NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = W.Horiuchi

Found 84 matches.

Back to query form



2023HO01      Phys.Rev. C 107, L021304 (2023)

W.Horiuchi, N.Itagaki

Imprints of α clustering in the density profiles of 12C and 16O

NUCLEAR STRUCTURE 12C, 16O; calculated one-body nucleon density distributions, charge form-factors. Calculations performed using basis states of the antisymmetrized quasicluster model (AQCM), which can describe both the shell and α-cluster configurations in a single scheme. Confirmed a significant amount of α-cluster components included in the ground state wave functions in 12C and 16O.

NUCLEAR REACTIONS 12C, 16O(p, p'), E=1000 MeV; calculated σ(θ). Comparison to experimental data.

doi: 10.1103/PhysRevC.107.L021304
Citations: PlumX Metrics


2023HO05      Phys.Rev. C 107, L041304 (2023)

W.Horiuchi, T.Inakura, S.Michimasa, M.Tanaka

Enlarged deformation region in neutron-rich Zr isotopes promoted by the second intruder orbit

NUCLEAR STRUCTURE 90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122Zr; calculated quadrupole deformation parameters, hexadecapole deformation parameters, rms point-proton and neutron radii, matter radii, nuclear diffuseness. 112Zr; calculated neutron single-particle and deformation energies. Skyrme-Hartree-Fock-Bogoliubov (HFB) model with SkM* interaction.

NUCLEAR REACTIONS 12C(90Zr, X), (92Zr, X), (94Zr, X), (96Zr, X), (98Zr, X), (100Zr, X), (102Zr, X), (104Zr, X), (106Zr, X), (108Zr, X), (110Zr, X), (112Zr, X), (114Zr, X), (116Zr, X), (118Zr, X), (120Zr, X), (122Zr, X), E=300 MeV/nucleon; calculated total σ. Skyrme-Hartree-Fock-Bogoliubov (HFB), Skyrme-HF plus Bardeen-Cooper-Schrieffer(BCS)–type pairing (HF+BCS) and spherical-constrained HF calculation. Explained mechanism of the large cross-section enhancement by occupation of the highly elongated intruder orbit originating from the spherical 0h11/2 orbit.

doi: 10.1103/PhysRevC.107.L041304
Citations: PlumX Metrics


2023MO05      Eur.Phys.J. A 59, 37 (2023)

H.Moriya, W.Horiuchi, J.Casal, L.Fortunato

Three-α configurations of the second Jp = 2+ state in 12C

NUCLEAR STRUCTURE 12C; calculated level energies, J, π, spectroscopic factors, three-α configurations. The three-body Schrodinger equation with orthogonality conditions solution.

doi: 10.1140/epja/s10050-023-00947-3
Citations: PlumX Metrics


2023MO23      Eur.Phys.J. A 59, 197 (2023), Pub. Erratum Eur.Phys.J. A 59, 218 (2023)

H.Moriya, W.Horiuchi, B.Zhou

Novel approach to the removal of the Pauli-forbidden states in the orthogonality condition model: a case of multi-α systems

NUCLEAR STRUCTURE 8Be, 12C; calculated correlated Gaussian (CG) and transformed correlated Gaussian (TCG) functions, energies of the ground and excited states; deduced small values of of the Pauli-forbidden states.

doi: 10.1140/epja/s10050-023-01110-8
Citations: PlumX Metrics


2023TA04      Phys.Rev. C 107, 024314 (2023)

R.Takatsu, Y.Suzuki, W.Horiuchi, M.Kimura

Microscopic study of the deformed neutron halo of 31Ne

NUCLEAR STRUCTURE 30,31Ne; calculated levels, J, p, S(n), point-proton and neutron distribution radii, quadrupole moments of protons and neutrons. 31Ne; calculated neutron single-particle energies, occupation numbers from the five most weakly bound neutrons, spectroscopic factor of ground and excited states, widths of the resonances 30Ne+n. Antisymmetrized molecular dynamics plus resonating group method (AMD+RGM) combined with analytical continuation of the coupling constant (ACCC) to improve the description of resonance states. Showed that 31Ne is a deformed halo nucleus in which the rotational excitation of the core is coupled with a deformed neutron halo. Comparison to experimental data and calculations performed with antisymmetrized molecular dynamics plus generator coordinate method (AMD+GCM).

doi: 10.1103/PhysRevC.107.024314
Citations: PlumX Metrics


2023YA22      Phys.Rev. C 108, L011304 (2023)

Y.Yamaguchi, W.Horiuchi, T.Ichikawa, N.Itagaki

Dineutron-dineutron correlation in 8He

NUCLEAR STRUCTURE 8He; calculated potential energy surface of Jπ=0+ for the α+2n+2n configuration, energy convergence of lowest Jπ=0+ state, point-matter one body density distribution, neutron and proton one body density distributions of 8He, rms point-proton and matter radii, ground state energy, squared overlap between the ground state of 8He and 4He+2n+2n cluster configuration, quadrupole deformation parameter of 4He+2n+2n cluster configuration. Microscopic 4He+4n model, with antisymmetrized wave function and basis states constructed with different neutron configurations and superposed using the generator coordinate method (GCM). Comparison to available experimental data.

NUCLEAR REACTIONS 8He(p, p), E=680 MeV; calculated proton-nucleus elastic σ(θ). C(8He, X), E=790/MeV nucleon; calculated total σ. Calculation based on Glauber model with 4He+4n wave function. Comparison with available experimental data.

doi: 10.1103/PhysRevC.108.L011304
Citations: PlumX Metrics


2023YA23      Phys.Rev. C 108, 014322 (2023)

Y.Yamaguchi, W.Horiuchi, N.Itagaki

Evidence of bicluster structure in the ground state of 20Ne

NUCLEAR REACTIONS C(20Ne, X), E=150-1000 MeV; calculated total σ(E). 20Ne(p, p), E=800 MeV; calculated proton-nucleus elastic σ(θ). 20Ne(e, e'), E not given; calculated elastic charge form factor as a function of the momentum transfer. Antisymmetrized quasicluster model (AQCM) with 4 configurations - j-j coupling, SU(3) shell model, 5α- and 16O+α- like cluster configurations. Comparison to the experimental data.

NUCLEAR STRUCTURE 20Ne; calculated nucleon density distributions.

doi: 10.1103/PhysRevC.108.014322
Citations: PlumX Metrics


2023ZH34      Phys.Rev. C 108, 014614 (2023)

J.T.Zhang, P.Ma, Y.Huang, X.L.Tu, P.Sarriguren, Z.P.Li, Y.Kuang, W.Horiuchi, T.Inakura, L.Xayavong, Y.Sun, K.Kaneko, X.Q.Liu, K.Yue, C.J.Shao, Q.Zeng, B.Mei, P.Egelhof, Yu.A.Litvinov, M.Wang, Y.H.Zhang, X.H.Zhou, Z.Y.Sun

Matter radius of 78Kr from proton elastic scattering at 153 MeV

NUCLEAR REACTIONS 1H(78Kr, p), E=152 MeV/nucleon; measured Ep, Ip; deduced σ(θ). 78Kr; deduced point-matter radius, neutron skin thickness. Glauber model analysis. Comparison of the obtained σ to FRESCO calculations with the phenomenological OMP parameters (KD03). Collision in Cooler Storage Ring of the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) with molecular hydrogen-gas target. MICRON double-sided Si-strip detector (DSSD) used to measure the recoil protons.

doi: 10.1103/PhysRevC.108.014614
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2022HO02      Phys.Rev. C 105, 014316 (2022)

W.Horiuchi, T.Inakura, S.Michimasa

Large enhancement of total reaction cross sections at the edge of the island of inversion in Ti, Cr, and Fe isotopes

NUCLEAR STRUCTURE 48,50,52,54,56,58,60,62,64Ti, 50,52,54,56,58,60,62,64,66,68Cr, 52,54,56,58,60,62,64,66,68,70,72Fe; calculated quadrupole deformation parameter β2, S(2n), rms matter radii, total reaction cross sections on a carbon target at 240 MeV/nucleon, hexadecapole β4 deformation parameters, cumulative single-particle hexadecapole moment of N=38 isotones, intrinsic density distribution contour of 58Ti, difference of the square radii, diffuseness parameters; deduced that in island of inversion, the occupation of highly elongated intruder orbits induces large quadrupole and hexadecapole deformations. Skyrme-Hartree-Fock method in three-dimensional coordinate space. Comparison with experimental data. Discussed possibility of constraining the hexadecapole deformation by a measurement of their total reaction cross sections.

doi: 10.1103/PhysRevC.105.014316
Citations: PlumX Metrics


2022HO03      Phys.Rev. C 105, 024310 (2022)

W.Horiuchi, Y.Suzuki, M.A.Shalchi, L.Tomio

Possible halo structure of 62, 72Ca by forbidden-state-free locally peaked Gaussians

NUCLEAR STRUCTURE 62Ca; calculated levels, J, π, rms radii, occupation probabilities. 72Ca; calculated levels, J, π, energy of the ground state, neutron rms radii, occupation probabilities. Developed forbidden-state-free locally peaked Gaussian method to describe core+n+n and core+n systems.

doi: 10.1103/PhysRevC.105.024310
Citations: PlumX Metrics


2022HO07      Phys.Rev. C 105, 044303 (2022)

