NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = A.Pastore

Found 52 matches.

Back to query form

2023BA20      Eur.Phys.J. A 59, 173 (2023); Errarum Eur.Phys.J. A 59, 219 (2023)

L.Batail, D.Davesne, S.Peru, P.Becker, A.Pastore, J.Navarro

A three-ranged Gogny interaction in touch with pion exchange: promising results to improve infinite matter properties

doi: 10.1140/epja/s10050-023-01073-w
Citations: PlumX Metrics

2023DA14      Universe 9, 398 (2023)

D.Davesne, A.Pastore, J.Navarro

Hartree-Fock Calculations in Semi-Infinite Matter with Gogny Interactions

doi: 10.3390/universe9090398
Citations: PlumX Metrics

2023DA15      Phys.Rev. C 108, 034003 (2023)

D.Davesne, J.W.Holt, J.Navarro, A.Pastore

Landau sum rules with noncentral quasiparticle interactions

doi: 10.1103/PhysRevC.108.034003
Citations: PlumX Metrics

2023PA39      Eur.Phys.J. A 59, 241 (2023)

A.Pastore, P.Schuck, X.Vinas

Generic size dependences of pairing in ultrasmall systems: electronic nano-devices and atomic nuclei

doi: 10.1140/epja/s10050-023-01155-9
Citations: PlumX Metrics

2021PA25      J.Phys.(London) G48, 084001 (2021)

A.Pastore, M.Carnini

Extrapolating from neural network models: a cautionary tale

doi: 10.1088/1361-6471/abf08a
Citations: PlumX Metrics

2021SH16      Phys.Rev. C 103, 035807 (2021)

M.Shelley, A.Pastore

Systematic analysis of inner crust composition using the extended Thomas-Fermi approximation with pairing correlations

NUCLEAR STRUCTURE Z=16-60; calculated energy per particle, proton fraction, pressure in the inner crust of neutron stars. Used extended Thomas-Fermi method with shell (Strutinsky integral) and pairing corrections to calculate number of protons and equation of state (EoS), as a function of baryonic density, for Skyrme interactions with a range of pure neutron matter (PNM) properties.

doi: 10.1103/PhysRevC.103.035807
Citations: PlumX Metrics

2020CA20      J.Phys.(London) G47, 082001 (2020)

M.Carnini, A.Pastore

Trees and forests in nuclear physics

NUCLEAR STRUCTURE Z<110; calculated nuclear masses using liquid drop and Duflo–Zuker models.

doi: 10.1088/1361-6471/ab92e3
Citations: PlumX Metrics

2020HA24      Phys.Rev. C 102, 024312 (2020)

R.D.Harding, A.N.Andreyev, A.E.Barzakh, D.Atanasov, J.G.Cubiss, P.Van Duppen, M.Al Monthery, N.A.Althubiti, B.Andel, S.Antalic, K.Blaum, T.E.Cocolios, T.Day Goodacre, A.de Roubin, G.J.Farooq-Smith, D.V.Fedorov, V.N.Fedosseev, D.A.Fink, L.P.Gaffney, L.Ghys, D.T.Joss, F.Herfurth, M.Huyse, N.Imai, S.Kreim, D.Lunney, K.M.Lynch, V.Manea, B.A.Marsh, Y.Martinez Palenzuela, P.L.Molkanov, D.Neidherr, R.D.Page, A.Pastore, M.Rosenbusch, R.E.Rossel, S.Rothe, L.Schweikhard, M.D.Seliverstov, S.Sels, C.Van Beveren, E.Verstraelen, A.Welker, F.Wienholtz, R.N.Wolf, K.Zuber

Laser-assisted decay spectroscopy for the ground states of 180, 182Au

NUCLEAR MOMENTS 180,182Au; measured hyperfine structure spectra, magnetic moments of the ground states using the ISOLTRAP Multi-Reflection Time-of-Flight Mass Spectrometer and laser spectroscopy at ISOLDE, CERN; deduced J, π, Nilsson configurations of ground states. Comparison with theoretical magnetic moments, and with previous experimental results. Laser-ionized and mass-separated 180,182Au isotopes formed in 238U(p, X), E=1.4 GeV spallation reaction.

