; calculated spectral strength distribution for one-neutron addition and removal processes, ESPEs using self-consistent Gorkov Green's function with a realistic 2N chiral interaction. 14,16,18,20,22,24O; calculated binding energies, S(n) with dominant spectroscopic factors versus neutron ESPEs, residual spreads of separation energies and ESPEs, two-nucleon shell gap versus ESPE Fermi gap, spectroscopic factors associated with one neutron addition and removal process on the ground states. State-of-the-art multireference in-medium SRG and self-consistent Gorkov Green's function many-body calculations based on chiral two- and three-nucleon interactions to illustrate nonobservable aspects of the one-nucleon shell structure.

doi: 10.1103/PhysRevC.92.034313
Citations: PlumX Metrics

2015DU17      Eur.Phys.J. A 51, 162 (2015)

T.Duguet, M.Bender, J.-P.Ebran, T.Lesinski, V.Soma

Ab initio-driven nuclear energy density functional method - A proposal for safe/correlated/improvable parametrizations of the off-diagonal EDF kernels

doi: 10.1140/epja/i2015-15162-4
Citations: PlumX Metrics

2015SI12      Phys.Rev. C 91, 064320 (2015)

A.Signoracci, T.Duguet, G.Hagen, G.R.Jansen

Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

NUCLEAR STRUCTURE 16,18,20O, 18Ne, 20Mg; calculated ground-state energies and the cluster amplitudes at the singles and doubles level (BCCSD), algebraically and diagrammatically. Ab initio Bogoliubov coupled cluster (BCC) theory for open shell nuclei.

doi: 10.1103/PhysRevC.91.064320
Citations: PlumX Metrics

2014HE05      Phys.Rev. C 89, 054305 (2014)

T.M.Henderson, G.E.Scuseria, J.Dukelsky, A.Signoracci, T.Duguet

Quasiparticle coupled cluster theory for pairing interactions

doi: 10.1103/PhysRevC.89.054305
Citations: PlumX Metrics

2014PA45      Phys.Rev. C 90, 034321 (2014)

J.Papuga, M.L.Bissell, K.Kreim, C.Barbieri, K.Blaum, M.De Rydt, T.Duguet, R.F.Garcia Ruiz, H.Heylen, M.Kowalska, R.Neugart, G.Neyens, W.Nortershauser, M.M.Rajabali, R.Sanchez, N.Smirnova, V.Soma, D.T.Yordanov

Shell structure of potassium isotopes deduced from their magnetic moments

NUCLEAR MOMENTS 38,38m,39,42,44,46,47,48,49,50,51K; measured hyperfine structure using high-resolution collinear laser spectroscope COLLAPS and Paul trap ISCOOL at ISOLDE-CERN; deduced J, magnetic moments, configurations, magnetic hyperfine parameters. Potassium isotopes produced in U(p, X), E=1 GeV at ISOLDE-CERN. 38,40,41,42,43,44,45,46,47,48,49,51K; deduced hyperfine structure anomalies. Comparison with shell model calculations using SDPF-NR and SDPF-U effective interactions, and with previous experimental results.

doi: 10.1103/PhysRevC.90.034321
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2014SO02      Phys.Rev. C 89, 024323 (2014)

V.Soma, C.Barbieri, T.Duguet

Ab initio self-consistent Gorkov-Green's function calculations of semi-magic nuclei: Numerical implementation at second order with a two-nucleon interaction

NUCLEAR STRUCTURE 4He, 12C, 20O, 44Ca; calculated binding energies. 40Ti; calculated neutron and proton effective single-particle energies, one-neutron addition and removal strength distribution. 41Ti; calculated density of 1/2+ states in as a function of their excitation energy. Self-consistent Gorkov-Green function theory with multi-pivot Lanczos algorithm and Krylov projection techniques.

doi: 10.1103/PhysRevC.89.024323
Citations: PlumX Metrics

2014SO09      Phys.Rev. C 89, 061301 (2014)