W.Horiuchi, T.Inakura

Pairing core swelling effect in Pb isotopes at N > 126

NUCLEAR STRUCTURE 214Pb; calculated valence neutron densities, occupation numbers, rms radii. 192,194,196,200,202,204,206,208,210,212,214,216,218,220Pb; calculated S(2n). 196,200,202,204,206,208,210,212,214,216,218,220,222Pb; calculated absolute difference of squared charge radii of Pb isotopes from that of 208Pb. 208,210,212,214,216,218,220,222Pb; calculated occupation numbers. 192,194,196,200,202,204,206,208,210,212,214,216,218,220,222Pb; calculated neutron skin thickness, nuclear surface diffuseness. Skyrme Hartree-Fock-Bogoliubov (HFB) theory with Skyrme-density functionals SkM*, SLy4, SV-min, UNEDF1 and fixed parameters of the density-dependent spin-orbit (DDLS) term. Comparison to available experimental data.

doi: 10.1103/PhysRevC.105.044303
Citations: PlumX Metrics


2022HO15      Phys.Rev. C 106, 044330 (2022)

W.Horiuchi, N.Itagaki

Density profiles near the nuclear surface of 44, 52Ti: An indication of α clustering

NUCLEAR STRUCTURE 44,52Ti, 40,48Ca; calculated point-proton and neutron density distributions, point-proton and point-neutron rms radii. Antisymmetrized quasi-cluster model (AQCM). Calculations utilizing 2 types of model wave functions: shell-model-like wave function constructed by taking the core-α distance small and α-cluster-model wave function based on the core plus α-cluster model. Found that the α-clustering significantly diffuses the density profiles near the nuclear surface compared to the ideal jj coupling shell-model configuration. Comparison to experimental data.

NUCLEAR REACTIONS 44,52Ti, 40,48Ca(p, p')E=320, 1000 MeV; calculated elastic scattering σ(θ). 44,52Ti(C, X), E=40-1000 MeV; deduced total reaction σ(E). Comparison to experimental data.

doi: 10.1103/PhysRevC.106.044330
Citations: PlumX Metrics


2022KA35      Phys.Rev.Lett. 129, 142502 (2022)

S.Kaur, R.Kanungo, W.Horiuchi, G.Hagen, J.D.Holt, B.S.Hu, T.Miyagi, T.Suzuki, F.Ameil, J.Atkinson, Y.Ayyad, S.Bagchi, D.Cortina-Gil, I.Dillmann, A.Estrade, A.Evdokimov, F.Farinon, H.Geissel, G.Guastalla, R.Janik, R.Knobel, J.Kurcewicz, Y.A.Litvinov, M.Marta, M.Mostazo, I.Mukha, C.Nociforo, H.J.Ong, T.Otsuka, S.Pietri, A.Prochazka, C.Scheidenberger, B.Sitar, P.Strmen, M.Takechi, J.Tanaka, I.Tanihata, S.Terashima, J.Vargas, H.Weick, J.S.Winfield

Proton Distribution Radii of 16-24O: Signatures of New Shell Closures and Neutron Skin

NUCLEAR REACTIONS 12C(16O, X), (18O, X), (19O, X), (20O, X), (21O, X), (22O, X), (23O, X), (24O, X), E<1 GeV/nucleon; measured reaction products. 16,18,20,21,22,23,24O; deduced charge changing σ, root mean square proton and matter radii, neutron skin thickness, shell closure. Comparison with with ab initio calculations employing the chiral NNLO sat interaction, shell model predictions. The fragment separator FRS at GSI.

doi: 10.1103/PhysRevLett.129.142502
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD8052. Data from this article have been entered in the XUNDL database. For more information, click here.


2022MA11      Few-Body Systems 63, 20 (2022)

H.Masui, W.Horiuchi, M.Kimura

Two-Neutron Halo Structure and Anti-halo Effect in 31F

NUCLEAR STRUCTURE 29,31F; calculated the radius and total reaction cross section using a three-body wave function, anti-halo effect that suppresses the halo structure in the ground state.

doi: 10.1007/s00601-021-01715-z
Citations: PlumX Metrics


2022MA32      Prog.Theor.Exp.Phys. 2022, 073D01 (2022)

K.Makiguchi, W.Horiuchi

Incomplete absorption reactions at high energy

doi: 10.1093/ptep/ptac089
Citations: PlumX Metrics


2022SU12      Prog.Theor.Exp.Phys. 2022, 063D02 (2022)

Y.Suzuki, W.Horiuchi, M.Kimura

Erosion of N = 28 shell closure: Shape coexistence and monopole transition

NUCLEAR STRUCTURE 40Mg, 42Si, 44S; calculated energy levels, J, π, potential energy surfaces, B(E2) using the theoretical framework of antisymmetrized molecular dynamics with the Gogny D1S density functional; deduced different aspects of shape coexistence.

doi: 10.1093/ptep/ptac071
Citations: PlumX Metrics


2022TA18      Phys.Rev. C 106, 045807 (2022)

H.Tajima, H.Moriya, W.Horiuchi, K.Iida, E.Nakano

Resonance-to-bound transition of 5He in neutron matter and its analogy with heteronuclear Feshbach molecules

NUCLEAR STRUCTURE 5He; calculated ground-state energy using p-wave neutron-alpha scattering amplitude, 5He spectral function in dilute neutron matter at T=0. Described resonance-to-bound transition using two-channel model developed for the description of a cold atomic gas near the narrow Feshbach resonance.

doi: 10.1103/PhysRevC.106.045807
Citations: PlumX Metrics


2021CH55      Phys.Rev. C 104, 054313 (2021)

V.Choudhary, W.Horiuchi, M.Kimura, R.Chatterjee

Enormous nuclear surface diffuseness of Ne and Mg isotopes in the island of inversion

NUCLEAR STRUCTURE 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40Mg; calculated nuclear surface diffuseness as a function of neutron number, occupation numbers; analyzed nuclear surface diffuseness parameters and rms point matter radii from experimental elastic scattering differential cross sections at 350-, 500- and 800-MeV incident energies. 29Ne; calculated valence neutron density distribution. Microscopic antisymmetrized molecular dynamics (AMD) model, and two-parameter Fermi density distribution for the diffuseness parameters and matter radii.

doi: 10.1103/PhysRevC.104.054313
Citations: PlumX Metrics


2021HO09      Nucl.Phys. A1011, 122204 (2021)

W.Horiuchi, T.Furumoto

Separating isoscalar and isovector dipole excitations in 6Li and 6He using heavy-ion collisions and nuclear-Coulomb interference effects

NUCLEAR REACTIONS C, Pb(6Li, 6Li'), (6He, 6He'), E=100-400 MeV/nucleon; calculated σ(E), dipole excitations. 6Li, 6He; deduced the possibility of separating the dipole excitation σ into the IS and IV contributions using heavy-ion collisions.

doi: 10.1016/j.nuclphysa.2021.122204
Citations: PlumX Metrics


2021HO16      Prog.Theor.Exp.Phys. 2021, 103D02 (2021)

W.Horiuchi, T.Inakura

Deformation effect on nuclear density profile and radius enhancement in light- and medium-mass neutron-rich nuclei

NUCLEAR STRUCTURE Ne, Mg, Si, S, Ar, Ti, Cr, Fe; calculated nuclear radii; deduced role of nuclear deformation in nuclear density profiles. Skyrme-Hartree-Fock method.

doi: 10.1093/ptep/ptab087
Citations: PlumX Metrics


2021HO17      Prog.Theor.Exp.Phys. 2021, 103D03 (2021)

W.Horiuchi, T.Sato, Y.Uesaka, K.Yoshida

Electron wave functions in beta-decay formulas revisited (I): Gamow-Teller and spin-dipole contributions to allowed and first-forbidden transitions

RADIOACTIVITY 160Sn, 80Ni(β-); calculated T1/2 using LO and NLO formulas; deduced impact of Coulomb effects on the beta-decay rate.

doi: 10.1093/ptep/ptab069
Citations: PlumX Metrics


2021HO18      Prog.Theor.Exp.Phys. 2021, 123D01 (2021)

W.Horiuchi

Single-particle decomposition of nuclear surface diffuseness

NUCLEAR STRUCTURE 208Pb, 16,18,20,22,24O, 42,44,46,48,50,60Ca, 60,86Ni, 162Sn, 266Pb; calculated the rms point-proton radii, neutron single-particle energies, single-particle densities.

doi: 10.1093/ptep/ptab136
Citations: PlumX Metrics


2021MO30      Phys.Rev. C 104, 065801 (2021)

H.Moriya, H.Tajima, W.Horiuchi, K.Iida, E.Nakano

Binding two and three α particles in cold neutron matter

NUCLEAR STRUCTURE 8Be, 12C; calculated two-α ground state (8Be) and three-α first excited state (Hoyle state in 12C), energies and pair density distributions of the three-α system in neutron matter as a function of the neutron Fermi momentum with Ali-Bodmer (AB) and orthogonality condition model (OCM) potentials. Numerical solution of the few-body Schrodinger equation of α particles within standard α-cluster models, combined with in-medium properties of α particles.

doi: 10.1103/PhysRevC.104.065801
Citations: PlumX Metrics


2020BA27      Phys.Rev.Lett. 124, 222504 (2020)

S.Bagchi, R.Kanungo, Y.K.Tanaka, H.Geissel, P.Doornenbal, W.Horiuchi, G.Hagen, T.Suzuki, N.Tsunoda, D.S.Ahn, H.Baba, K.Behr, F.Browne, S.Chen, M.L.Cortes, A.Estrade, N.Fukuda, M.Holl, K.Itahashi, N.Iwasa, G.R.Jansen, W.G.Jiang, S.Kaur, A.O.Macchiavelli, S.Y.Matsumoto, S.S.Momiyama, I.Murray, T.Nakamura, S.J.Novario, H.J.Ong, T.Otsuka, T.Papenbrock, S.Paschalis, A.Prochazka, C.Scheidenberger, P.Schrock, Y.Shimizu, D.Steppenbeck, H.Sakurai, D.Suzuki, H.Suzuki, M.Takechi, H.Takeda, S.Takeuchi, R.Taniuchi, K.Wimmer, K.Yoshida

Two-Neutron Halo is Unveiled in 29F

NUCLEAR REACTIONS C(29F, X), E=255 MeV/nucleon; C(27F, X), E=250 MeV/nucleon; measured reaction products, En, In. 27,29F; deduced two-neutron Borromean halo. Comparison with theoretical calculations.

doi: 10.1103/PhysRevLett.124.222504
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2672. Data from this article have been entered in the XUNDL database. For more information, click here.