RADIOACTIVITY 180Au(α), (β+)[from 238U(p, X), E=1.4 GeV, followed by separation using RILIS, General purpose separator (GPS) at ISOLDE-CERN]; measured Eα, Iα, Eγ, Iγ, I(x rays), αγ- and γγ-coin, half-life of 180Au decay. 176Ir; deduced levels, J, π, α-branching ratio, total conversion coefficients, multipolarities, α-hindrance factors.

doi: 10.1103/PhysRevC.102.024312
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2020LL01      Phys.Rev.Lett. 124, 152501 (2020)

R.D.O.Llewellyn, M.A.Bentley, R.Wadsworth, H.Iwasaki, J.Dobaczewski, G.de Angelis, J.Ash, D.Bazin, P.C.Bender, B.Cederwall, B.P.Crider, M.Doncel, R.Elder, B.Elman, A.Gade, M.Grinder, T.Haylett, D.G.Jenkins, I.Y.Lee, B.Longfellow, E.Lunderberg, T.Mijatovic, S.A.Milne, D.Muir, A.Pastore, D.Rhodes, D.Weisshaar

Establishing the Maximum Collectivity in Highly Deformed N=Z Nuclei

NUCLEAR REACTIONS 9Be(81Zr, n), (79Sr, n), (80Y, 2n), (80Y, 3np), E ∼ 77 MeV/nucleon; measured reaction products, Eγ, Iγ. 80Zr, 78Y, 76,78Sr; deduced level energies, J, π, level lifetimes, B(E2).

doi: 10.1103/PhysRevLett.124.152501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2020PA11      Phys.Rev. C 101, 035804 (2020)

A.Pastore, D.Neill, H.Powell, K.Medler, C.Barton

Impact of statistical uncertainties on the composition of the outer crust of a neutron star

ATOMIC MASSES A=20-260; analyzed masses by Monte Carlo methods with full error analysis on the Duflo-Zucker (DZ) mass model; deduced correlations in the residuals. Z=28, A=58-80; Z=29, A=59-82; analyzed binding energy differences between the theoretical and the experimental values obtained using a DZ10 model and a DZ10 plus NN model 56Fe, 62,64,66,78Ni, 80Zn, 82Ge, 84Se, 86,118Kr, 120Sr, 122Zr, 124Mo; calculated pressure and baryonic density at which the nucleus is found, and existence probability within the outer crust of non-accreting neutron star as a function of the pressure using DZ10+NN mass model. Investigated the use of neural networks to reduce the discrepancy between the DZ10 model and the experimental masses in AME2016.

doi: 10.1103/PhysRevC.101.035804
Citations: PlumX Metrics

2020PA30      Int.J.Mod.Phys. E29, 2050054 (2020)


Bootstrap analysis of the correlation between neutron skin thickness and the slope of symmetry energy

NUCLEAR STRUCTURE Ca, Ni, Sn, Pb, 208Pb; calculated evolution of neutron skin as a function of isospin asymmetry, neutron skin thickness, density dependence of the slope of the symmetry energy for a set of Skyrme functionals.

doi: 10.1142/S0218301320500548
Citations: PlumX Metrics

2020SA38      J.Phys.(London) G47, 085107 (2020)

G.Salvioni, J.Dobaczewski, C.Barbieri, G.Carlsson, A.Idini, A.Pastore

Model nuclear energy density functionals derived from ab initio calculations

NUCLEAR STRUCTURE 16,24O, 34Si, 36S, 40,48Ca, 56Ni; calculated binding energies using ab initio approach. Comparison with available data.

doi: 10.1088/1361-6471/ab8d8e
Citations: PlumX Metrics

2019BA31      Phys.Rev. C 100, 012201 (2019)

M.Bashkanov, D.P.Watts, A.Pastore

Electromagnetic properties of the d*(2380) hexaquark

doi: 10.1103/PhysRevC.100.012201
Citations: PlumX Metrics

2019DA15      Phys.Rev. C 100, 064301 (2019)