V.Soma, A.Cipollone, C.Barbieri, P.Navratil, T.Duguet

Chiral two- and three-nucleon forces along medium-mass isotope chains

NUCLEAR STRUCTURE 51K; calculated binding energy. 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52Ca; calculated ground-state energies, S(2n). 36,38,40,42,44,46,48,50Ar, 37,39,41,43,45,47,49,51K, 39,41,43,45,47,49,51,53Sc, 40,42,44,46,48,50,52,54Ti; calculated S(2n). Ab initio calculations using Gorkov-Green's function approach for open-shell nuclei. Chiral two- and three-nucleon interactions. Comparison with other theoretical calculations, and with experimental data from AME-2012.

doi: 10.1103/PhysRevC.89.061301
Citations: PlumX Metrics

2013HE26      Phys.Rev. C 88, 064323 (2013)

V.Hellemans, A.Pastore, T.Duguet, K.Bennaceur, D.Davesne, J.Meyer, M.Bender, P.-H.Heenen

Spurious finite-size instabilities in nuclear energy density functionals

NUCLEAR STRUCTURE 16O, 40,48Ca, 78Ni, 176Sn, 208Pb; calculated binding energies; investigated instabilities in energy density functional (EDF) calculations to finite-wavelength instabilities of homogeneous symmetric computed at the RPA level. Nine parameterizations based on traditional form of the Skyrme EDF.Systematic calculations with both HOSPHE and LENTEUR formalisms.

doi: 10.1103/PhysRevC.88.064323
Citations: PlumX Metrics

2013SA23      Phys.Scr. T154, 014013 (2013)

J.Sadoudi, M.Bender, K.Bennaceur, D.Davesne, R.Jodon, T.Duguet

Skyrme pseudo-potential-based EDF parametrization for spuriousity-free MR EDF calculations

NUCLEAR STRUCTURE Z=20, 28, 50, 82; calculated binding energy residuals as a function of A for singly magic nuclei, neutron spectral gaps of singly magic even-even nuclei in the isotopic chains. General Skyrme EDFs at the SR level.

doi: 10.1088/0031-8949/2013/T154/014013
Citations: PlumX Metrics

2013SA63      Phys.Rev. C 88, 064326 (2013)

J.Sadoudi, T.Duguet, J.Meyer, M.Bender

Skyrme functional from a three-body pseudopotential of second order in gradients: Formalism for central terms

doi: 10.1103/PhysRevC.88.064326
Citations: PlumX Metrics

2013SO03      Phys.Rev. C 87, 011303 (2013)

V.Soma, C.Barbieri, T.Duguet

Ab initio Gorkov-Green's function calculations of open-shell nuclei

NUCLEAR STRUCTURE 44Ca, 74Ni; calculated binding energy, neutron pairing gap, matter RMS radius, neutron addition and neutron removal spectral strength distributions to states in 43,45Ca, 73,75Ni. Z=20, N=36-52; calculated binding energies of Ca isotopes. The ab initio self-consistent Gorkov-Green's function theory.

doi: 10.1103/PhysRevC.87.011303
Citations: PlumX Metrics

2012DU04      Phys.Rev. C 85, 034330 (2012)

T.Duguet, G.Hagen

Ab initio approach to effective single-particle energies in doubly closed shell nuclei

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,52,54,60Ca; calculated one-neutron effective single-particle energies, one-neutron removal energies and spectroscopic factors. Coupled-cluster calculations. Consistent structure and reaction models.

doi: 10.1103/PhysRevC.85.034330
Citations: PlumX Metrics

2012LE01      J.Phys.(London) G39, 015108 (2012)

T.Lesinski, K.Hebeler, T.Duguet, A.Schwenk

Chiral three-nucleon forces and pairing in nuclei

doi: 10.1088/0954-3899/39/1/015108
Citations: PlumX Metrics

2012SO11      J.Phys.:Conf.Ser. 337, 012001 (2012)

V.Soma, T.Duguet, C.Barbieri

Self-consistent Gorkov Green's function calculations of one-nucleon spectral properties

NUCLEAR STRUCTURE 40,44Ca; calculated neutron spectral strength distributions using self-consistent Gorkov Green's function.

doi: 10.1088/1742-6596/337/1/012001
Citations: PlumX Metrics

2011BE09      Int.J.Mod.Phys. E20, 259 (2011)