2020CA29      Phys.Rev. C 102, 064627 (2020)

J.Casal, J.Singh, L.Fortunato, W.Horiuchi, A.Vitturi

Electric dipole response of low-lying excitations in the two-neutron halo nucleus 29F

NUCLEAR STRUCTURE 29F; calculated convergence of the ground-state energy as a function of hypermomentum Kmax and number of basis functions N, ground-state probability density using three-body model 27F+n+n, convergence of B(E1) distribution as function of Kmax, B(E1) distribution as a function of the continuum energy, energies of the 0+, 1-, and 2+ states; deduced two-neutron halo for 29F. Hyperspherical harmonics expansion formalism.

NUCLEAR REACTIONS 208Pb(29F, X), E=235 MeV/nucleon; calculated B(E1) distribution as a function of the continuum energy. 120Sn(29F, X), E=84 MeV; calculated form factors for quadrupole couplings involving the bound states, monopole, dipole, and quadrupole couplings connecting the ground state with continuum pseudostates, σ(θ), B(E1) distributions. Glauber-model calculations for high-energy reactions, and four-body continuum-discretized coupled-channels (CDCC) calculations at low energy.

doi: 10.1103/PhysRevC.102.064627
Citations: PlumX Metrics


2020CH34      Phys.Rev. C 102, 034619 (2020)

V.Choudhary, W.Horiuchi, M.Kimura, R.Chatterjee

Imprint of a nuclear bubble in nucleon-nucleus diffraction

NUCLEAR REACTIONS 22O, 24Ne, 26Mg, 28Si, 30S, 32Ar, 34Ca(p, p), E=325, 550, 800 MeV; calculated reaction probabilities, σ(θ, E) for various bubble parameters using Glauber model. 22O, 24Ne, 26Mg, 28Si, 30S, 32Ar, 34Ca, 34Si; calculated density distributions, rms matter radii, quadrupole deformation parameters β and γ, bubble parameters, neutron and proton occupation probabilities using antisymmetrized molecular dynamics (AMD); deduced prominent bubble structure of 22O.

doi: 10.1103/PhysRevC.102.034619
Citations: PlumX Metrics


2020FO12      Commun. Phys. 3, 132 (2020)

L.Fortunato, J.Casal, W.Horiuchi, J.Singh, A.Vitturi

The 29F nucleus as a lighthouse on the coast of the island of inversion

NUCLEAR STRUCTURE 27,28,29F; analyzed available data; deduced phase shifts, ground-state probability density, estimate of relativistic Coulomb excitation σ.

doi: 10.1038/s42005-020-00402-5
Citations: PlumX Metrics


2020HO09      Phys.Rev. C 101, 061301 (2020)

W.Horiuchi, T.Inakura

Core swelling in spherical nuclei: An indication of the saturation of nuclear density

NUCLEAR REACTIONS 12C(40Ca, X), (42Ca, X), (43Ca, X), (44Ca, X), (45Ca, X), (46Ca, X), (47Ca, X), (48Ca, X), (49Ca, X), (50Ca, X), (51Ca, X), (52Ca, X), (54Ca, X), (56Ca, X), (58Ca, X), (60Ca, X), (62Ca, X), (64Ca, X), (66Ca, X), (68Ca, X), (70Ca, X), E=280 MeV/nucleon; calculated total reaction σ. Comparison with available experimental data for 42,43,44,45,46,47,48,49,50,51Ca.

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70Ca, 56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86Ni, 114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146Sn; calculated proton and neutron rms radii, and total matter, core, and valence neutron densities using microscopic Hartree-Fock with three Skryme-type effective interactions. Discussion of core swelling mechanism in spherical nuclei. Comparison with available experimental data for 39,40,41,42,43,44,45,46,47,48,50Ca, 58,60,61,62,64Ni, 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132Sn.

doi: 10.1103/PhysRevC.101.061301
Citations: PlumX Metrics


2020HO20      Phys.Rev. C 102, 054601 (2020)

W.Horiuchi, Y.Suzuki, T.Uesaka, M.Miwa

Total reaction cross section on a deuteron target and the eclipse effect of the constituent neutron and proton

NUCLEAR REACTIONS 2H(12C, X), (16O, X), (40Ca, X), E=50, 40-1000 MeV/nucleon; 2H(16O, X), (30Ne, X), (40Ca, X), (60Ca, X), E=40-1000 MeV/nucleon; 2H(34Ca, X), (36Ca, X), (38Ca, X), (40Ca, X), (42Ca, X), (44Ca, X), (46Ca, X), (48Ca, X), (50Ca, X), (52Ca, X), (54Ca, X), (56Ca, X), (58Ca, X), (60Ca, X), (62Ca, X), (64Ca, X), (66Ca, X), (68Ca, X), (70Ca, X), (48Ni, X), (50Ni, X), (52Ni, X), (54Ni, X), (56Ni, X), (58Ni, X), (60Ni, X), (62Ni, X), (64Ni, X), (66Ni, X), (68Ni, X), (70Ni, X), (72Ni, X), (74Ni, X), (76Ni, X), (78Ni, X), (80Ni, X), (82Ni, X), (84Ni, X), (86Ni, X), E=100, 200, 550, 800 MeV/nucleon; calculated total reaction σ(E) for σd, σp and σn scattered by a deuteron target using the Glauber model, taking into account eclipse effect by the neutron and the proton in the deuteron. Comparison with available experimental data. Relevance to extraction of the nucleus-neutron interaction, and nuclear size properties.

doi: 10.1103/PhysRevC.102.054601
Citations: PlumX Metrics


2020MA15      Phys.Rev. C 101, 041303 (2020)

H.Masui, W.Horiuchi, M.Kimura

Two-neutron halo structure of 31F and a novel pairing antihalo effect

NUCLEAR STRUCTURE 31F; calculated S(2n), rms matter radius, valence neutron occupation number of the p3/2 and f7/2 orbits, and radial density distribution using cluster orbital shell model; discussed two-neutron-halo structure, binding mechanism, and the novel antihalo effect.

NUCLEAR REACTIONS 1H, 12C(31F, X), (29F, X), E=240, 900 MeV/nucleon; calculated total σ(E) using Glauber theory, and compared with available experimental data.

doi: 10.1103/PhysRevC.101.041303
Citations: PlumX Metrics


2020MA46      Phys.Rev. C 102, 034614 (2020)

K.Makiguchi, W.Horiuchi, A.Kohama

Utility of antiproton-nucleus scattering for probing nuclear surface density distributions

NUCLEAR REACTIONS 1H(p-bar, X), (n-bar, X), (n, X), (p, X), 1n(p-bar, X), E=0.030-10 GeV; analyzed experimental total σ(E) data by empirical parametrization. 12C, 16O, 29,31F, 40Ca(p-bar, X), (p, X), E=100-1000 MeV; calculated total σ(E), reaction probabilities, ratio of total reaction σ(E) for antiproton and proton scattering. 12C, 16O, 40Ca(p-bar, p-bar), (p, p), E=180 MeV; calculated elastic scattering differential σ(θ), reaction probabilities. Glauber model. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.034614
Citations: PlumX Metrics


2020MO05      Nucl.Phys. A994, 121663 (2020)

T.Moriguchi, M.Amano, A.Ozawa, W.Horiuchi, Y.Abe, T.Fujii, R.Kagesawa, D.Kamioka, A.Kitagawa, M.Mukai, D.Nagae, M.Sakaue, S.Sato, S.Suzuki, T.Suzuki, T.Yamaguchi, K.Yokota

Energy dependence of total reaction cross sections for 17Ne on a proton target

doi: 10.1016/j.nuclphysa.2019.121663
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2669.


