NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 21, 2024.

Search: Author = J.Casal

Found 30 matches.

Back to query form

2024CA06      Nuovo Cim. C 47, 41 (2024)

J.Casal, M.Gomez-Ramos, A.M.Moro

Collective core effects and dineutron correlations in three-body nuclei

NUCLEAR REACTIONS 1H(14Be, np)13Be, E=265 MeV/nucleon; analyzed available data. 6He, 11Li, 14Be; deduced σ(θ), average correlation angle as a function of the intrinsic momentum of the knocked-out neutron.

doi: 10.1393/ncc/i2024-24041-0
Citations: PlumX Metrics

2024MO02      Phys.Rev.Lett. 132, 082501 (2024)

B.Monteagudo, F.M.Marques, J.Gibelin, N.A.Orr, A.Corsi, Y.Kubota, J.Casal, J.Gomez-Camacho, G.Authelet, H.Baba, C.Caesar, D.Calvet, A.Delbart, M.Dozono, J.Feng, F.Flavigny, J.-M.Gheller, A.Giganon, A.Gillibert, K.Hasegawa, T.Isobe, Y.Kanaya, S.Kawakami, D.Kim, Y.Kiyokawa, M.Kobayashi, N.Kobayashi, T.Kobayashi, Y.Kondo, Z.Korkulu, S.Koyama, V.Lapoux, Y.Maeda, T.Motobayashi, T.Miyazaki, T.Nakamura, N.Nakatsuka, Y.Nishio, A.Obertelli, A.Ohkura, S.Ota, H.Otsu, T.Ozaki, V.Panin, S.Paschalis, E.C.Pollacco, S.Reichert, J.-Y.Rousse, A.T.Saito, S.Sakaguchi, M.Sako, C.Santamaria, M.Sasano, H.Sato, M.Shikata, Y.Shimizu, Y.Shindo, L.Stuhl, T.Sumikama, Y.L.Sun, M.Tabata, Y.Togano, J.Tsubota, T.Uesaka, Z.H.Yang, J.Yasuda, K.Yoneda, J.Zenihiro

Mass, Spectroscopy, and Two-Neutron Decay of 16Be

RADIOACTIVITY 16Be(2n) [from 1H(17B, 2p), E=277 MeV/nucleon]; measured decay products, En, In; deduced resonance energies, J, π, Q-value. Comparison with calculations incorporating the evolution of the wave function during the decay as a genuine three-body process reproduced the principal characteristics of the neutron-neutron energy spectra for both levels, indicating that the ground state exhibits a strong spatially compact dineutron component. The 15 cm thick liquid hydrogen target of MINOS, the BigRIPS fragment separator, the Radioactive Isotope Beam Factory of the RIKEN Nishina Center.

doi: 10.1103/PhysRevLett.132.082501
Citations: PlumX Metrics

2024PE07      Few-Body Systems 65, 49 (2024)

S.S.Perrotta, J.Casal, S.Burrello, M.Colonna, J.A.Lay

6Li as a Three-Body System in the (p, 3He) Reaction at Astrophysical Energies

NUCLEAR REACTIONS 6Li(p, 3He), E(cm)<2 MeV; calculated S-factor by constructing three-body wave functions (WFs), a somewhat standard tool in second-order distorted-wave Born approximation two-nucleon-transfer calculations not relying on the non-orthogonality cancellation. Comparison with available data.

doi: 10.1007/s00601-024-01909-1
Citations: PlumX Metrics

2023MO05      Eur.Phys.J. A 59, 37 (2023)

H.Moriya, W.Horiuchi, J.Casal, L.Fortunato

Three-α configurations of the second Jp = 2+ state in 12C

NUCLEAR STRUCTURE 12C; calculated level energies, J, π, spectroscopic factors, three-α configurations. The three-body Schrodinger equation with orthogonality conditions solution.

doi: 10.1140/epja/s10050-023-00947-3
Citations: PlumX Metrics

2022PA05      Eur.Phys.J. A 58, 8 (2022)

A.Pakou, O.Sgouros, V.Soukeras, J.Casal, K.Rusek

Reaction mechanisms of the weakly bound nuclei 6, 7Li and 7, 9Be on light targets at near barrier energies