M.Bender, T.Duguet, P.-H.Heenen, D.Lacroix

Regularization of mutli-reference energy density functional calculations

NUCLEAR STRUCTURE 18O; calculated deformation energy surfaces.

doi: 10.1142/S0218301311017600
Citations: PlumX Metrics

2011DU10      Int.J.Mod.Phys. E20, 270 (2011)

T.Duguet, J.Sadoudi

On the breaking and restoration of symmetries within the nuclear energy density functional formalism

doi: 10.1142/S0218301311017612
Citations: PlumX Metrics

2011GE02      Nucl.Phys. A851, 17 (2011)

B.Gebremariam, S.K.Bogner, T.Duguet

Microscopically-constrained Fock energy density functionals from chiral effective field theory. I. Two-nucleon interactions

doi: 10.1016/j.nuclphysa.2010.12.009
Citations: PlumX Metrics

2011SO32      Phys.Rev. C 84, 064317 (2011)

V.Soma, T.Duguet, C.Barbieri

Ab initio self-consistent Gorkov-Green's function calculations of semimagic nuclei: Formalism at second order with a two-nucleon interaction

doi: 10.1103/PhysRevC.84.064317
Citations: PlumX Metrics

2010GE02      Phys.Rev. C 82, 014305 (2010)

B.Gebremariam, T.Duguet, S.K.Bogner

Improved density matrix expansion for spin-unsaturated nuclei

NUCLEAR STRUCTURE 46,64,80Cr, 102,114,132Sn, 180,198,214Pb; calculated quadrupole anisotropy. Z=24, A=44-82; Z=50, A=100-132; Z=82, A=176-214; calculated energy density expansions for even-even nuclei. Nuclear energy density functionals.

doi: 10.1103/PhysRevC.82.014305
Citations: PlumX Metrics

2010ST12      Phys.Rev. C 82, 054307 (2010)

M.Stoitsov, M.Kortelainen, S.K.Bogner, T.Duguet, R.J.Furnstahl, B.Gebremariam, N.Schunck

Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated kinetic energies for neutrons and protons, surface, volume and total energies, single-particle neutron and proton energies. 54,56,58,60,62,64,66Ni, 68Ni, 70,72,74,76,78,80,82,84,86,88,90,92Ni; calculated two-neutron separation energies, neutron rms radii, and average neutron pairing gaps. 100Zr; calculated deformation energy. 40,42,44,46,48Ca; calculated proton rms radii. Energy density functionals SLy4' and density matrix expansion (DME) in LO, NLO and N2LO.

doi: 10.1103/PhysRevC.82.054307
Citations: PlumX Metrics

2009BE15      Phys.Rev. C 79, 044319 (2009)

M.Bender, T.Duguet, D.Lacroix

Particle-number restoration within the energy density functional formalism

NUCLEAR STRUCTURE 18O, 76Kr, 186Pb; calculated particle-number-restored deformation energy surface, single-particle spectra of protons and neutrons as a function of quadrupole deformation, poles for neutrons and protons, corrected and uncorrected particle-number projected quadrupole deformation energy, spurious energy from single-particle orbitals. Particle-number restoration calculations in energy-density functional formalism using Skyrme SLy4 and density-dependent pairing interactions. Most calculations for 18O.

doi: 10.1103/PhysRevC.79.044319
Citations: PlumX Metrics

2009BE45      Phys.Rev. C 80, 064302 (2009)

M.Bender, K.Bennaceur, T.Duguet, P.-H.Heenen, T.Lesinski, J.Meyer

Tensor part of the Skyrme energy density functional. II. Deformation properties of magic and semi-magic nuclei

NUCLEAR STRUCTURE 40,48Ca, 56,68,78Ni, 80,90,96,100,110Zr, 100,120,132Sn, 186,208Pb; calculated proton and neutron Nilsson diagrams, single-particle energy spectra, deformation energy curves, isoscalar tensor energies using nuclear energy density functionals (EDF) and T22, T26, T44, T62, SLy5, SLy5+T, SLy4, SLy4T, SLy4T(min), SLy4T(self) and TZA parametrizations. Investigated impact of tensor terms in the Skyrme energy density functional on deformation properties of magic and semi-magic nuclei.