2020NA38      Phys.Rev. C 102, 055802 (2020)

E.Nakano, K.Iida, W.Horiuchi

Quasiparticle properties of a single α particle in cold neutron matter

doi: 10.1103/PhysRevC.102.055802
Citations: PlumX Metrics


2020SI06      Phys.Rev. C 101, 024310 (2020)

J.Singh, J.Casal, W.Horiuchi, L.Fortunato, A.Vitturi

Exploring two-neutron halo formation in the ground state of 29F within a three-body model

NUCLEAR STRUCTURE 29F; calculated configuration mixing, matter radius as function of S(2n), probability density for the ground state using three-body (27F+n+n) calculations with hyperspherical formalism, analytical transformed harmonic oscillator basis, and Gogny-Pires-Tourreil (GPT) nn interaction; deduced presence of a moderate halo structure in the ground state. Comparison with available experimental data.

doi: 10.1103/PhysRevC.101.024310
Citations: PlumX Metrics


2020TA05      Phys.Rev.Lett. 124, 102501 (2020)

M.Tanaka, M.Takechi, A.Homma, M.Fukuda, D.Nishimura, T.Suzuki, Y.Tanaka, T.Moriguchi, D.S.Ahn, A.Aimaganbetov, M.Amano, H.Arakawa, S.Bagchi, K.-H.Behr, N.Burtebayev, K.Chikaato, H.Du, S.Ebata, T.Fujii, N.Fukuda, H.Geissel, T.Hori, W.Horiuchi, S.Hoshino, R.Igosawa, A.Ikeda, N.Inabe, K.Inomata, K.Itahashi, T.Izumikawa, D.Kamioka, N.Kanda, I.Kato, I.Kenzhina, Z.Korkulu, Y.Kuk, K.Kusaka, K.Matsuta, M.Mihara, E.Miyata, D.Nagae, S.Nakamura, M.Nassurlla, K.Nishimuro, K.Nishizuka, K.Ohnishi, M.Ohtake, T.Ohtsubo, S.Omika, H.J.Ong, A.Ozawa, A.Prochazka, H.Sakurai, C.Scheidenberger, Y.Shimizu, T.Sugihara, T.Sumikama, H.Suzuki, S.Suzuki, H.Takeda, Y.K.Tanaka, I.Tanihata, T.Wada, K.Wakayama, S.Yagi, T.Yamaguchi, R.Yanagihara, Y.Yanagisawa, K.Yoshida, T.K.Zholdybayev

Swelling of Doubly Magic 48Ca Core in Ca Isotopes beyond N=28

NUCLEAR REACTIONS C(42Ca, X), (43Ca, X), (44Ca, X), (45Ca, X), (46Ca, X), (47Ca, X), (48Ca, X), (49Ca, X), (50Ca, X), (51Ca, X), E=280 MeV/nucleon; measured reaction products. 42,43,44,45,46,47,48,49,50,51Ca; deduced neutron number dependence in root-mean-square matter radii, novel growth in neutron skin thickness. Comparison with mean field calculations.

doi: 10.1103/PhysRevLett.124.102501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2656.


2019BA11      Phys.Lett. B 790, 251 (2019)

S.Bagchi, R.Kanungo, W.Horiuchi, G.Hagen, T.D.Morris, S.R.Stroberg, T.Suzuki, F.Ameil, J.Atkinson, Y.Ayyad, D.Cortina-Gil, I.Dillmann, A.Estrade, A.Evdokimov, F.Farinon, H.Geissel, G.Guastalla, R.Janik, S.Kaur, R.Knobel, J.Kurcewicz, Yu.A.Litvinov, M.Marta, M.Mostazo, I.Mukha, C.Nociforo, H.J.Ong, S.Pietri, A.Prochazka, C.Scheidenberger, B.Sitar, P.Strmen, M.Takechi, J.Tanaka, Y.Tanaka, I.Tanihata, S.Terashima, J.Vargas, H.Weick, J.S.Winfield

Neutron skin and signature of the N = 14 shell gap found from measured proton radii of 17-22N

NUCLEAR REACTIONS C(14N, X), (15N, X), (17N, X), (18N, X), (19N, X), (20N, X), (21N, X), (22N, X), E=851-932 MeV/nucleon; measured reaction products. 14,15,17,18,19,20,21,22N; deduced σ, root mean square point proton and matter radii, unconventional shell gap at N = 14 arising from the attractive proton–neutron tensor interaction. Comparison with ab initio calculations.

doi: 10.1016/j.physletb.2019.01.024
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0941.


2019FU03      Phys.Rev. C 99, 034605 (2019)

T.Furumoto, K.Tsubakihara, S.Ebata, W.Horiuchi

Microscopic global optical potential for nucleon-nucleus systems in the energy range 50-400 MeV

NUCLEAR STRUCTURE Z=10, A=17-34; Z=20, A=34-60; Z=40, A=80-120; Z=50, A=100-150; Z=70, A=150-210; Z=82, A=180-245; calculated charge radii using relativistic mean field (RMF) and Hartree-Fock (HF)+BCS densities, and compared with available experimental values. 32,36,40,44,48S, 80,90,100,110Sn; calculated point-neutron, proton, and matter density distributions using RMF and HF+BCS models.

NUCLEAR REACTIONS 10C, 276U(n, X), E=50 MeV; 12C, 242U(p, X), E=400 MeV; calculated real and imaginary parts of central and spin-orbit components of the SF potentials using the HF+BCS densities. 12C, 40Ca, 56Fe, 90Zr, 208Pb(p, X), E=50-400 MeV; calculated total reaction σ(E) using the RMF and HF+BCS densities to construct the SF potential. 12C, 16O, 24Mg, 28Si, 40Ca, 48,50Ti, 52Cr, 56Fe, 58Ni, 64,68Zn, 90Zr, 98Mo, 106Pd, 114Cd, 120Sn, 142Nd, 158Gd, 164Dy, 180Hf, 184W, 194Pt, 208Pb, 238U(p, X), E=60, 65.5, 99 MeV; 12C, 40Ca, 56Fe, 90Zr, 114Cd, 184W, 208Pb, 238U(n, X), E=50-400 MeV; Ni(p, X), E=60 MeV for A=50-80 Ni nuclei; Sn(p, X), E=65.5 MeV for A=100-150 Sn nuclei; 12C, 16O, 28Si, 40Ca, 56Fe, 58Ni, 64Zn, 90Zr, 114Cd, 120Sn, 208Pb, 238U(n, X), E=50, 379 MeV; analyzed total reaction σ(E) using microscopic global optical potential (MGOP1 and MGOP2) models. 12C, 40Ca, 208Pb(n, n), E=65-225; 28Si, 56Fe, 90Zr(n, n), E=55, 65, 75 MeV; 16O, 40Ca, 56Fe, Cd, 120Sn(n, n), E=65-351.5 MeV; 238U(n, n), E=52.5-120 MeV; analyzed σ(E, θ). 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 40Ar, 40,42,44,48Ca, 46,48,50Ti, 50,52,54Cr, 54,56Fe, 58,60,62,64Ni, 90Zr, 98,100Mo, 144,148,150,152,154Sm, 160Gd, 164Dy, 166,168Er, 172,174,176Yb, 178,180Hf, 182,184W, 192Os, 208Pb, 232Th, 238U(p, p), (polarized p, p), E=65 MeV; 12C(p, p), (polarized p, p), E=51.93-340 MeV; 16O(p, p), (polarized p, p), E=61-317.4 MeV; 24Mg, 28,30Si, 32,34S, 40,48Ca(p, p), (polarized p, p), E=51.9-400 MeV; 46,48,50Ti, 50Cr, 54,56Fe, 58,60,62Ni, 66,68Zn, 74,76,78,80,82Se(p, p), (polarized p, p), E=51.9-333 MeV; 88Sr, 90,92Zr(p, p), (polarized p, p), E=57.5-200 MeV; 106,108,110Pd, 112Cd, 116Sn(p, p), E=51-61.4 MeV; 116,118,120,122,124Sn(p, p), (polarized p, p), E=61.5-300 MeV; 148,154Sm, 192Os, 194,198Pt, 204,206,208Pb(p, p), (polarized p, p), E=61.4-400 MeV; 22,24O, 56Ni(p, p), E=46.6-285 MeV; 48S(p, p), E=100-400 MeV; 100,110Zr(p, p), (polarized p, p), E=100-400 MeV; analyzed σ(θ, E), analyzing powers Ay(θ, E), and spin-rotation functions; deduced microscopic global optical potential (MGOP) for nucleon-nucleus systems in a wide range of nuclear mass numbers (A=10-276) and incident energies of 50-400 MeV. Microscopic global optical potential (MGOP1 and MGOP2) models, based on a single-folding (SF) model with the complex G-matrix interaction, with nuclear densities generated from mean-field calculations using relativistic-mean-field (RMF) and Skyrme-Hartree-Fock+BCS approaches.

doi: 10.1103/PhysRevC.99.034605
Citations: PlumX Metrics


2019HA16      Nucl.Phys. A985, 20 (2019)

S.Hatakeyama, W.Horiuchi

Complete Glauber calculations for proton-nucleus inelastic cross sections

NUCLEAR STRUCTURE 12C, 20Ne, 28Si; calculated point-proton radii, B(E2), quadrupole deformation (for 28Si both prolate and oblate possibility); compared with published data.