NUCLEAR REACTIONS 28Si(6Li, X), (6Li, 6Li), E=7.5-27 MeV; 28Si(7Li, 7Li), E=8-16 MeV; 28Si(7Be, 7Be), E=13.2, 22 MeV; 27Al(6Li, 6Li), E=7-18 MeV; 27Al(7Be, 7Be), E=10-15.4 MeV; analyzed available data; deduced σ, σ(θ), Continuum Discretized Coupled Channels.

doi: 10.1140/epja/s10050-021-00655-w
Citations: PlumX Metrics

2022PA18      Phys.Rev. C 105, 064609 (2022)

K.Palli, J.Casal, A.Pakou

Coherent description of elastic scattering and fusion at near-barrier energies for the 9Be + 208Pb and 9Be + 197Au reactions

NUCLEAR REACTIONS 197Au(9Be, 9Be), (9Be, X), E=30-55 MeV; 2 08Pb(9Be, 9Be), (9Be, X), E=35-55 MeV; analyzed experimental elastic and fusion σ(θ); deduced optical model parameters dependence on energy, total σ(q), σ, effective potential, fusion excitation functions. Phenomenological approach with BDM3Y1 interaction and four body framework within continuum-discretized coupled-channels method. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.064609
Citations: PlumX Metrics

2022SI04      Phys.Rev. C 105, 014328 (2022)

G.Singh, J.Singh, J.Casal, L.Fortunato

Exploring the halo character and dipole response in the dripline nucleus 31F

NUCLEAR STRUCTURE 30F; calculated phase shifts. 31F; calculated matter radius, nn distance, core-nn distance, E1 sum rule, contribution by different energy orbitals in different configurations for the ground state, ground state probability density distributions for all the configurations. 19,20,21,22,23,24,25,26,27,28,29,30,31,32F; calculated matter radii. Analytical, transformed harmonic oscillator basis under the aegis of a hyperspherical formalism for the ground-state three-body wave function of 31F, with the nn interaction defined by the Gogny-Pires-Tourreil potential. Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.014328
Citations: PlumX Metrics

2021AL13      Phys.Rev. C 103, 054614 (2021)

M.A.G.Alvarez, M.Rodriguez-Gallardo, J.P.Fernandez-Garcia, J.Casal, J.A.Lay

Systematic calculations of reactions with exotic and stable nuclei to establish a unified theoretical approach

NUCLEAR REACTIONS 208Pb(11Li, 11Li), E=29.8 MeV; 208Pb(9Li, 9Li), E=29.5 MeV; 208Pb(9Be, 9Be), E=44.0 MeV; 208Pb(12C, 12C), E=75 MeV; 197Au(11Be, 11Be), E=39.6 MeV; 120Sn(6He, 6He), E=18 MeV; calculated and analyzed experimental data for elastic scattering cross sections; deduced systematic free optical model (OM) parameters using continuum discretized coupled channel (CDCC) calculations; deduced Coulomb dipole polarization (CDP) potential and trivial equivalent local potential (TELP).

doi: 10.1103/PhysRevC.103.054614
Citations: PlumX Metrics

2021AS10      Nucl.Instrum.Methods Phys.Res. A1014, 165743 (2021)

M.Assie, E.Clement, A.Lemasson, D.Ramos, A.Raggio, I.Zanon, F.Galtarossa, C.Lenain, J.Casal, F.Flavigny, A.Matta, D.Mengoni, D.Beaumel, Y.Blumenfeld, R.Borcea, D.Brugnara, W.Catford, F.de Oliveira, F.Delaunay, N.De Sereville, F.Didierjean, C.Aa.Diget, J.Dudouet, B.Fernandez-Dominguez, C.Fougeres, G.Fremont, V.Girard Alcindor, A.Giret, A.Goasduff, A.Gottardo, J.Goupil, F.Hammache, P.R.John, A.Korichi, L.Lalanne, S.Leblond, A.Lefevre, F.Legruel, L.Menager, B.Million, C.Nicolle, F.Noury, E.Rauly, K.Rezynkina, E.Rindel, J.S.Rojo, M.Siciliano, M.Stanoiu, I.Stefan, L.Vatrinet