doi: 10.1103/PhysRevC.80.064302
Citations: PlumX Metrics

2009DU02      Phys.Rev. C 79, 044320 (2009)

T.Duguet, M.Bender, K.Bennaceur, D.Lacroix, T.Lesinski

Particle-number restoration within the energy density functional formalism: Nonviability of terms depending on noninteger powers of the density matrices

NUCLEAR STRUCTURE 18O; calculated particle-number restoration energy in the framework of single- and multi-reference nuclear energy density functionals.

doi: 10.1103/PhysRevC.79.044320
Citations: PlumX Metrics

2009DU13      Int.J.Mod.Phys. E18, 2007 (2009)

T.Duguet, T.Lesinski, K.Hebeler, K.Bennaceur, A.Schwenk, J.Meyer

Non-empirical energy density functional for nuclei: The pairing part

doi: 10.1142/S0218301309014172
Citations: PlumX Metrics

2009HE17      Phys.Rev. C 80, 044321 (2009)

K.Hebeler, T.Duguet, T.Lesinski, A.Schwenk

Non-empirical pairing energy functional in nuclear matter and finite nuclei

NUCLEAR STRUCTURE N=16-184, Z=20, 28, 50, 82; Z=18-94, N=28, 50, 82, 126; calculated neutron and proton lowest canonical state (LCS) pairing gaps in semi-magic nuclei using refitted Skyrme EDF. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.044321
Citations: PlumX Metrics

2009LA09      Phys.Rev. C 79, 044318 (2009)

D.Lacroix, T.Duguet, M.Bender

Configuration mixing within the energy density functional formalism: Removing spurious contributions from nondiagonal energy kernels

doi: 10.1103/PhysRevC.79.044318
Citations: PlumX Metrics

2009LA28      Int.J.Mod.Phys. E18, 2108 (2009)

D.Lacroix, M.Bender, T.Duguet

Configuration mixing within the energy density functional formalism, Pathologies and cures

doi: 10.1142/S021830130901438X
Citations: PlumX Metrics

2009LE24      Eur.Phys.J. A 40, 121 (2009)

T.Lesinski, T.Duguet, K.Bennaceur, J.Meyer

Non-empirical pairing energy density functional; First order in the nuclear plus Coulomb two-body interaction

NUCLEAR STRUCTURE Ca, Ni, Sn, Pb; calculated pair gap energies for semi-magic isotonic and isotopic chains using the energy density functional method.

doi: 10.1140/epja/i2009-10780-y
Citations: PlumX Metrics

2009RO06      Phys.Rev. C 79, 054308 (2009)

V.Rotival, T.Duguet

New analysis method of the halo phenomenon in finite many-fermion systems: First applications to medium-mass atomic nuclei

NUCLEAR STRUCTURE 54,56,58,60,62,64,66,68,70,72,74,76,78,80Cr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170Sn; calculated neutron densities, neutron canonical and two-neutron separation energies, charge and Helm rms radii for protons and neutrons, halo parameters using Hartree-Fock-Bogoliubov calculations with Skyrme plus pairing functionals.

doi: 10.1103/PhysRevC.79.054308
Citations: PlumX Metrics

2009RO07      Phys.Rev. C 79, 054309 (2009)

V.Rotival, K.Bennaceur, T.Duguet

Halo phenomenon in finite many-fermion systems: Atom-positron complexes and large-scale study of atomic nuclei

NUCLEAR STRUCTURE 72,74,76,78,80,82,84Cr, 84Fe, 86,88Ni, 136Ru, 140Pd; calculated halo parameters and neutron canonical gaps using Hartree-Fock-Bogoliubov calculations with Skyrme plus pairing functionals. Li+e+, Be+e+, Mg+e+, Cu+e+, He++e+, Li++e+; calculated halo parameters in atom-positron and ion-positronium complexes using energy-density functional calculations.

doi: 10.1103/PhysRevC.79.054309
Citations: PlumX Metrics

2008DU07      Eur.Phys.J. Special Topics 156, 207 (2008)