NUCLEAR REACTIONS 12C, 20Ne, 28Si(p, p), (p, p'), E=50-1000 MeV; calculated σ(θ) using Glauber theory, Optical-Limit Approximation (OLA) and Eikonal-Distorted Wave-Impulse Approximation (DWIA); compared calculations one to the others and with available data; calculated reaction probabilities of inelastic σ on 28Si for prolate and for oblate deformations; calculated interaction σ and total reaction σ.

doi: 10.1016/j.nuclphysa.2019.02.004
Citations: PlumX Metrics


2019SA40      Phys.Rev. C 100, 024334 (2019)

S.Satsuka, W.Horiuchi

Emergence of nuclear clustering in electric-dipole excitations of 6Li

NUCLEAR STRUCTURE 6Li; calculated energy, Spn, matter and charge radii, point-matter densities, level energies, B(E1) strengths for αδ, α+p+n, and 3He+t cluster thresholds, α+p+n and 3He+t spectroscopic factors, transition densities, photoabsorption σ in 6Li(γ, n), isoscalar dipole strengths. Nuclear clustering. Microscopic six-body calculations, with the ground-state wave function obtained from correlated Gaussian (CG) functions with the stochastic variational method. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.024334
Citations: PlumX Metrics


2019SI29      Few-Body Systems 60, 50 (2019)

J.Singh, W.Horiuchi, L.Fortunato, A.Vitturi

Two-Neutron Correlations in a Borromean 20C + n + n System: Sensitivity of Unbound Subsystems

NUCLEAR STRUCTURE 22C; analyzed available data; deduced components of the ground state, two-particle density, total E1 strength distribution, total monopole transition strength distribution.

doi: 10.1007/s00601-019-1518-8
Citations: PlumX Metrics


2018AR03      Nucl.Phys. A977, 82 (2018)

T.Arai, W.Horiuchi, D.Baye

Analyzing supersymmetric transformed α-nucleus potentials with electric-multipole transitions

NUCLEAR STRUCTURE 20Ne, 44Ti; calculated levels, J, null point-matter radius, γ decay widths, B(E2), B(E4) for individual transitions assuming nucleus treated as 16O+α (20Ne) and 40Ca+α (44Ti) using α-cluster model (and its generalizations) with three different α-nucleus potentials and using supersymmetric transformations to avoid redundant bound states. Compared with available data.

doi: 10.1016/j.nuclphysa.2018.06.004
Citations: PlumX Metrics


2018HA21      Phys.Rev. C 97, 054607 (2018)

S.Hatakeyama, W.Horiuchi, A.Kohama

Nuclear surface diffuseness revealed in nucleon-nucleus diffraction

NUCLEAR REACTIONS 120,132Sn, 208Pb(p, p), E=200, 325, 550, 800 MeV; calculated differential σ(θ), target two-parameter Fermi density distributions, scattering angles at the first peak position of σ(θ) using Glauber and black sphere (BS) model, and the spatial distribution of the scattering amplitude at the first and second peak of σ(θ) of one nucleon elastic scattering; deduced method for determining nuclear radii and diffuseness from first peak position and magnitude of differential σ(θ). 40,42,44,46,48,50,52,54,56,58,60Ca, 56,58,60,62,64,66,68,70,72,74,76,78,80,82,84Ni, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn, 150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200Yb, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242Pb(p, p), (p, X), E=325, 550, 800 MeV; calculated rms radii, nuclear diffuseness of protons and neutrons from theoretical first peak position and amplitude of differential σ(θ) using HF+BCS method, total reaction cross sections by Glauber and black sphere (BS) models.

doi: 10.1103/PhysRevC.97.054607
Citations: PlumX Metrics


2018NA12      Phys.Rev. C 97, 054614 (2018)

T.Nagahisa, W.Horiuchi

Examination of the 22C radius determination with interaction cross sections

NUCLEAR REACTIONS 1H, 12C(12C, X), (20C, X), (22C, X), E=10-1000, 40, 240 MeV; calculated total reaction σ(E) as a function of both incident energy and center-of-mass corrected rms radii using the Glauber model and Monte Carlo technique. 22C; deduced rms matter radius, and compared with experimental results.

doi: 10.1103/PhysRevC.97.054614
Citations: PlumX Metrics


2017HO17      Phys.Rev. C 96, 024605 (2017)

W.Horiuchi, S.Hatakeyama, S.Ebata, Y.Suzuki

Low-lying electric-dipole strengths of Ca, Ni, and Sn isotopes imprinted on total reaction cross sections

NUCLEAR REACTIONS 40Ca, 120Sn, 208Pb(100Sn, X), (102Sn, X), (104Sn, X), (106Sn, X), (108Sn, X), (110Sn, X), (112Sn, X), (114Sn, X), (116Sn, X), (118Sn, X), (120Sn, X), (122Sn, X), (124Sn, X), (126Sn, X), (128Sn, X), (130Sn, X), (132Sn, X), (134Sn, X), (136Sn, X), (138Sn, X), (140Sn, X), E=100, 200, 550, 1000 MeV/nucleon; calculated total reaction σ(E), nuclear breakup σ(E), and Coulomb breakup σ(E), percentages of the Coulomb breakup cross sections with electric multipoles E1, E2, and E3, contributions of the electric-multipole strengths of 134Sn to the Coulomb breakup cross section by 208Pb target, comparison of the electric-dipole (E1) contributions of 100,110,120,132,134Sn isotopes to the Coulomb breakup cross sections by 208Pb target. 208Pb(40Ca, X), (42Ca, X), (44Ca, X), (46Ca, X), (48Ca, X), (50Ca, X), (52Ca, X), (54Ca, X), (56Ca, X), (58Ca, X), (60Ca, X), (56Ni, X), (58Ni, X), (60Ni, X), (62Ni, X), (64Ni, X), (66Ni, X), (68Ni, X), (70Ni, X), (72Ni, X), (74Ni, X), (76Ni, X), (78Ni, X), (80Ni, X), (82Ni, X), (84Ni, X), E=100, 200, 550, 1000 MeV/nucleon; calculated total reaction σ(E), nuclear breakup σ(E), and Coulomb breakup σ(E). Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods using SkM*, SLy4, and SkI3 Skyrme-type effective interactions, with nuclear and Coulomb breakup processes described within the Glauber mode.

doi: 10.1103/PhysRevC.96.024605
Citations: PlumX Metrics


2017HO20      Phys.Rev. C 96, 035804 (2017)

W.Horiuchi, S.Ebata, K.Iida

Neutron-skin thickness determines the surface tension of a compressible nuclear droplet

NUCLEAR STRUCTURE Z=50, N=50-90; Z=82, N=100-164; calculated charge radii, and compared with experimental data. Z=50, N=50-90; Z=82, N=100-164; Z=20, N=20-40; Z=28, N=28-58; Z=40, N=38-80; Z=50, N=50-90; Z=70, N=80-120; Z=82, N=100-164; calculated surface widths from the neutron and proton density distributions using SkM*, SLy4, and SkI3 interactions, neutron-skin thicknesses as a function of the asymmetry parameter using SkM*, SLy4, and SkI3 interactions for HF+BCS theory. 116,118,120,122,124Sn, 204,206,208Pb; calculated neutron-skin thicknesses within the compressible droplet model using empirical density distributions. Equation of state (EOS) parameters deduced from nine Skyrme-EDF models.

doi: 10.1103/PhysRevC.96.035804
Citations: PlumX Metrics


2017HO22      Phys.Rev. C 96, 045204 (2017)

T.Hoshino, S.Ohnishi, W.Horiuchi, T.Hyodo, W.Weise

Constraining the K-bar N interaction from the 1S level shift of kaonic deuterium

doi: 10.1103/PhysRevC.96.045204
Citations: PlumX Metrics


2017NA08      Rep.Prog.Phys. 80, 056301 (2017)

S.X.Nakamura, H.Kamano, Y.Hayato, M.Hirai, W.Horiuchi, S.Kumano, T.Murata, K.Saito, M.Sakuda, T.Sato, Y.Suzuki

Towards a unified model of neutrino-nucleus reactions for neutrino oscillation experiments

doi: 10.1088/1361-6633/aa5e6c
Citations: PlumX Metrics


2017OH03      Phys.Rev. C 95, 065202 (2017)

S.Ohnishi, W.Horiuchi, T.Hoshino, K.Miyahara, T.Hyodo

Few-body approach to the structure of K(bar) -nuclear quasibound states

doi: 10.1103/PhysRevC.95.065202
Citations: PlumX Metrics


2017SU12      Phys.Rev. C 95, 044320 (2017)

Y.Suzuki, W.Horiuchi

Correlated-Gaussian approach to linear-chain states: Case of α particles

NUCLEAR STRUCTURE 16O; calculated energies of linear chain (LC) configurations of positive parity as function of angular momentum, dependence of contributions of kinetic energy, nuclear potential, and Coulomb potential to the lowest energy linear chain (LC) states of four α particles, excitation energies of 4α LC states as a function of L(L+1); deduced possible chain states for Jπ=0+, 2+, 4+ and 6+ with the bandhead energy about 33 MeV, no chain states found with J=8 or J>8. Correlated Gaussians approach in variation-after projection calculations.

doi: 10.1103/PhysRevC.95.044320
Citations: PlumX Metrics


2016DO04      Phys.Lett. B 757, 430 (2016)

J.Dohet-Eraly, P.Navratil, S.Quaglioni, W.Horiuchi, G.Hupin, F.Raimondi

3He(α, γ)7Be and 3H(α, γ)7Li astrophysical S factors from the no-core shell model with continuum

NUCLEAR REACTIONS 3He, 3H(α, γ), E<4 MeV; calculated S-factors, σ using no-core shell model. Comparison with available data.

doi: 10.1016/j.physletb.2016.04.021
Citations: PlumX Metrics


2016HO05      Phys.Rev. C 93, 044611 (2016)

W.Horiuchi, S.Hatakeyama, S.Ebata, Y.Suzuki

Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated neutron and proton rms radii. 40,42,44,46,48,50,52,54,56,58,60Ca, 56,58,60,62,64,66,68,70,72,74,76,78,80,82,84Ni, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn, 156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196Yb, 190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated matter radius of even-even nuclei using SkM*, SLy4, and SkI3 interactions. HF+BCS and HF theory with different interactions.