The MUGAST-AGATA-VAMOS campaign: Set-up and performances

NUCLEAR REACTIONS 2H(16O, p), E=6 MeV/nucleon; 2H(19O, p), E not given; 7Li(15O, t), E not given; measured reaction products, Eγ, Iγ, γ-γ-γ-coin. 17,20O, 19Ne; deduced γ-ray energies, σ(θ) for the 1/2+ state in 17O. Correction from Doppler effect, VAMOS spectrometer, SPIRAL1 facility.

doi: 10.1016/j.nima.2021.165743
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2021CA09      Eur.Phys.J. A 57, 33 (2021)

J.Casal, L.Fortunato, E.G.Lanza, A.Vitturi

Alpha-induced inelastic scattering and alpha-transfer reactions in 12C and 16O within the Algebraic Cluster Model

NUCLEAR REACTIONS 12C, 16O(α, α'), (α, X), E=240, 130 MeV; analyzed available data; deduced σ(θ), Rutherford ratio, J, π within the molecular cluster model based on "pre-formed" alpha particles. Comparison with available data.

doi: 10.1140/epja/s10050-021-00347-5
Citations: PlumX Metrics

2021CA20      Phys.Rev. C 104, 024618 (2021)

J.Casal, M.Gomez-Ramos

Opening angle and dineutron correlations in knockout reactions with Borromean two-neutron halo nuclei

NUCLEAR REACTIONS 1H(11Li, np)10Li, E=246 MeV/nucleon; 1H(19B, np), E not given; calculated missing momentum distributions, σ(θ), average opening angles with and without absorption, effect of proton-core S matrix on the average opening angle; deduced dineutron correlations. Quasifree sudden model for knockout process, and eikonal S matrix between the proton target and the core of the Borromean nucleus, with final states built within a three-body model for the projectile. Comparison with experimental data for 1H+11Li reaction. 11Li, 19B; calculated ground-state probability densities.

doi: 10.1103/PhysRevC.104.024618
Citations: PlumX Metrics

2021LI22      Phys.Rev. C 103, 044613 (2021)

R.Linares, M.Sinha, E.N.Cardozo, V.Guimaraes, G.V.Rogachev, J.Hooker, E.Koshchiy, T.Ahn, C.Hunt, H.Jayatissa, S.Upadhyayula, B.Roeder, A.Saastomoinen, J.Lubian, M.Rodriguez-Gallardo, J.Casal, K.C.C.Pires, M.Assuncao, Y.Penionzhkevich, S.Lukyanov

Elastic scattering measurements for the 10C+ 208Pb system at Elab = 66 MeV

NUCLEAR REACTIONS 208Pb(10C, 10C), E=66 MeV, [10C secondary beam from 1H(10B, 10C), E=9.6 MeV/nucleon primary reaction, followed by selection of 10C beam by the Momentum Achromatic Recoil Spectrometer (MARS) at the K500 superconducting Cyclotron Institute of Texas A and M University]; measured elastically scattered 10C ions, angular distribution of scattered 10C, total σ using ΔE-E telescope of double-sided silicon strip detectors (DSSSDs); deduced suppression of the Fresnel peak. Comparison with optical model, coupled channels, and 3-body and 4-body continuum-discretized coupled-channels (CDCC) calculations using 9B+p, 6Be+α, and 8Be+p+p cluster configurations of 10C with a Brunnian (super-Borromean) structure; analyzed reaction cross sections in literature for the several projectiles on 208Pb target.

doi: 10.1103/PhysRevC.103.044613
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2627.

2020CA26      Phys.Rev. C 102, 051304(R) (2020)

J.Casal, E.Garrido

Three-body structure of 19B: Finite-range effects in two-neutron halo nuclei

NUCLEAR STRUCTURE 19B; calculated B(E1) strength, and ground-state probability density contour using Gogny-Pires-Tourreil (GPT) potential and the three-body force, and simple Gaussian with density-dependent term. Three-body model used to describe the two-neutron halo nucleus 19B (17B+n+n). Comparison with available experimental data.

doi: 10.1103/PhysRevC.102.051304
Citations: PlumX Metrics

2020CA29      Phys.Rev. C 102, 064627 (2020)

J.Casal, J.Singh, L.Fortunato, W.Horiuchi, A.Vitturi

Electric dipole response of low-lying excitations in the two-neutron halo nucleus 29F

NUCLEAR STRUCTURE 29F; calculated convergence of the ground-state energy as a function of hypermomentum Kmax and number of basis functions N, ground-state probability density using three-body model 27F+n+n, convergence of B(E1) distribution as function of Kmax, B(E1) distribution as a function of the continuum energy, energies of the 0+, 1-, and 2+ states; deduced two-neutron halo for 29F. Hyperspherical harmonics expansion formalism.