T.Duguet, T.Lesinski

Non-empirical pairing functional

doi: 10.1140\epjst/e2008-00618-x
Citations: PlumX Metrics

2007BE06      Int.J.Mod.Phys. E16, 222 (2007)

M.Bender, T.Duguet

Pairing correlations beyond the mean field

NUCLEAR STRUCTURE 120Sn; calculated mean-field energy vs pairing strength parameter. 18O; calculated binding energy, single-particle energies vs deformation.

doi: 10.1142/S0218301307005673
Citations: PlumX Metrics

2007LE22      Phys.Rev. C 76, 014312 (2007)

T.Lesinski, M.Bender, K.Bennaceur, T.Duguet, J.Meyer

Tensor part of the Skyrme energy density functional: Spherical nuclei

NUCLEAR STRUCTURE Ca, Ni, Sn, Pb; calculated single particle energies using the Skyrme interaction with Tensor terms.

doi: 10.1103/PhysRevC.76.014312
Citations: PlumX Metrics

2006BR29      Phys.Rev.C 74, 061303 (2006)

B.A.Brown, T.Duguet, T.Otsuka, D.Abe, T.Suzuki

Tensor interaction contributions to single-particle energies

NUCLEAR STRUCTURE 114,132Sn; calculated single-particle level energies, tensor interaction contributions. Finite-range G-matrix and zero-range Skyrme potentials.

doi: 10.1103/PhysRevC.74.061303
Citations: PlumX Metrics

2006LE36      Phys.Rev. C 74, 044315 (2006)

T.Lesinski, K.Bennaceur, T.Duguet, J.Meyer

Isovector splitting of nucleon effective masses, ab initio benchmarks and extended stability criteria for Skyrme energy functionals

NUCLEAR STRUCTURE 78Ni, 132,156Sn, 208Pb; calculated single-particle energy levels. Sn, Pb; calculated binding energies, pair gap energies vs neutron number. 40Ca, 56Ni; calculated nucleon density distributions.

doi: 10.1103/PhysRevC.74.044315
Citations: PlumX Metrics

2004BE27      Phys.Rev. C 69, 064303 (2004)

M.Bender, P.Bonche, T.Duguet, P.-H.Heenen

Configuration mixing of angular momentum projected self-consistent mean-field states for neutron-deficient Pb isotopes

NUCLEAR STRUCTURE 182,184,186,188,190,192,194Pb; calculated potential energy surfaces, levels, J, π, deformation, superdeformed bands. Configuration mixing.

doi: 10.1103/PhysRevC.69.064303
Citations: PlumX Metrics

2004CO05      Nucl.Phys. A731, 34 (2004)

B.Cochet, K.Bennaceur, P.Bonche, T.Duguet, J.Meyer

Compressibility, effective mass and density dependence in Skyrme forces

doi: 10.1016/j.nuclphysa.2003.11.015
Citations: PlumX Metrics

2004CO06      Int.J.Mod.Phys. E13, 187 (2004)

B.Cochet, K.Bennaceur, J.Meyer, P.Bonche, T.Duguet

Skyrme forces with extended density dependence

doi: 10.1142/S021830130400193X
Citations: PlumX Metrics

2004DU14      Phys.Rev. C 69, 054317 (2004)


Bare vs effective pairing forces: A microscopic finite-range interaction for Hartree-Fock-Bogolyubov calculations in coordinate space

doi: 10.1103/PhysRevC.69.054317
Citations: PlumX Metrics

2004HE06      Int.J.Mod.Phys. E13, 133 (2004)

P-H.Heenen, M.Bender, P.Bonche, T.Duguet

Description of shape coexistence by mean-field and beyond mean-field methods

NUCLEAR STRUCTURE 188Pb, 240Pu; calculated energy vs deformation, shape coexistance features. Symmetry restoration, configuration mixing.

doi: 10.1142/S0218301304001850
Citations: PlumX Metrics

2004SI19      Phys.Rev. C 70, 014303 (2004)