NUCLEAR REACTIONS 1,2H, 4He, 12C(40Ca, X), (42Ca, X), (44Ca, X), (46Ca, X), (48Ca, X), (50Ca, X), (52Ca, X), (54Ca, X), (56Ca, X), (58Ca, X), (60Ca, X), (56Ni, X), (58Ni, X), (60Ni, X), (62Ni, X), (64Ni, X), (66Ni, X), (68Ni, X), (70Ni, X), (72Ni, X), (74Ni, X), (76Ni, X), (78Ni, X), (80Ni, X), (82Ni, X), (84Ni, X), (80Zr, X), (82Zr, X), (84Zr, X), (86Zr, X), (88Zr, X), (90Zr, X), (92Zr, X), (94Zr, X), (96Zr, X), (98Zr, X), (100Zr, X), (102Zr, X), (104Zr, X), (106Zr, X), (108Zr, X), (110Zr, X), (112Zr, X), (114Zr, X), (116Zr, X), (118Zr, X), (120Zr, X), (122Zr, X), (100Sn, X), (102Sn, X), (104Sn, X), (106Sn, X), (108Sn, X), (110Sn, X), (112Sn, X), (114Sn, X), (116Sn, X), (118Sn, X), (120Sn, X), (122Sn, X), (124Sn, X), (126Sn, X), (128Sn, X), (130Sn, X), (132Sn, X), (134Sn, X), (136Sn, X), (138Sn, X), (140Sn, X), (156Yb, X), (158Yb, X), (160Yb, X), (162Yb, X), (164Yb, X), (166Yb, X), (168Yb, X), (170Yb, X), (172Yb, X), (174Yb, X), (176Yb, X), (178Yb, X), (180Yb, X), (182Yb, X), (184Yb, X), (186Yb, X), (188Yb, X), (190Yb, X), (192Yb, X), (194Yb, X), (196Yb, X), (190Pb, X), (192Pb, X), (194Pb, X), (196Pb, X), (198Pb, X), (200Pb, X), (202Pb, X), (204Pb, X), (206Pb, X), (208Pb, X), (210Pb, X), (212Pb, X), (214Pb, X), E=1000 MeV, also 200 MeV for proton target; calculated Coulomb breakup cross sections by equivalent-photon method (EPM) with projectile density from SkM*, SLy4, and SkI3 Skyrme interactions, total reaction and Coulomb breakup probabilities, reaction radii versus point matter rms radii. Glauber model with densities from Skyrme-Hartree-Fock+BCS model. 12C(208Pb, 12C), E=200, 1000 MeV; 1H(208Pb, p), E=45-1000 MeV; calculated elastic σ(θ, E) using SkM* interaction, and compared with experimental data. 1H(40Ca, X), (58Ni, X), (90Zr, X), (120Sn, X), (208Pb, X), E=40-1000 MeV; calculated total reaction σ(E) and compared with experimental data.

doi: 10.1103/PhysRevC.93.044611
Citations: PlumX Metrics


2016KA37      Phys.Rev.Lett. 117, 102501 (2016)

R.Kanungo, W.Horiuchi, G.Hagen, G.R.Jansen, P.Navratil, F.Ameil, J.Atkinson, Y.Ayyad, D.Cortina-Gil, I.Dillmann, A.Estrade, A.Evdokimov, F.Farinon, H.Geissel, G.Guastalla, R.Janik, M.Kimura, R.Knobel, J.Kurcewicz, Yu.A.Litvinov, M.Marta, M.Mostazo, I.Mukha, C.Nociforo, H.J.Ong, S.Pietri, A.Prochazka, C.Scheidenberger, B.Sitar, P.Strmen, Y.Suzuki, M.Takechi, J.Tanaka, I.Tanihata, S.Terashima, J.Vargas, H.Weick, J.S.Winfield

Proton Distribution Radii of 12-19C Illuminate Features of Neutron Halos

NUCLEAR REACTIONS Be(20Ne, X), (40Ar, X)12C/13C/14C/15/16C/17C/18C/19C, E=1 GeV/nucleon; measured reaction products; deduced σ, root-mean-square proton and matter radii, neutron skin thickness. Comparison with ab initio calculations.

doi: 10.1103/PhysRevLett.117.102501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2311. Data from this article have been entered in the XUNDL database. For more information, click here.


2016SU16      Phys.Rev. C 94, 011602 (2016)

Y.Suzuki, W.Horiuchi, S.Terashima, R.Kanungo, F.Ameil, J.Atkinson, Y.Ayyad, D.Cortina-Gil, I.Dillmann, A.Estrade, A.Evdokimov, F.Farinon, H.Geissel, G.Guastalla, R.Janik, R.Knoebel, J.Kurcewicz, Yu.A.Litvinov, M.Marta, M.Mostazo, I.Mukha, C.Nociforo, H.J.Ong, S.Pietri, A.Prochazka, C.Scheidenberger, B.Sitar, P.Strmen, M.Takechi, J.Tanaka, I.Tanihata, J.Vargas, H.Weick, J.S.Winfield

Parameter-free calculation of charge-changing cross sections at high energy

NUCLEAR REACTIONS 12C(12C, X), E=937, 943 MeV/nucleon; 12C(13C, X), E=828 MeV/nucleon; 12C(14C, X), E=900 MeV/nucleon; 1H(12C, X), E=926 MeV/nucleon; 1H(13C, X), E=815 MeV/nucleon; 1H(14C, X), E=889 MeV/nucleon; 1H(15C, X), E=896 MeV/nucleon; 1H(16C, X), E=897 MeV/nucleon; 1H(17C, X), E=970 MeV/nucleon; 1H(18C, X), (19C, X), E=886 MeV/nucleon; calculated charge-changing σ (CCCS), proton, neutron, and matter radii using Glauber and eikonal formalism and approximations. Comparison with recent new high-energy data measured at the FRS-GSI facility.

doi: 10.1103/PhysRevC.94.011602
Citations: PlumX Metrics


2015MA48      Phys.Rev.Lett. 115, 102501 (2015)

H.Matsubara, A.Tamii, H.Nakada, T.Adachi, J.Carter, M.Dozono, H.Fujita, K.Fujita, Y.Fujita, K.Hatanaka, W.Horiuchi, M.Itoh, T.Kawabata, S.Kuroita, Y.Maeda, P.Navratil, P.von Neumann-Cosel, R.Neveling, H.Okamura, L.Popescu, I.Poltoratska, A.Richter, B.Rubio, H.Sakaguchi, S.Sakaguchi, Y.Sakemi, Y.Sasamoto, Y.Shimbara, Y.Shimizu, F.D.Smit, K.Suda, Y.Tameshige, H.Tokieda, Y.Yamada, M.Yosoi, J.Zenihiro

Nonquenched Isoscalar Spin-M1 Excitations in sd-Shell Nuclei

NUCLEAR REACTIONS 24Mg, 28Si, 32S, 36Ar(p, p'), E=295 MeV; measured reaction products, Ep, Ip; deduced σ(θ), σ(θ, E), the squared spin M1 nuclear transition matrix elements, no quenching for isoscalar spin M1 transitions, while the matrix elements for isovector spin M1 transitions are quenched by an amount comparable with the analogous Gamow-Teller transitions on those target nuclei. Comparison with no-core shell model (NCSM) calculations.

doi: 10.1103/PhysRevLett.115.102501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2491. Data from this article have been entered in the XUNDL database. For more information, click here.


2015NE13      Phys.Rev. C 92, 024003 (2015)

T.Neff, H.Feldmeier, W.Horiuchi

Short-range correlations in nuclei with similarity renormalization group transformations

NUCLEAR STRUCTURE 4He; calculated relative density and momentum distributions, ground state wave functions, tensor and many body correlations using the no core shell model (NCSM) with the similarity renormalization group (SRG) transformed AV8' and N3LO interactions in two-body approximation. Short-range correlations.

doi: 10.1103/PhysRevC.92.024003
Citations: PlumX Metrics


2014ES07      Phys.Rev.Lett. 113, 132501 (2014)

A.Estrade, R.Kanungo, W.Horiuchi, F.Ameil, J.Atkinson, Y.Ayyad, D.Cortina-Gil, I.Dillmann, A.Evdokimov, F.Farinon, H.Geissel, G.Guastalla, R.Janik, M.Kimura, R.Knobel, J.Kurcewicz, Yu.A.Litvinov, M.Marta, M.Mostazo, I.Mukha, C.Nociforo, H.J.Ong, S.Pietri, A.Prochazka, C.Scheidenberger, B.Sitar, P.Strmen, Y.Suzuki, M.Takechi, J.Tanaka, I.Tanihata, S.Terashima, J.Vargas, H.Weick, J.S.Winfield

Proton Radii of 12-17B Define a Thick Neutron Surface in 17B

NUCLEAR REACTIONS C(10B, X), (11B, X), (12B, X), (13B, X), (14B, X), (15B, X), (16B, X), (17B, X), E ∼ 900 MeV/nucleon; measured reaction products. 10,11,12,13,14,15,16,17B; deduced charge-changing σ, proton and matter radii, neutron skin. Glauber model analysis.

doi: 10.1103/PhysRevLett.113.132501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0749. Data from this article have been entered in the XUNDL database. For more information, click here.