NUCLEAR REACTIONS 208Pb(29F, X), E=235 MeV/nucleon; calculated B(E1) distribution as a function of the continuum energy. 120Sn(29F, X), E=84 MeV; calculated form factors for quadrupole couplings involving the bound states, monopole, dipole, and quadrupole couplings connecting the ground state with continuum pseudostates, σ(θ), B(E1) distributions. Glauber-model calculations for high-energy reactions, and four-body continuum-discretized coupled-channels (CDCC) calculations at low energy.

doi: 10.1103/PhysRevC.102.064627
Citations: PlumX Metrics

2020CA30      Phys.Rev. C 102, 069801 (2020)

J.Casal, M.Rodriguez-Gallardo, J.M.Arias, E.Garrido, R.de Diego

Comment on "From Coulomb excitation cross sections to nonresonant astrophysical rates in three-body systems: The 17Ne case"

NUCLEAR REACTIONS 15O(2p, γ)17Ne, T=0.3-10 GK; calculated contribution to the reaction rate from 1/2+ states, and 1/2+ resonance. 208Pb(17Ne, X), E=500 MeV/nucleon; calculated Coulomb dissociation cross sections for the 1/2+ B(E1) distribution, for the total (1/2+ + 3/2+) B(E1) distribution, and from shifting of the 1/2+ resonance position. Comparison with experimental data. This comment is in response to critique by 2018Pa43 on the calculations in 2016Ca38 about the radiative capture for 17Ne formation.

doi: 10.1103/PhysRevC.102.069801
Citations: PlumX Metrics

2020FO02      Eur.Phys.J. A 56, 49 (2020)

L.Fortunato, C.E.Alonso, J.M.Arias, J.Casal, K.Hagino, J.A.Lay, E.G.Lanza, S.M.Lenzi, J.Lubian, T.Oishi, F.Perez-Bernal

An overview of the scientific contribution of Andrea Vitturi to nuclear physics

doi: 10.1140/epja/s10050-020-00034-x
Citations: PlumX Metrics

2020FO12      Commun. Phys. 3, 132 (2020)

L.Fortunato, J.Casal, W.Horiuchi, J.Singh, A.Vitturi

The 29F nucleus as a lighthouse on the coast of the island of inversion

NUCLEAR STRUCTURE 27,28,29F; analyzed available data; deduced phase shifts, ground-state probability density, estimate of relativistic Coulomb excitation σ.

doi: 10.1038/s42005-020-00402-5
Citations: PlumX Metrics

2020SI06      Phys.Rev. C 101, 024310 (2020)

J.Singh, J.Casal, W.Horiuchi, L.Fortunato, A.Vitturi

Exploring two-neutron halo formation in the ground state of 29F within a three-body model

NUCLEAR STRUCTURE 29F; calculated configuration mixing, matter radius as function of S(2n), probability density for the ground state using three-body (27F+n+n) calculations with hyperspherical formalism, analytical transformed harmonic oscillator basis, and Gogny-Pires-Tourreil (GPT) nn interaction; deduced presence of a moderate halo structure in the ground state. Comparison with available experimental data.

doi: 10.1103/PhysRevC.101.024310
Citations: PlumX Metrics

2020SO22      Phys.Rev. C 102, 064622 (2020)

V.Soukeras, O.Sgouros, A.Pakou, F.Cappuzzello, J.Casal, C.Agodi, G.A.Brischetto, S.Calabrese, D.Carbone, M.Cavallaro, I.Ciraldo, I.Dimitropoulos, S.Koulouris, L.La Fauci, I.Martel, M.Rodriguez-Gallardo, A.M.Sanchez-Benitez, G.Souliotis, A.Spatafora, D.Torresi

Global study of 9Be + p at 2.72A MeV

NUCLEAR REACTIONS 1H(9Be, 9Be), (9Be, d)8Be, (9Be, 6Li)4He, E=24.5 MeV; measured reaction products, elastically scattered 9Be, α, 6Li, σ(θ), triple α-α-p coincidence for breakup process in a full kinematic approach using MAGNEX magnetic spectrometer and GLORIA detector array at INFN-LNS in Catania; deduced ΔE-E spectrum, reconstructed sum α+α+n energy versus the energy of an individual α, reconstructed Q-value spectra, reconstructed energy spectra for the unobserved neutron and the recoiling proton. Comparison with four-body continuum discretized coupled-channel (CDCC) formalism.

doi: 10.1103/PhysRevC.102.064622
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2531.