D.Davesne, A.Pastore, J.Navarro

Linear response theory in asymmetric nuclear matter for Skyrme functionals including spin-orbit and tensor terms. II. Charge exchange

doi: 10.1103/PhysRevC.100.064301
Citations: PlumX Metrics

2019PA60      J.Phys.(London) G46, 052001 (2019)


An introduction to bootstrap for nuclear physics

NUCLEAR STRUCTURE 208Pb, 100Sn; analyzed available data; deduced Pearson coefficients, neutron skin thickness, liquid drop parameters. Non-parametric bootstrap.

doi: 10.1088/1361-6471/ab00ad
Citations: PlumX Metrics

2019SE04      Phys.Rev. C 99, 044306 (2019)

S.Sels, T.Day Goodacre, B.A.Marsh, A.Pastore, W.Ryssens, Y.Tsunoda, N.Althubiti, B.Andel, A.N.Andreyev, D.Atanasov, A.E.Barzakh, M.Bender, J.Billowes, K.Blaum, T.E.Cocolios, J.G.Cubiss, J.Dobaczewski, G.J.Farooq-Smith, D.V.Fedorov, V.N.Fedosseev, K.T.Flanagan, L.P.Gaffney, L.Ghys, P.-H.Heenen, M.Huyse, S.Kreim, D.Lunney, K.M.Lynch, V.Manea, Y.Martinez Palenzuela, T.M.Medonca, P.L.Molkanov, T.Otsuka, J.P.Ramos, R.E.Rossel, S.Rothe, L.Schweikhard, M.D.Seliverstov, P.Spagnoletti, C.Van Beveren, P.Van Duppen, M.Veinhard, E.Verstraelen, A.Welker, K.Wendt, F.Wienholtz, R.N.Wolf, A.Zadvornaya

Shape staggering of midshell mercury isotopes from in-source laser spectroscopy compared with density-functional-theory and Monte Carlo shell-model calculations

NUCLEAR MOMENTS 177,178,179,180,181,182,183,184,185,185mHg; measured hyperfine structure (hfs) spectra, hyperfine coupling constants, isotope shifts, and rms charge radii using the in-source resonance-ionization spectroscopy method combined with decay spectroscopy, and Multi-Reflection Time-of-Flight Mass Spectrometer (MR-TOF MS) at CERN-ISOLDE facility; deduced magnetic dipole moments, and spectroscopic quadrupole moments, configurations. Comparison with theoretical calculations using density functional theory (DFT) with Skyrme parametrizations, and Monte Carlo shell model (MCSM). Ions of Hg activities produced in Pb(p, X), E=1.4 GeV, using molten lead target.

NUCLEAR REACTIONS Pb, U(p, X)177Hg/178Hg/179Hg/180Hg/181Hg/182Hg/183Hg/184Hg/185Hg/185mHg, E=1.4 GeV from PS-Booster synchrotron; measured production yields for different target-ion source configurations: VADLIS or RILIS at CERN-ISOLDE facility.

doi: 10.1103/PhysRevC.99.044306
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2019SI33      Phys.Rev. C 100, 044311 (2019)

L.Sinclair, R.Wadsworth, J.Dobaczewski, A.Pastore, G.Lorusso, H.Suzuki, D.S.Ahn, H.Baba, F.Browne, P.J.Davies, P.Doornenbal, A.Estrade, Y.Fang, N.Fukuda, J.Henderson, T.Isobe, D.G.Jenkins, S.Kubono, Z.Li, D.Lubos, S.Nishimura, I.Nishizuka, Z.Patel, S.Rice, H.Sakurai, Y.Shimizu, P.Schury, H.Takeda, P.-A.Soderstrom, T.Sumikama, H.Watanabe, V.Werner, J.Wu, Z.Y.Xu