S.Siem, P.Reiter, T.L.Khoo, T.Lauritsen, P.-H.Heenen, M.P.Carpenter, I.Ahmad, H.Amro, I.J.Calderin, T.Dossing, T.Duguet, S.M.Fischer, U.Garg, D.Gassmann, G.Hackman, F.Hannachi, K.Hauschild, R.V.F.Janssens, B.Kharraja, A.Korichi, I-Y.Lee, A.Lopez-Martens, A.O.Macchiavelli, E.F.Moore, D.Nisius, C.Schuck

Excitation energies and spins of the yrast superdeformed band in 191Hg

NUCLEAR REACTIONS 174Yb(22Ne, 5n), E=120 MeV; measured Eγ, Iγ, γγ-coin, DSA. 191Hg deduced superdeformed band energies, J, discrete and quasi-continuum linking transitions, pairing features. Gammasphere array, comparison with model predictions.

doi: 10.1103/PhysRevC.70.014303
Citations: PlumX Metrics

2003BE41      Nucl.Phys. A723, 354 (2003)

M.Bender, P.Bonche, T.Duguet, P.-H.Heenen

Skyrme mean-field study of rotational bands in transfermium isotopes

NUCLEAR STRUCTURE 254No; calculated single-particle energies. 249Bk, 251Cf, 251Md, 253,255No, 255Lr; calculated levels, J, π. 240,244Pu, 250,252Fm, 251Md, 252,253,254,255No, 255Lr, 254,256Rf; calculated rotational band moments of inertia. Self-consistent mean-field approach, comparisons with data.

doi: 10.1016/S0375-9474(03)01081-9
Citations: PlumX Metrics

2003DU06      Phys.Lett. B 559, 201 (2003)

T.Duguet, M.Bender, P.Bonche, P.-H.Heenen

Shape coexistence in 186Pb: beyond-mean-field description by configuration mixing of symmetry restored wave functions

NUCLEAR STRUCTURE 186Pb; calculated levels, J, π, quadrupole moments, shape coexistence features. Angular-momentum and particle-number projected self-consistent mean field approach, comparison with data.

doi: 10.1016/S0370-2693(03)00330-7
Citations: PlumX Metrics

2003DU08      Phys.Rev. C 67, 044311 (2003)


Goldstone-Brueckner perturbation theory extended in terms of mixed nonorthogonal Slater determinants

doi: 10.1103/PhysRevC.67.044311
Citations: PlumX Metrics

2003DU11      Phys.Rev. C 67, 054308 (2003)

T.Duguet, P.Bonche

Density dependence of two-body interactions for beyond-mean-field calculations

doi: 10.1103/PhysRevC.67.054308
Citations: PlumX Metrics

2002DU01      Phys.Rev. C65, 014310 (2002)

T.Duguet, P.Bonche, P.-H.Heenen, J.Meyer

Pairing Correlations. I. Description of Odd Nuclei in Mean-Field Theories

NUCLEAR STRUCTURE 150,151,152,153,154,155,156,157,158,159,160Ce; calculated single-particle levels, deformation parameters, pairing effects. 119,121,123,125,127,129,131,133,135,137,139,141,143,145,147,149,151,153,155,157,159,161,163,165Ce; calculated odd-even energy differences, polarization effect, pairing effects. Mean-field approach.

doi: 10.1103/PhysRevC.65.014310
Citations: PlumX Metrics

2002DU02      Phys.Rev. C65, 014311 (2002)

T.Duguet, P.Bonche, P.-H.Heenen, J.Meyer

Pairing Correlations. II. Microscopic Analysis of Odd-Even Mass Staggering in Nuclei

NUCLEAR STRUCTURE Ce, Sn; calculated odd-even mass differences, role of pairing correlations.

doi: 10.1103/PhysRevC.65.014311
Citations: PlumX Metrics

2001DU02      Nucl.Phys. A679, 427 (2001)

T.Duguet, P.Bonche, P.-H.Heenen

Rotational Properties of 252, 253, 254No: Influence of pairing correlations

NUCLEAR STRUCTURE 252,253,254No; calculated rotational band features, single-particle levels, deformation. 254No; calculated fission barriers. Cranked mean-field approach, particle number projection.

doi: 10.1016/S0375-9474(00)00370-5
Citations: PlumX Metrics

Back to query form