2020VI01      Phys.Rev. C 101, 014315 (2020)

A.Vitturi, J.Casal, L.Fortunato, E.G.Lanza

Transition densities and form factors in the triangular α-cluster model of 12C with application to 12C + α scattering

NUCLEAR STRUCTURE 12C; calculated B(E2) for first and second 2+ and first excited 0+ states, B(E3) for first and second 3- states, B(E4) for first 4+, and E0 transition probability for first excited 0+, rms radius, transition densities using equilateral triangular arrangement in the Algebraic Cluster Model; analyzed the ground state, the symmetric vibration (Hoyle state), and the asymmetric bend vibration in a molecular approach. Comparison with available experimental data.

NUCLEAR REACTIONS 12C(α, α'), E=240 MeV; calculated form factors for the first 2+, and the second 2+ built on the top of first excited Hoyle state in 12C, differential σ(θ) using the transition densities calculated in the triangular α-cluster model. Comparison with experimental data taken from EXFOR and other literature.

doi: 10.1103/PhysRevC.101.014315
Citations: PlumX Metrics

2019AL32      Phys.Rev. C 100, 064602 (2019)

M.A.G.Alvarez, J.P.Fernandez-Garcia, J.L.Leon-Garcia, M.Rodriguez-Gallardo, L.R.Gasques, L.C.Chamon, V.A.B.Zagatto, A.Lepine-Szily, J.R.B.Oliveira, V.Scarduelli, B.V.Carlson, J.Casal, A.Arazi, D.A.Torres, F.Ramirez

Systematic study of optical potential strengths in reactions on 120Sn involving strongly bound, weakly bound, and exotic nuclei

NUCLEAR REACTIONS 120Sn(6Li, 6Li), E=19, 24, 27 MeV; measured scattered 6Li, σ(E, θ) using SATURN array of Si detectors at the tandem accelerator of LAFN, University of Sao Paulo. 120Sn(α, α), E(reduced)=5.1, 12.0, 15.6, 19.1 MeV; 120Sn(6He, 6He), E(reduced)=3.8, 4.4, 6.1, 6.7, 8.4 MeV; 120Sn(7Li, 7Li), E(reduced)=0.6, 1.3, 3.2, 5.1, 7.0, 8.9 MeV; 120Sn(9Be, 9Be), E(reduced)=0.3, 0.7, 1.6, 1.7, 3.1, 13.3, 20.7 MeV; 120Sn(10B, 10B), E(reduced)=0.2, 1.6, 2.1, 3.4 MeV; 120Sn(16O, 16O), E(reduced)=2.3, 3.1, 4.0 MeV; 120Sn(18O, 18O), E(reduced)=2.1 MeV; analyzed previous σ(E, θ) data as part of the E-125 experimental campaign, developed at the LAFN, with experiments carried out at Sao Paulo and TANDAR facility in Buenos Aires. Optical model analyses based on the double-folding Sao Paulo potential.

NUCLEAR STRUCTURE 6Li, 6He, 9,10Be; calculated matter densities using Hartree-Bogoliubov (HB) theory with NL3 and DDME1 interactions, and from charge densities obtained in (e, e') experiments. 4,6He, 6,7Li, 9,10Be, 16,18O; calculated s-wave barrier parameters using double-folding Sao Paulo potential (SPP) for systems with projectiles focusing on 120Sn.

doi: 10.1103/PhysRevC.100.064602
Citations: PlumX Metrics

2019CA03      Phys.Rev. C 99, 014604 (2019)

J.Casal, J.Gomez-Camacho

Identifying structures in the continuum: Application to 16Be

NUCLEAR STRUCTURE 16Be; calculated eigenvalues of 0+, 1- and 2+ levels, resonances, radial dependence of the channel wave functions and hyper-radial wave function probability for the 0+ eignestates, energy and width functions of 0+ and 2+ resonances, dineutron configuration. Hyperspherical harmonics formalism using the analytical transformed harmonic oscillator basis applied to 14Be+n+n model. Comparison with R-matrix calculations.