Half-lives of 73Sr and 76Y and the consequences for the proton dripline

NUCLEAR REACTIONS 9Be(124Xe, X)67As/68As/69As/70As/68Se/69Se/70Se/71Se/72Se/70Br/71Br/72Br/73Br/71Kr/72Kr/73Kr/74Kr/73Sr/74Sr/75Sr/74Rb/75Rb/76Y, E=345 MeV/nucleon; measured reaction products, yields, particle identification spectra A/Q versus Z using, β and γ radiation using BigRIPS and the Zerodegree spectrometer (ZDS) for the identification of ions by Z and A/Q through the ΔE-Bρ-TOF method, and β-counting system WAS3ABi with the γ-ray detection array EURICA at RIBF-RIKEN facility. 70Br, 71Kr, 73,74Sr, 75Sr, 74,75Rb, 76Y; measured half-lives of the decays of the ground states, and compared with available literature values; deduced proton drip line. 73Sr, 76Y; identified new isotopes. 72Rb, 76Y; calculated neutron and proton single-particle levels and deformation energies as functions of deformation β calculated using Skyrme functional UNEDF0; discussed prominent proton decay mode for 72Rb in contrast to mainly β+ decay for 76Y, configurations.

doi: 10.1103/PhysRevC.100.044311
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2018BE22      Acta Phys.Pol. B49, 331 (2018)

P.Becker, D.Davesne, J.Meyer, J.Navarro, A.Pastore

Skyrme N2LO Pseudo-potential for Calculations of Properties of Atomic Nuclei

NUCLEAR STRUCTURE 132Sn; calculated isoscalar densities vs radius using N2LO extension of usual Skyrme pseudo-potential, neutron effective mass vs density and effective masses of neutrons and protons vs asymmetry parameter using Symmetric Nuclear Matter (SNM) and Pure Neutron Matter (PNM). 40,42,44,46,48,50,52,54Ca, 58,60,62,64,66,68Ni, 110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 136,138,140,142,144,146,148,150,152,154,156,158.160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,!96,198,200,202,204,206,208,210,212,214Pb; calculated average pairing gaps vs neutron number. Compared with data.

doi: 10.5506/aphyspolb.49.331
Citations: PlumX Metrics

2018DA05      Phys.Rev. C 97, 044304 (2018)

D.Davesne, J.Navarro, J.Meyer, K.Bennaceur, A.Pastore

Two-body contributions to the effective mass in nuclear effective interactions

doi: 10.1103/PhysRevC.97.044304
Citations: PlumX Metrics

2018MA45      Acta Phys.Pol. B49, 347 (2018)

A.Marquez Romero, J.Dobaczewski, A.Pastore

Neutron-Proton Pairing Correlations in a Single 1-shell Model

NUCLEAR STRUCTURE 1n, 1H; calculated neutron-neutron, neutron-proton, and proton-proton pairing using BCS, HDB and exact approach; deduced similar form of all three approaches with a slight shift in the absolute value.

doi: 10.5506/aphyspolb.49.347
Citations: PlumX Metrics

2018MU11      Acta Phys.Pol. B49, 359 (2018)

D.Muir, A.Pastore, J.Dobaczewski, C.J.Barton

Bootstrap Technique to Study Correlation Between Neutron Skin Thickness and the Slope of Symmetry Energy in Atomic Nuclei

NUCLEAR STRUCTURE 100,132Sn; calculated neutron skin thickness for different functionals as a function of symmetry energy slope; deduced small proton skin (mainly due to the Coulomb repulsion) in 100Sn, practically insensitive to the slope parameter, whereas there is clear increasing trend of neutron skin with increasing symmetry energy slope.

doi: 10.5506/aphyspolb.49.359
Citations: PlumX Metrics

2017BE28      Phys.Rev. C 96, 044330 (2017)

P.Becker, D.Davesne, J.Meyer, J.Navarro, A.Pastore

Solution of Hartree-Fock-Bogoliubov equations and fitting procedure using the N2LO Skyrme pseudopotential in spherical symmetry

