NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 23, 2024.

Search: Author = T.Oishi

Found 24 matches.

Back to query form



2024HI03      Phys.Rev. C 109, 034302 (2024)

N.Hinohara, T.Oishi, K.Yoshida

Triplet-odd pairing in finite nuclear systems: Even-even singly closed nuclei

doi: 10.1103/PhysRevC.109.034302
Citations: PlumX Metrics


2023KR01      Eur.Phys.J. A 59, 50 (2023)

G.Kruzic, T.Oishi, N.Paar

Magnetic quadrupole transitions in the relativistic energy density functional theory

NUCLEAR STRUCTURE 16O, 48Ca, 208Pb, 18O, 42Ca, 56Fe, 90Zr, 36,38,40,42,44,46,48,50,52,54,56,58,60,62,64Ca; calculated the nuclear ground state with relativistic Hartree-Bogoliubov model, and the M2 excitations using the relativistic quasiparticle random phase approximation with the residual interaction extended with the isovector-pseudovector term.

doi: 10.1140/epja/s10050-023-00958-0
Citations: PlumX Metrics


2023NA15      Phys.Rev. C 107, 054307 (2023)

T.Naito, T.Oishi, H.Sagawa, Z.Wang

Comparative study on charge radii and their kinks at magic numbers

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60,62Ca, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144Sn, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222Pb; calculated rms charge radii. 132Sn, 208Pb; calculated single-particle spectra, occupation numbers. Discussed sudden change of the mass-number dependence of the charge radius at the neutron shell gap - so-called kink behavior. Nonrelativistic Skyrme, relativistic mean field (RMF), and the relativistic Hartree-Fock (RHF) calculations. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.054307
Citations: PlumX Metrics


2023OI01      Phys.Rev. C 107, 034301 (2023)

T.Oishi

Time-dependent Dirac equation applied to one-proton radioactive emission

RADIOACTIVITY 37,39Sc(p); calculated Q value, decay width, T1/2, single-particle potentials and energies for p+36Ca and p+38Ca systems, survival probability, one-proton density. Time-dependent (TD) Dirac-spinor calculation based on relativistic Dirac formalism. Demonstrated sensitivity of 1p-emission energy and decaying width to the mass number. Comparison to shell model calculations and experimental data.

doi: 10.1103/PhysRevC.107.034301
Citations: PlumX Metrics


2022OI01      Phys.Rev. C 105, 064309 (2022)

T.Oishi, A.Ravlic, N.Paar

Symmetry breaking of Gamow-Teller and magnetic-dipole transitions and its restoration in calcium isotopes

NUCLEAR STRUCTURE 42,44,46,48Ca, 42Ti, 208Pb; calculated isovector M1 and GT strength distributions. Relativistic energy-density functional (REDF) with point-coupling interactions, using the relativistic quasiparticle randomphase approximation (RQRPA).

doi: 10.1103/PhysRevC.105.064309
Citations: PlumX Metrics


2021KR07      Phys.Rev. C 103, 054306 (2021)

G.Kruzic, T.Oishi, N.Paar

Evolution of magnetic dipole strength in 100-140Sn isotope chain and the quenching of nucleon g factors

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated occupation probabilities of π1g9/2, ν1g9/2, ν2d5/2, and ν1h11/2 orbits in RHB-GS solutions, M1 transition strength function, partial M1 transition strengths for protons and neutrons, M1 excitation energies, total M1 transition strengths, energy-weighted summation of M1 strengths. RHB+R(Q)RPA formulated in the framework of relativistic nuclear energy density functional (RNEDF) (DD-PC1) with Gogny-D1S force for the pairing correlations. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054306
Citations: PlumX Metrics


2021OI01      Eur.Phys.J. A 57, 180 (2021)

T.Oishi, G.Kruzic, N.Paar

Discerning nuclear pairing properties from magnetic dipole excitation

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54Ca; calculated binding energies, magnetic dipole strengths, pairing correation of Cooper pair within the framework of relativistic nuclear energy-density functional (RNEDF).

doi: 10.1140/epja/s10050-021-00488-7
Citations: PlumX Metrics


2020FO02      Eur.Phys.J. A 56, 49 (2020)

L.Fortunato, C.E.Alonso, J.M.Arias, J.Casal, K.Hagino, J.A.Lay, E.G.Lanza, S.M.Lenzi, J.Lubian, T.Oishi, F.Perez-Bernal

An overview of the scientific contribution of Andrea Vitturi to nuclear physics

doi: 10.1140/epja/s10050-020-00034-x
Citations: PlumX Metrics


2020KR13      Phys.Rev. C 102, 044315 (2020)

G.Kruzic, T.Oishi, D.Vale, N.Paar

Magnetic dipole excitations based on the relativistic nuclear energy density functional