doi: 10.1103/PhysRevC.99.014604
Citations: PlumX Metrics

2019CO12      Phys.Lett. B 797, 134843 (2019)

A.Corsi, Y.Kubota, J.Casal, M.Gomez-Ramos, A.M.Moro, G.Authelet, H.Baba, C.Caesar, D.Calvet, A.Delbart, M.Dozono, J.Feng, F.Flavigny, J.-M.Gheller, J.Gibelin, A.Giganon, A.Gillibert, K.Hasegawa, T.Isobe, Y.Kanaya, S.Kawakami, D.Kim, Y.Kiyokawa, M.Kobayashi, N.Kobayashi, T.Kobayashi, Y.Kondo, Z.Korkulu, S.Koyama, V.Lapoux, Y.Maeda, F.M.Marques, T.Motobayashi, T.Miyazaki, T.Nakamura, N.Nakatsuka, Y.Nishio, A.Obertelli, A.Ohkura, N.A.Orr, S.Ota, H.Otsu, T.Ozaki, V.Panin, S.Paschalis, E.C.Pollacco, S.Reichert, J.-Y.Rousse, A.T.Saito, S.Sakaguchi, M.Sako, C.Santamaria, M.Sasano, H.Sato, M.Shikata, Y.Shimizu, Y.Shindo, L.Stuhl, T.Sumikama, Y.L.Sun, M.Tabata, Y.Togano, J.Tsubota, T.Uesaka, Z.H.Yang, J.Yasuda, K.Yoneda, J.Zenihiro

Structure of 13Be probed via quasi-free scattering

NUCLEAR REACTIONS 1H(11Li, X), 246 MeV/nucleon; 1H(14Be, np)13Be, E=265 MeV/nucleon; 1H(17B, X), E=277 MeV/nucleon; measured reaction products, Ep, Ip, En, In, Eγ, Iγ. 12,13Be; deduced σ(E), partial level scheme, scattering lengths, resonance energies and widths, transverse momentum distributions.

doi: 10.1016/j.physletb.2019.134843
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2633. Data from this article have been entered in the XUNDL database. For more information, click here.

2018AR02      Phys.Rev. C 97, 044609 (2018)

A.Arazi, J.Casal, M.Rodriguez-Gallardo, J.M.Arias, R.Lichtenthaler Filho, D.Abriola, O.A.Capurro, M.A.Cardona, P.F.F.Carnelli, E.de Barbara, J.Fernandez Niello, J.M.Figueira, L.Fimiani, D.Hojman, G.V.Marti, D.Martinez Heimann, A.J.Pacheco

9Be + 120Sn scattering at near-barrier energies within a four-body model

NUCLEAR REACTIONS 120Sn(9Be, 9Be), (9Be, 9Be'), E=26, 27, 28, 29.5, 31, 42, 50 MeV; measured scattered particles, differential σ(E, θ) of elastic and inelastic channels using 20 UD tandem accelerator TANDAR at Buenos Aires; deduced excitation to first 2+ and 3- states in 120Sn. Comparison with optical model (OM) and four-body continuum-discretized coupled-channels (CDCC) calculations.

doi: 10.1103/PhysRevC.97.044609
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0902.

2018CA09      Phys.Rev. C 97, 034613 (2018)


Two-nucleon emitters within a pseudostate method: The case of 6Be and 16Be

RADIOACTIVITY 6Be(2p), 16Be(2n); calculated neutron-14Be, proton-4He, neutron-4He phase shifts, overlaps between 15Be continuum states and 16Be ground state, and between 5Li continuum states and 6Be ground states, 16Be spectra, ground-state energies, ground-state probability distribution for 16Be and 6Be. Pseudostate (PS) method in hyperspherical coordinates, using analytical transformed harmonic oscillator (THO) basis for the three-body systems: 14Be+n+n and 4He+p+p, and constrained by available experimental information on the binary subsystems 5Li and 15Be.

doi: 10.1103/PhysRevC.97.034613
Citations: PlumX Metrics

2016CA16      Phys.Rev. C 93, 041602 (2016)

J.Casal, M.Rodriguez-Gallardo, J.M.Arias, J.Gomez-Camacho

Determining astrophysical three-body radiative capture reaction rates from inclusive Coulomb break-up measurements