NUCLEAR STRUCTURE 208Pb; calculated isoscalar densities, radial dependence of coefficients using the SN2LO1 and SLy5 interactions, for centrifugal and spin-orbit fields. 208Pb, 120Sn, 40Ca; calculated energies (total, kinetic, field, spin-orbit, Coulomb, and neutron pairing) using the WHISKY and LENTEUR codes with self-consistent HF calculations and the SLy5 interaction. 40Ca, 208Pb; calculated neutron single-particle energies around the Fermi energy for SLy5 and SN2LO1 parametrizations. 34,36,38,40,42,44,46,48,50,52,54,56Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 48Ca, 50Ti, 52Cr, 54Fe, 56Ni, 58Zn, 60Ge, 78Ni, 80Zn, 82Ge, 84Se, 86Kr, 88Sr, 90Zr, 92Mo, 94Ru, 96Pd, 98Cd, 100Sn, 130Cd, 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 206Hg, 208Pb, 210Po, 212Rn, 214Ra, 216Th, 218U; calculated binding energies and proton radii for isotopic and isotonic chains using extended Skyrme interaction SN2LO1, and compared with experimental values, as well as with calculations using the SLy5 parametrization.

doi: 10.1103/PhysRevC.96.044330
Citations: PlumX Metrics

2017DA08      Acta Phys.Pol. B48, 265 (2017)

D.Davesne, P.Becker, A.Pastore, J.Navarro

Does the Gogny Interaction Need a Third Gaussian?

doi: 10.5506/APhysPolB.48.265
Citations: PlumX Metrics

2017OI01      Phys.Rev. C 96, 044327 (2017)

T.Oishi, M.Kortelainen, A.Pastore

Dependence of two-proton radioactivity on nuclear pairing models

RADIOACTIVITY 6Be(2p); 6Be; calculated density distribution of the initial 2p state obtained with the surface SDDC pairing interaction, 2p-decay width, time-dependent 2p-density distribution, time-dependent 2p-density distribution of a decaying state, Time-invariant discrete energy distribution, radial strength for three SDDC pairing potentials. Schematic density-dependent contact (SDDC) pairing three-body (α+p+p) model.

doi: 10.1103/PhysRevC.96.044327
Citations: PlumX Metrics

2017PA23      J.Phys.(London) G44, 94003 (2017)

A.Pastore, M.Shelley, S.Baroni, C.A.Diget

A new statistical method for the structure of the inner crust of neutron stars

doi: 10.1088/1361-6471/aa8207
Citations: PlumX Metrics

2016DA02      Phys.Rev. C 93, 064001 (2016)

D.Davesne, P.Becker, A.Pastore, J.Navarro

Partial-wave decomposition of the finite-range effective tensor interaction

doi: 10.1103/PhysRevC.93.064001
Citations: PlumX Metrics

2015CH21      Acta Phys.Pol. B46, 349 (2015)

N.Chamel, J.M.Pearson, A.F.Fantina, C.Ducoin, S.Goriely, A.Pastore

Brussels-Montreal Nuclear Energy Density Functionals, from Atomic Masses to Neutron Stars

doi: 10.5506/APhysPolB.46.349
Citations: PlumX Metrics

2015DA02      Phys.Rev. C 91, 014323 (2015)

D.Davesne, J.W.Holt, A.Pastore, J.Navarro

Effect of three-body forces on response functions in infinite neutron matter

doi: 10.1103/PhysRevC.91.014323
Citations: PlumX Metrics

2015DA06      Phys.Rev. C 91, 064303 (2015)

D.Davesne, J.Navarro, P.Becker, R.Jodon, J.Meyer, A.Pastore

Extended Skyrme pseudopotential deduced from infinite nuclear matter properties

doi: 10.1103/PhysRevC.91.064303
Citations: PlumX Metrics

2015DA15      Phys.Scr. 90, 114002 (2015)

D.Davesne, J.Meyer, A.Pastore, J.Navarro

Partial wave decomposition of the N3LO equation of state

doi: 10.1088/0031-8949/90/11/114002
Citations: PlumX Metrics

2015PA06      Phys.Rev. C 91, 015809 (2015)