2014HO01      Phys.Rev. C 89, 011304 (2014)

W.Horiuchi, Y.Suzuki

Correlated-basis description of α-cluster and delocalized 0+ states in 16O

NUCLEAR STRUCTURE 16O, 16C; calculated energies of ground states and first excited 0+ state of 16O, density distributions, particle distances, 12C+α spectroscopic amplitudes, and probability distributions of harmonic-oscillator quanta. Role of core-nucleon and nucleon-nucleon potentials. Five-body approach of 12C plus four nucleons with multiparticle-multihole excitations, shape coexistence, and 12C+α clustering. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.011304
Citations: PlumX Metrics


2014HO02      Phys.Rev. C 89, 011601 (2014)

W.Horiuchi, Y.Suzuki, T.Inakura

Probing neutron-skin thickness with total reaction cross sections

NUCLEAR REACTIONS 1H, 12C(14O, X), (16O, X), (18O, X), (20O, X), (22O, X), (24O, X), (18Ne, X), (20Ne, X), (22Ne, X), (24Ne, X), (26Ne, X), (28Ne, X), (30Ne, X), (32Ne, X), (34Ne, X), (20Mg, X), (22Mg, X), (24Mg, X), (26Mg, X), (28Mg, X), (30Mg, X), (32Mg, X), (34Mg, X), (36Mg, X), (38Mg, X), (40Mg, X), (22Si, X), (24Si, X), (26Si, X), (28Si, X), (30Si, X), (32Si, X), (34Si, X), (36Si, X), (38Si, X), (40Si, X), (42Si, X), (44Si, X), (46Si, X), (26S, X), (28S, X), (30S, X), (32S, X), (34S, X), (36S, X), (38S, X), (40S, X), (42S, X), (44S, X), (46S, X), (48S, X), (50S, X), (34Ca, X), (36Ca, X), (38Ca, X), (40Ca, X), (42Ca, X), (44Ca, X), (46Ca, X), (48Ca, X), (50Ca, X), (52Ca, X), (54Ca, X), (56Ca, X), (58Ca, X), (60Ca, X), (62Ca, X), (64Ca, X), (66Ca, X), (68Ca, X), (70Ca, X), (48Ni, X), (50Ni, X), (52Ni, X), (54Ni, X), (56Ni, X), (58Ni, X), (60Ni, X), (62Ni, X), (64Ni, X), (66Ni, X), (68Ni, X), (70Ni, X), (72Ni, X), (74Ni, X), (76Ni, X), (78Ni, X), (80Ni, X), (82Ni, X), (84Ni, X), (86Ni, X), E=100, 120, 140, 160, 200, 300, 425, 550, 800, 1000 MeV; analyzed total reaction σ(E) in the Glauber model with Skyrme-Hartree-Fock method applied to generate the densities; deduced universal expression relating the reaction radius to the point matter rms radius and neutron skin thickness.

doi: 10.1103/PhysRevC.89.011601
Citations: PlumX Metrics


2014HO15      Phys.Rev. C 90, 034001 (2014)

W.Horiuchi, Y.Suzuki

Harmonic-oscillator excitations of precise few-body wave functions

NUCLEAR STRUCTURE 2H, 3H, 4He; calculated occupation probability distributions of the number of total harmonic-oscillator (HO) quanta in correlated Gaussian (CG) basis for ground state and excited states of 4He, ground-state energies, and rms matter radii of two- to four-nucleon systems with different MN, ATS3, G3RS+3NF, and AV8'+3NF potential models. Discussed cluster structure.

doi: 10.1103/PhysRevC.90.034001
Citations: PlumX Metrics


2014IN03      Phys.Rev. C 89, 064316 (2014)

T.Inakura, W.Horiuchi, Y.Suzuki, T.Nakatsukasa

Mean-field analysis of ground-state and low-lying electric dipole strength in 22C

NUCLEAR STRUCTURE 22C; calculated ground-state properties, neutron single-particle energies, rms matter radius, S(2n) using various Skyrme interactions, E1 strength distributions, neutron Fermi level dependence of low-lying E1 strength, dipole and neutron transition densities. Mean-field approach with Skyrme energy density functionals, and random-phase approximation for E1 strength. Importance of core excitations with the 1d5/2 orbit.

doi: 10.1103/PhysRevC.89.064316
Citations: PlumX Metrics


2014MI10      Phys.Rev. C 89, 064303 (2014)

D.Mikami, W.Horiuchi, Y.Suzuki

Electric dipole response of 6He: Halo-neutron and core excitations

NUCLEAR STRUCTURE 4,6He; calculated B(E1), E1 transition density, binding energy, S(2n), rms radii, proton, neutron density distributions, energy convergence, isoscalar and non-isoscalar compressional B(E1) from pigmy to giant dipole resonance energies. Investigation of neutron-halo and core excitations. Full microscopic six-body calculation with wavefunctions for ground and excited states expressed as superposition of explicitly correlated Gaussians. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.064303
Citations: PlumX Metrics


2014TE06      Prog.Theor.Exp.Phys. 2014, 101D02 (2014)

S.Terashima, I.Tanihata, R.Kanungo, A.Estrade, W.Horiuchi, F.Ameil, J.Atkinson, Y.Ayyad, D.Cortina-Gil, I.Dillmann, A.Evdokimov, F.Farinon, H.Geissel, G.Guastalla, R.Janik, M.Kimura, R.Knoebel, J.Kurcewicz, Yu.A.Litvinov, M.Marta, M.Mostazo, I.Mukha, T.Neff, C.Nociforo, H.J.Ong, S.Pietri, A.Prochazka, C.Scheidenberger, B.Sitar, Y.Suzuki, M.Takechi, J.Tanaka, J.Vargas, J.S.Winfield, H.Weick

Proton radius of 14Be from measurement of charge-changing cross sections

NUCLEAR REACTIONS C(7Be, np), (9Be, np), (10Be, np), (11Be, np), (12Be, np), (14Be, np), E=90 MeV/nucleon; measured reaction products; deduced σ, proton and nucleon rms radii. Comparison with Glauber model calculations.

doi: 10.1093/ptep/ptu134
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2350.


2013HO06      Phys.Rev. C 87, 034001 (2013)

W.Horiuchi, Y.Suzuki

Spin-dipole strength functions of 4He with realistic nuclear forces

NUCLEAR STRUCTURE 4He; calculated isoscalar and isovector reduced transition probabilities, spin-dipole (SD) strength functions for discretized continuum 0-, 1- and 2- states, energy-weighted sum rules of SD strength functions. 4H, 4He, 4Li; calculated negative-parity levels, resonances, J, π, isospin, widths. Correlated Gaussians with complex scaling method. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.034001
Citations: PlumX Metrics


2012FU04      Phys.Rev. C 85, 044607 (2012); Erratum Phys.Rev. C 85, 069901 (2012)

T.Furumoto, W.Horiuchi, M.Takashina, Y.Yamamoto, Y.Sakuragi

Global optical potential for nucleus-nucleus systems from 50 MeV/u to 400 MeV/u

NUCLEAR REACTIONS 16O(16O, 16O), E=21.9, 30, 44, 70 MeV/nucleon; 12C(16O, 16O), E=20.6, 38, 93.9 MeV/nucleon; 12C(12C, 12C), E=25, 30, 84.7, 120.75, 135, 200 MeV/nucleon; 28Si, 40Ca, 208Pb(16O, 16O), E=93.9 MeV/nucleon; 60Ni, 120Sn, 208Pb(40Ar, 40Ar), E=44 MeV/nucleon; 40Ca(14C, 14C), (16C, 16C), (18C, 18C), (20C, 20C), (22C, 22C)(18O, 18O), (20O, 20O), (22O, 22O), (24O, 24O), E=100 MeV/nucleon; 40Ca(30Ne, 30Ne), (70Ca, 70Ca), E=100, 200, 300, 400 MeV/nucleon; calculated folding-model potentials (FMPs) elastic scattering cross sections as a function of momentum transfer. New global optical potential (GOP) in 50-400 MeV/nucleon range from microscopic CEG07 folding model with Sao Paulo density. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.044607
Citations: PlumX Metrics


2012HO10      Phys.Rev. C 85, 054002 (2012)

W.Horiuchi, Y.Suzuki, K.Arai

Ab initio study of the photoabsorption of 4He

NUCLEAR REACTIONS 4He(γ, p), (γ, n), E<40 MeV; calculated photoabsorption cross section, E1 transition strength. Ab initio calculation with realistic nuclear forces and explicitly correlated Gaussian functions using complex scaling and microscopic R-matrix methods. Importance of 3H+p and 3He+n cluster configurations. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.054002
Citations: PlumX Metrics


2012HO19      Phys.Rev. C 86, 024614 (2012)

W.Horiuchi, T.Inakura, T.Nakatsukasa, Y.Suzuki

Glauber-model analysis of total reaction cross sections for Ne, Mg, Si, and S isotopes with Skyrme-Hartree-Fock densities