NUCLEAR STRUCTURE 18O, 42,48Ca, 50Ti, 208Pb; calculated M1 strength distributions, B(M1), neutron and proton contributions to the M1 transition strengths; compiled experimental M1 excitation energies and B(M1) values. Relativistic Hartree-Bogoliubov (RHB) model, and relativistic nuclear energy density functional formalism using relativistic quasiparticle random phase approximation (RQRPA) with density-dependent point coupling interaction DD-PC1.

doi: 10.1103/PhysRevC.102.044315
Citations: PlumX Metrics


2020OI01      J.Phys.(London) G47, 115106 (2020)

T.Oishi, G.Kruzic, N.Paar

Role of residual interaction in the relativistic description of M1 excitation

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60,62,64Ca; analyzed available data; calculated summations of the M1-excitation strength of Ca isotopes, M1-excitation energies.

doi: 10.1088/1361-6471/abaeb1
Citations: PlumX Metrics


2019OI01      Phys.Rev. C 100, 024308 (2019)

T.Oishi, N.Paar

Magnetic dipole excitation and its sum rule in nuclei with two valence nucleons

NUCLEAR STRUCTURE 18O, 18Ne, 42Ca; calculated energies of ground states and 1+ levels, discrete M1 transition strengths, M1 sum rule. 17O; calculated single-neutron energies. Three-body model for systems with two-valence nucleons, with no pairing, density-dependent contact (DDC) pairing and Minnesota pairing. Comparison with available experimental data.

doi: 10.1103/PhysRevC.100.024308
Citations: PlumX Metrics


2018OI01      Phys.Rev. C 97, 024314 (2018)

T.Oishi

One-proton emission from the 6ΛLi hypernucleus

RADIOACTIVITY 6Li(p); calculated resonance energy and width with the α-nucleon potential, and evaluated from the scattering phase shift data, survival probability and resonance width of the one-proton emission from the ground state of 6Li hypernucleus, time-dependent probability-density distribution of the decaying state, 1p-emission width of 6Li hypernucleus, one-proton resonance width as function of the emitted Q(1p) value, dependence of proton-Λ scattering length or interaction strength on the spontaneous-1p emission. Time-dependent three-body (α-proton-Λ0) model, estimated half-lives for 1p decay of hypernucleus.

doi: 10.1103/PhysRevC.97.024314
Citations: PlumX Metrics


2018OI02      Acta Phys.Pol. B49, 293 (2018)

T.Oishi, L.Fortunato

Time-dependent Method for Many-body Problems and Its Application to Nuclear Resonant Systems

doi: 10.5506/aphyspolb.49.293
Citations: PlumX Metrics


2018OI03      J.Phys.(London) G45, 105101 (2018)

T.Oishi, L.Fortunato, A.Vitturi

Two-fermion emission from spin-singlet and triplet resonances in one dimension

doi: 10.1088/1361-6471/aad8f8
Citations: PlumX Metrics


2017OI01      Phys.Rev. C 96, 044327 (2017)

T.Oishi, M.Kortelainen, A.Pastore

Dependence of two-proton radioactivity on nuclear pairing models

RADIOACTIVITY 6Be(2p); 6Be; calculated density distribution of the initial 2p state obtained with the surface SDDC pairing interaction, 2p-decay width, time-dependent 2p-density distribution, time-dependent 2p-density distribution of a decaying state, Time-invariant discrete energy distribution, radial strength for three SDDC pairing potentials. Schematic density-dependent contact (SDDC) pairing three-body (α+p+p) model.

doi: 10.1103/PhysRevC.96.044327
Citations: PlumX Metrics


2016OI01      Phys.Rev. C 93, 034329 (2016)

T.Oishi, M.Kortelainen, N.Hinohara

Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei

NUCLEAR STRUCTURE 152,154,156,158,160,162,164Gd, 156,160,162,164,166,168Dy, 162,164,166,168,170,172,174Er, 168,170,172,174,176,178Yb, 174,176,178,180,182,184Hf, 180,182,184,186,188,190W; calculated axial deformation β, pairing gaps for neutrons and protons, energy-weighted sum rule, and its enhancement factor from the Thomas-Reiche-Kuhn (TRK) sum rule for ground states. Hartree-Fock-Bogoliubov (HFB) calculation with Skyrme EDF framework (SkM* parameterization).

NUCLEAR REACTIONS 144,145Sm, 152,154,156,158,160,162,164Gd, 156,160,162,164,166,168Dy, 162,164,166,168,170,172,174Er, 168,170,172,174,176,178Yb, 174,176,178,180,182,184Hf, 180,182,184,186,188,190W(γ, X), E not given; calculated E1 photoabsorption σ as function of excitation energy, mean giant dipole resonance (GDR) frequencies and widths within a parallelized finite amplitude method, and quasiparticle random phase approximation (FAM-QRPA) scheme, with the Skyrme energy density functional in the nuclear density functional theory (DFT) applied for ground states and FAM-QRPA for excitations. Comparison with experimental data. Discussed role of role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass.

doi: 10.1103/PhysRevC.93.034329
Citations: PlumX Metrics


2014OI02      Phys.Rev. C 90, 034303 (2014)

T.Oishi, K.Hagino, H.Sagawa

Role of diproton correlation in two-proton-emission decay of the 6Be nucleus

RADIOACTIVITY 6Be(2p); calculated decay width and probabilities, contributions from the spin-singlet and the spin-triplet configurations to the total decay width, trajectories of different 2p-emission modes, 2p-density distribution and time evolution of the decay state with and without pairing; deduced dominance of diproton emission process in the early stage; discussed role of pairing correlations in decay width. Time-dependent method using three-body model consisting of an α particle and two valence protons.