Pairing properties and specific heat of the inner crust of a neutron star

NUCLEAR STRUCTURE Z=40, N=50-100; Z=50, N=60-130; calculated S(2n), average neutron pairing gaps. Comparison of S(2n) values with AME-12. 158,686Zr; calculated neutron and proton densities, neutron pairing field at zero temperature, neutron specific heat. 130Zr; calculated single-neutron energies. 158Zr, 204Sn; calculated neutron and proton density at zero temperature, neutron pairing field as function of temperature. 130,158Zr, 176,204Sn; calculated average neutron pairing gap as a function of temperature, neutron specific heat. Pairing properties of Wigner-Seitz cells at finite temperature by solving the FT-HFB equations using BSk21 functional. Impact on the specific heat in the low-density region of the inner crust of a neutron start.

doi: 10.1103/PhysRevC.91.015809
Citations: PlumX Metrics

2015PA34      Phys.Rev. C 92, 024305 (2015)

A.Pastore, D.Tarpanov, D.Davesne, J.Navarro

Spurious finite-size instabilities in nuclear energy density functionals: Spin channel

NUCLEAR STRUCTURE 40Ca, 56Ni, 132Sn, 208Pb; calculated finite-size instabilities in the ground state properties of atomic nuclei and vibrational excited states. Skyrme functionals non-converging results in atomic nuclei. Discussed quantitative stability criterion to detect finite-size instabilities. Systematic fully-self consistent Random Phase Approximation (RPA) calculations in spherical doubly-magic nuclei. Comparison of RPA calculations in atomic nuclei with Linear Response in Symmetric Nuclear Matter.

doi: 10.1103/PhysRevC.92.024305
Citations: PlumX Metrics

2015PE02      Phys.Rev. C 91, 018801 (2015)

J.M.Pearson, N.Chamel, A.Pastore, S.Goriely

Role of proton pairing in a semimicroscopic treatment of the inner crust of neutron stars

doi: 10.1103/PhysRevC.91.018801
Citations: PlumX Metrics

2014DA06      Phys.Rev. C 89, 044302 (2014)

D.Davesne, A.Pastore, J.Navarro

Linear response theory in asymmetric nuclear matter for Skyrme functionals including spin-orbit and tensor terms

doi: 10.1103/PhysRevC.89.044302
Citations: PlumX Metrics

2014KO13      Phys.Rev. C 89, 054314 (2014)

M.Kortelainen, J.McDonnell, W.Nazarewicz, E.Olsen, P.-G.Reinhard, J.Sarich, N.Schunck, S.M.Wild, D.Davesne, J.Erler, A.Pastore

Nuclear energy density optimization: Shell structure

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron and proton single-particle levels, B(E1) strengths. Z=10-105, N=10-160; calculated binding energies, S(2p), S(2n) for even-even nuclei; deduced deviations from experimental data. 226,228Ra, 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated inner fission barrier residuals, fission isomer excitation energies, outer fission barriers. Skyrme Hartree-Fock-Bogoliubov theory with POUNDERS optimization algorithm and a new parametrization UNEDF2 of the energy density functional. Comparison with other energy density functionals (UNEDF) parametrizations, and with experimental data.

doi: 10.1103/PhysRevC.89.054314
Citations: PlumX Metrics

2014PA11      J.Phys.(London) G41, 055103 (2014)

A.Pastore, D.Davesne, J.Navarro

Nuclear matter response function with a central plus tensor Landau interaction

doi: 10.1088/0954-3899/41/5/055103
Citations: PlumX Metrics

2014PA42      Phys.Rev. C 90, 025804 (2014)

A.Pastore, M.Martini, D.Davesne, J.Navarro, S.Goriely, N.Chamel

Linear response theory and neutrino mean free path using Brussels-Montreal Skyrme functionals

doi: 10.1103/PhysRevC.90.025804
Citations: PlumX Metrics

2013HE26      Phys.Rev. C 88, 064323 (2013)