NUCLEAR REACTIONS 208Pb(11Li, X), E=24.3, 29.8 MeV; Pb(6He, X), E=18, 22 MeV; calculated breakup probability of 11Li in 9Li+n+n and 6He in α+n+n as a function of collision time, B(E1) distribution, and compared with experimental data. 9Li(2n, γ)11Li, T9=0.5-2.5; 4He(2n, γ)6He, T9=2.75-4; calculated reaction rates. Established a relation between radiative capture reaction rate and the inclusive Coulomb break-up probability.

doi: 10.1103/PhysRevC.93.041602
Citations: PlumX Metrics

2016CA38      Phys.Rev. C 94, 054622 (2016)

J.Casal, E.Garrido, R.de Diego, J.M.Arias, M.Rodriguez-Gallardo

Radiative capture reaction for 17Ne formation within a full three-body model

NUCLEAR STRUCTURE 17Ne; calculated energy and probability distribution of the ground state, matter and charge radii of 17Ne Borromean nucleus in a full three-body (15O+p+p) model using analytical transformed harmonic oscillator (THO), and the hyperspherical adiabatic (HA) expansion methods. Comparison with experimental values.

NUCLEAR REACTIONS 15O(2p, γ)17Ne, T9=0.1-10; calculated two-proton capture reaction rate using the THO method, including sequential and direct, resonant and nonresonant contributions, dominant E1 contributions to the reaction rate from the inverse photodissociation process. Comparison with previous theoretical calculations. Relevance to CNO cycles and rp-process.

doi: 10.1103/PhysRevC.94.054622
Citations: PlumX Metrics

2015CA25      Phys.Rev. C 92, 054611 (2015)

J.Casal, M.Rodriguez-Gallardo, J.M.Arias

9Be elastic scattering on 208Pb and 27Al within a four-body reaction framework

NUCLEAR REACTIONS 208Pb(9Be, 9Be), E=38, 44, 60 MeV; 27Al(9Be, 9Be), E=14, 22, 32 MeV; calculated σ(θ, E); deduced effects of model space truncation, continuum couplings, dipolar contribution, and position of the projectile low-energy resonances. Four-body framework using the continuum-discretized coupled-channels (CDCC) method, with 9Be described in a three-body (α+α+n) model using the analytical transformed harmonic oscillator (THO) basis in hyperspherical coordinates. Comparison with available experimental data.

NUCLEAR STRUCTURE 9Be; calculated levels energies of 3/2-, 1/2+ and 5/2- states up to 10 MeV for an analytical THO basis.

doi: 10.1103/PhysRevC.92.054611
Citations: PlumX Metrics

2014CA36      Phys.Rev. C 90, 044304 (2014); Pub.Note Phys.Rev. C 94, 069903 (2016)

J.Casal, M.Rodriguez-Gallardo, J.M.Arias, I.J.Thompson

Astrophysical reaction rate for 9Be formation within a three-body approach

NUCLEAR STRUCTURE 9Be; calculated ground-state energy, matter and charge radii, sum rule ST(E1) using α+α+n three body approach and analytical transformed harmonic oscillator method for 9Be Borromean nucleus.

NUCLEAR REACTIONS 8Be(n, γ)9Be; calculated photodissociation σ(E)for α+α+n --> 9Be+γ reaction, reaction rate dependence on temperature, contribution of resonances to total photodissociation cross section, total astrophysical reaction rates using α+α+n three body approach and analytical transformed harmonic oscillator method. Comparison with experimental results.

doi: 10.1103/PhysRevC.90.044304
Citations: PlumX Metrics

2013CA15      Phys.Rev. C 88, 014327 (2013)

J.Casal, M.Rodriguez-Gallardo, J.M.Arias

Analytical transformed harmonic oscillator basis for three-body nuclei of astrophysical interest: Application to 6He

NUCLEAR STRUCTURE 6He; calculated levels, J, π, ground-state energy, matter radius, B(E1) distribution, radiative capture reaction rate of astrophysics interest. Three-body α+n+n Borromean system. Analytical transformed harmonic oscillator (THO) method. Comparison with previous theoretical studies.

doi: 10.1103/PhysRevC.88.014327
Citations: PlumX Metrics

Back to query form