NUCLEAR STRUCTURE 6Be, 6He; calculated properties of the initial state of 6Be and the bound ground state of 6He for all configurations, proton and neutron densities using confining potential method.

doi: 10.1103/PhysRevC.90.034303
Citations: PlumX Metrics


2011KA33      J.Korean Phys.Soc. 59, 1676s (2011)

S.Kamada, T.Itoga, Y.Unno, W.Takahashi, T.Oishi, M.Baba

Measurement of Energy-angular Neutron Distribution for 7Li, 9Be(p, xn) Reaction at EP = 70 MeV and 11 MeV

NUCLEAR REACTIONS 7Li, 9Be(p, xn), E=11, 70 MeV; measured En, In(θ) using NE213 or ToF; deduced neutron flux(En, θ).

doi: 10.3938/jkps.59.1676
Citations: PlumX Metrics


2011OI01      Phys.Rev. C 84, 057301 (2011)

T.Oishi, K.Hagino, H.Sagawa

Effect of proton-proton Coulomb repulsion on soft dipole excitations of light proton-rich nuclei

NUCLEAR STRUCTURE 17Ne; calculated E1 strength distributions. Three-body (15O+p+p) model calculations for soft dipole excitations of the proton-rich Borromean nucleus.

doi: 10.1103/PhysRevC.84.057301
Citations: PlumX Metrics


2010OI01      Phys.Rev. C 82, 024315 (2010); Erratum Phys.Rev. C 82, 069901 (2010)

T.Oishi, K.Hagino, H.Sagawa

Diproton correlation in the proton-rich Borromean nucleus 17Ne

NUCLEAR STRUCTURE 16C, 17Ne; calculated ground-state wave function, density distributions using three-body-model calculations by assuming a 15O+p+p structure for 17Ne, and density-dependent contact pairing interaction between the valence protons. Strong diproton correlation in the ground state of the 17Ne.

doi: 10.1103/PhysRevC.82.024315
Citations: PlumX Metrics


2009SA54      Nucl.Instrum.Methods Phys.Res. A 610, 660 (2009)

T.Sanami, M.Hagiwara, T.Oishi, M.Hosokawa, S.Kamada, Su.Tanaka, Y.Iwamoto, H.Nakashima, M.Baba

.A Bragg curve counter with an internal production target for the measurement of the double-differential cross-section of fragment production induced by neutrons at energies of tens of MeV

NUCLEAR REACTIONS 12C(n, x), E=65 MeV; measured products, 6,7Li, B, 7,9Be; deduced σ(θ, E). Data were imported from EXFOR entry 23111.

doi: 10.1016/j.nima.2009.09.011
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset23111.


2008HA19      Nucl.Instrum.Methods Phys.Res. A592, 73 (2008)

M.Hagiwara, T.Sanami, T.Oishi, M.Baba, M.Takada

Extension of energy acceptance of Bragg curve counter at the high-energy end

NUCLEAR REACTIONS C(p, X)6Li/7Li/7Be, E=70 MeV; measured E, double differential σ; Bragg curve counter; Energy loss.

doi: 10.1016/j.nima.2008.03.108
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2110.


2008SA46      Nucl.Instrum.Methods Phys.Res. A 589, 193 (2008)

T.Sanami, M.Hagiwara, T.Oishi, M.Baba, M.Takada

A Bragg curve counter with an active cathode to improve the energy threshold in fragment measurements

NUCLEAR REACTIONS C(p, x), E=70 MeV; measured products, -1B, -1C; deduced σ(θ, E). Data were imported from EXFOR entry E2106.

doi: 10.1016/j.nima.2008.02.015
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2106.


1996YO12      Nucl.Instrum.Methods Phys.Res. A383, 441 (1996)

M.Yoshida, T.Oishi, T.Honda, T.Torii

A Calibration Technique for Gas-Flow Ionization Chambers with Short Half-Lived Rare Gases

RADIOACTIVITY 41Ar, 133Xe, 135Xe(β-) [from 40Ar, 132Xe, 134Xe(n, γ);E=reactor]; measured Eγ, Iγ; deduced prepared gas purity.

doi: 10.1016/S0168-9002(96)00834-0
Citations: PlumX Metrics


Back to query form