V.Hellemans, A.Pastore, T.Duguet, K.Bennaceur, D.Davesne, J.Meyer, M.Bender, P.-H.Heenen

Spurious finite-size instabilities in nuclear energy density functionals

NUCLEAR STRUCTURE 16O, 40,48Ca, 78Ni, 176Sn, 208Pb; calculated binding energies; investigated instabilities in energy density functional (EDF) calculations to finite-wavelength instabilities of homogeneous symmetric computed at the RPA level. Nine parameterizations based on traditional form of the Skyrme EDF.Systematic calculations with both HOSPHE and LENTEUR formalisms.

doi: 10.1103/PhysRevC.88.064323
Citations: PlumX Metrics

2013PA17      Phys.Scr. T154, 014014 (2013)

A.Pastore, D.Davesne, K.Bennaceur, J.Meyer, V.Hellemans

Fitting Skyrme functionals using linear response theory

NUCLEAR STRUCTURE Z=20, 28, 50, 82; analyzed available data and fitted binding energies, charge radii. Linear response theory in symmetric nuclear matter.

doi: 10.1088/0031-8949/2013/T154/014014
Citations: PlumX Metrics

2013PA25      Phys.Rev. C 88, 034314 (2013)

A.Pastore, J.Margueron, P.Schuck, X.Vinas

Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars

NUCLEAR STRUCTURE Z=20, A=36-120; Z=28, A=52-128; Z=40, A=80-240; Z=42, A=82-162; Z=50, A=100-250; Z=82, A=178-342; 66,68,70Ca; 122,124,126,128,130,166,250,500Zr; calculated pairing energies, neutron pairing gaps, single-particle energies and other properties for neutron drip line nuclei immersed in low-density gas of neutrons in outer crust of neutron stars. Skyrme energy density functional theory with density-dependent contact interaction, and Gogny finite range pairing functionals interactions. Hartree-Fock-Bogoliubov and BCS approaches compared. Strong impact of resonances in the continuum on pairing properties of drip line nuclei.

doi: 10.1103/PhysRevC.88.034314
Citations: PlumX Metrics

2012CA27      Phys.Rev. C 86, 014307 (2012)

B.G.Carlsson, J.Toivanen, A.Pastore

Collective vibrational states within the fast iterative quasiparticle random-phase approximation method

NUCLEAR STRUCTURE 18O; calculated levels, J, π, B(E0), B(E1), B(E2). 38,40,42,44,46,48,50,52,54Ca, 52,54,56,58,60,62,64,66,68,70,72,74,76,78,80Ni, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Sn; calculated levels, J, π, B(E2), B(E3), two-quasi particle components for first 2+ and 3- states. Quasiparticle random-phase approximation (QRPA) calculations using iterative non-Hermitian Arnoldi diagonalization procedures. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.014307
Citations: PlumX Metrics

2012PA11      Phys.Rev. C 85, 054317 (2012)

A.Pastore, D.Davesne, Y.Lallouet, M.Martini, K.Bennaceur, J.Meyer

Nuclear response for the Skyrme effective interaction with zero-range tensor terms. II. Sum rules and instabilities

doi: 10.1103/PhysRevC.85.054317
Citations: PlumX Metrics

2012PA13      Int.J.Mod.Phys. E21, 1250040 (2012)

A.Pastore, K.Bennaceur, D.Davesne, J.Meyer

Linear response in infinite nuclear matter as a tool to reveal finite size instabilities

doi: 10.1142/S0218301312500401
Citations: PlumX Metrics

2012PA32      Phys.Rev. C 86, 044308 (2012)

A.Pastore, M.Martini, V.Buridon, D.Davesne, K.Bennaceur, J.Meyer

Nuclear response for the Skyrme effective interaction with zero-range tensor terms. III. Neutron matter and neutrino propagation

doi: 10.1103/PhysRevC.86.044308
Citations: PlumX Metrics

2012PA42      Phys.Rev. C 86, 065802 (2012)


Superfluid properties of the inner crust of neutron stars. II. Wigner-Seitz cells at finite temperature

NUCLEAR STRUCTURE Z=32-50, N=140-1750; 180,200,250,500Zr; calculated neutron and proton specific heats, superfluidity of Wigner-Seitz cells at finite temperatures using Skyrme functional and finite-range pairing interaction in its separable representation.

doi: 10.1103/PhysRevC.86.065802
Citations: PlumX Metrics

2012VE05      Phys.Rev. C 86, 024303 (2012)

P.Vesely, J.Toivanen, B.G.Carlsson, J.Dobaczewski, N.Michel, A.Pastore

Giant monopole resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions

NUCLEAR STRUCTURE Z=8, 20, 28, 50, 82, A=18-262; N=8, 20, 28, 50, 82, 126, A=18-222; Z=50, A=96-172; Z=82, A=166-262; calculated neutron and proton pairing gaps, and incompressibility using SLy4 and UNEDF0 functionals, and zero-range separable pairing force. 112Sn; calculated QRPA monopole strength function for GMR. Quasiparticle random phase approximation (QPRA) on top of spherical Hartree-Fock-Bogoliubov solutions with iterative Arnoldi method. Comparison with experimental data. Influence of zero-range and separable pairing forces on monopole strengths.

doi: 10.1103/PhysRevC.86.024303
Citations: PlumX Metrics

2011PA39      Phys.Rev. C 84, 065807 (2011)

A.Pastore, S.Baroni, C.Losa

Superfluid properties of the inner crust of neutron stars

NUCLEAR STRUCTURE 982Ge, 180,200,250,320,500Zr, 950Sn; calculated neutron and proton densities, pairing gaps, neutron coherence lengths in the inner crust of neutron stars by solving the Hartree-Fock-Bogoliubov equations in spherical Wigner-Seitz cells.

doi: 10.1103/PhysRevC.84.065807
Citations: PlumX Metrics

2010BA24      Phys.Rev. C 82, 015807 (2010)

S.Baroni, A.Pastore, F.Raimondi, F.Barranco, R.A.Broglia, E.Vigezzi

Finite-size effects and collective vibrations in the inner crust of neutron stars

NUCLEAR STRUCTURE 176,506Sn, 498Zr; calculated levels, J, π, energies of single-particle orbitals, energies of 2+ and 3- collective excitations, and mean-field potentials Wigner-Seitz approximation. Relevance to collective excitations of nuclei in neutron stars.

doi: 10.1103/PhysRevC.82.015807
Citations: PlumX Metrics

2010LO07      Phys.Rev. C 81, 064307 (2010)

C.Losa, A.Pastore, T.Dossing, E.Vigezzi, R.A.Broglia

Linear response of light deformed nuclei investigated by self-consistent quasiparticle random-phase approximation

NUCLEAR STRUCTURE 20O, 24,25,26,34Mg, 48Ca; calculated potential energy curves, isoscalar and isovector strength functions, rms radii, deformations, pairing gaps, chemical potentials using self-consistent quasiparticle random-phase approximations (QRPA) in harmonic oscillator (HO) and in transformed harmonic oscillator (THO) HFB basis. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.064307
Citations: PlumX Metrics

2009PA19      Acta Phys.Pol. B40, 607 (2009)

A.Pastore, F.Barranco, R.A.Broglia, E.Vigezzi

Microscopic Calculation and Local Approximation of the Spatial Dependence of the Pairing Field with Bare and Induced Interaction

2008PA28      Phys.Rev. C 78, 024315 (2008)

A.Pastore, F.Barranco, R.A.Broglia, E.Vigezzi

Microscopic calculation and local approximation of the spatial dependence of the pairing field with bare and induced interactions

doi: 10.1103/PhysRevC.78.024315
Citations: PlumX Metrics

2007BR14      Acta Phys.Pol. B38, 1129 (2007)

R.A.Broglia, S.Baroni, F.Barranco, P.F.Bortignon, G.Potel, A.Pastore, E.Vigezzi, F.Marini

Induced Pairing Interaction in Nuclei and in Neutron Stars

Back to query form