NUCLEAR REACTIONS 12C(17Ne, X), (18Ne, X), (19Ne, X), (20Ne, X), (21Ne, X), (22Ne, X), (23Ne, X), (24Ne, X), (25Ne, X), (26Ne, X), (27Ne, X), (28Ne, X), (29Ne, X), (30Ne, X), (31Ne, X), (32Ne, X), (33Ne, X), (34Ne, X), (20Mg, X), (21Mg, X), (22Mg, X), (23Mg, X), (24Mg, X), (25Mg, X), (26Mg, X), (27Mg, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (36Mg, X), (37Mg, X), (38Mg, X), (24Si, X), (25Si, X), (26Si, X), (27Si, X), (28Si, X), (29Si, X), (30Si, X), (31Si, X), (32Si, X), (33Si, X), (34Si, X), (35Si, X), (36Si, X), (37Si, X), (38Si, X), (39Si, X), (40Si, X), (41Si, X), (42Si, X), (43Si, X), (44Si, X), (45Si, X), (46Si, X), (26S, X), (27S, X), (28S, X), (29S, X), (30S, X), (31S, X), (32S, X), (33S, X), (34S, X), (35S, X), (36S, X), (37S, X), (38S, X), (39S, X), (40S, X), (41S, X), (42S, X), (43S, X), (44S, X), (45S, X), (46S, X), (47S, X), (48S, X), (49S, X), (50S, X), E=240 MeV/nucleon; 12C(13O, X), (14O, X), (15O, X), (16O, X), (17O, X), (18O, X), (19O, X), (20O, X), (21O, X), (22O, X), (23O, X), (24O, X), (17Ne, X), (18Ne, X), (19Ne, X), (20Ne, X), (21Ne, X), (22Ne, X), (23Ne, X), (24Ne, X), (25Ne, X), (26Ne, X), (27Ne, X), (28Ne, X), (29Ne, X), (30Ne, X), (31Ne, X), (32Ne, X), (33Ne, X), (34Ne, X), (20Mg, X), (21Mg, X), (22Mg, X), (23Mg, X), (24Mg, X), (25Mg, X), (26Mg, X), (27Mg, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (36Mg, X), (37Mg, X), (38Mg, X), E=1000 MeV/nucleon; calculated total reaction σ. Glauber model for high-energy nucleus-nucleus collisions with SkM* interaction. Comparison with experimental data. Role of nuclear deformation in determining the matter radius.

NUCLEAR STRUCTURE 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38Mg, 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46Si, 26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50S; calculated point matter, neutron and proton radii, neutron Fermi energy for Ne isotopes, quadrupole deformation parameter. Skyrme-Hartree-Fock calculation SkM* and SLy4 interactions.

doi: 10.1103/PhysRevC.86.024614
Citations: PlumX Metrics


2012HO22      Prog.Theor.Phys.(Kyoto), Suppl. 196, 125 (2012)

W.Horiuchi, Y.Suzuki, K.Arai

Nuclear Reactions with a Realistic Nuclear Interaction Using a Square Integrable Basis

doi: 10.1143/PTPS.196.125
Citations: PlumX Metrics


2012NA21      Prog.Theor.Phys.(Kyoto), Suppl. 196, 117 (2012)

P.Navratil, S.Quaglioni, R.Roth, W.Horiuchi

Ab Initio Calculations of Light-Ion Reactions

NUCLEAR REACTIONS 7Be(p, γ), E<2.5 MeV; 3H(d, n), 3He(d, p), E<1 MeV; calculated S-factors, scattering phase shifts.

doi: 10.1143/PTPS.196.117
Citations: PlumX Metrics


2011FE08      Phys.Rev. C 84, 054003 (2011)

H.Feldmeier, W.Horiuchi, T.Neff, Y.Suzuki

Universality of short-range nucleon-nucleon correlations

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated Argonne v8' potential contours, one-body point densities, two-body density contours in coordinate and momentum space, three-body correlations in the unitary correlation operator method (UCOM) approach. Correlated Gaussian basis approach for the Argonne v8' interaction.

doi: 10.1103/PhysRevC.84.054003
Citations: PlumX Metrics


2011HO09      Int.J.Mod.Phys. E20, 781 (2011)

W.Horiuchi, Y.Suzuki, T.Sato

Electro-weak transitions of 4He using realistic nuclear interactions

doi: 10.1142/S0218301311018666
Citations: PlumX Metrics


2011KA01      Phys.Rev. C 83, 021302 (2011)

R.Kanungo, A.Prochazka, W.Horiuchi, C.Nociforo, T.Aumann, D.Boutin, D.Cortina-Gil, B.Davids, M.Diakaki, F.Farinon, H.Geissel, R.Gernhauser, J.Gerl, R.Janik, B.Jonson, B.Kindler, R.Knobel, R.Krucken, M.Lantz, H.Lenske, Y.Litvinov, B.Lommel, K.Mahata, P.Maierbeck, A.Musumarra, T.Nilsson, C.Perro, C.Scheidenberger, B.Sitar, P.Strmen, B.Sun, Y.Suzuki, I.Szarka, I.Tanihata, Y.Utsuno, H.Weick, M.Winkler

Matter radii of 32-35Mg

NUCLEAR REACTIONS C, H(32Mg, X), (33Mg, X)(34Mg, X)(35Mg, X), E=900 MeV/nucleon, [secondary Mg beams from Be(48Ca, X) primary reaction]; measured interaction cross sections by detecting unreacted Mg particles by Bρ-ΔE-TOF method. 32,33,34,35Mg; deduced matter radii by Glauber model analysis. Comparison with HF and RMF predictions. Neutron skin thickness.

doi: 10.1103/PhysRevC.83.021302
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0643. Data from this article have been entered in the XUNDL database. For more information, click here.


2011KA36      Phys.Rev. C 84, 061304 (2011)

R.Kanungo, A.Prochazka, M.Uchida, W.Horiuchi, G.Hagen, T.Papenbrock, C.Nociforo, T.Aumann, D.Boutin, D.Cortina-Gil, B.Davids, M.Diakaki, F.Farinon, H.Geissel, R.Gernhauser, J.Gerl, R.Janik, O.Jensen, B.Jonson, B.Kindler, R.Knobel, R.Krucken, M.Lantz, H.Lenske, Y.Litvinov, B.Lommel, K.Mahata, P.Maierbeck, A.Musumarra, T.Nilsson, C.Perro, C.Scheidenberger, B.Sitar, P.Strmen, B.Sun, Y.Suzuki, I.Szarka, I.Tanihata, H.Weick, M.Winkler

Exploring the anomaly in the interaction cross section and matter radius of 23O

NUCLEAR REACTIONS C(22O, X), (23O, X), [22O, 23O secondary beams from 9Be(48Ca, X), E=1 GeV/nucleon primary reaction], E=900 MeV/nucleon; measured energy loss, time of flight, magnetic rigidity. 22,23O; deduced interaction cross section, matter radii, neutron skin thickness. Glauber model analysis. Comparison with ab initio coupled-cluster theory.

doi: 10.1103/PhysRevC.84.061304
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0806. Data from this article have been entered in the XUNDL database. For more information, click here.


2011PI10      Nucl.Phys. A865, 43 (2011)

E.C.Pinilla, D.Baye, P.Descouvemont, W.Horiuchi, Y.Suzuki

Tests of the discretized-continuum method in three-body dipole strengths

NUCLEAR STRUCTURE 6He; calculated B(E1), halo structure. α+n+n model, R-matrix, discrete-continuum method, pseudostate method.

doi: 10.1016/j.nuclphysa.2011.06.030
Citations: PlumX Metrics


2010HO03      Phys.Rev. C 81, 024606 (2010)

W.Horiuchi, Y.Suzuki, P.Capel, D.Baye

Probing the weakly-bound neutron orbit of 31Ne with total reaction and one-neutron removal cross sections

NUCLEAR REACTIONS 12C, 208Pb(31Ne, 30Ne), E=40-1000 MeV/nucleon; calculated total σ and one-neutron removal σ, matter density, E1 strengths, parallel-momentum distribution for the elastic breakup of 31Ne using Glauber and eikonal models.

NUCLEAR STRUCTURE 31Ne; calculated single-particle energies and discussed halo structure in the context of one-neutron removal reactions on 31Ne.

doi: 10.1103/PhysRevC.81.024606
Citations: PlumX Metrics


2009AB07      J.Phys.Soc.Jpn. 78, 044201 (2009)

B.Abu-Ibrahim, S.Iwasaki, W.Horiuchi, A.Kohama, Y.Suzuki

Elastic and Total Reaction Cross Sections of Oxygen Isotopes in Glauber Theory

NUCLEAR REACTIONS 16O(p, p), E=317, 1000 MeV; 20,21,23O(p, p), E=300 MeV; calculated σ(θ). 12C(15O, X), (16O, X), (17O, X), (18O, X), (19O, X), (20O, X), (21O, X), (22O, X), (23O, X), (24O, X), E=1 GeV/nucleon; calculated total reaction cross sections.

doi: 10.1143/JPSJ.78.044201
Citations: PlumX Metrics


2009SU01      Nucl.Phys. A818, 188 (2009)

Y.Suzuki, W.Horiuchi

Significance and properties of internucleon correlation functions

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated internucleon correlation functions, related features and their relation to ground state energies.

doi: 10.1016/j.nuclphysa.2008.12.009
Citations: PlumX Metrics


2009SU05      Nucl.Phys. A823, 1 (2009)

Y.Suzuki, W.Horiuchi, K.Arai

Phase-shift calculation using continuum-discretized states

NUCLEAR REACTIONS 1n(p, p), E≈0.5-100 MeV; 4He(n, n), E≈0.2-15 MeV; calculated phase shifts from the spectroscopic amplitude solved with Green's function. Comparison with other models and various potentials.

doi: 10.1016/j.nuclphysa.2009.03.004
Citations: PlumX Metrics


2008AB07      Phys.Rev. C 77, 034607 (2008); Publshiers note Phys.Rev. C 81, 019901 (2010)

B.Abu-Ibrahim, W.Horiuchi, A.Kohama, Y.Suzuki

Reaction cross sections of carbon isotopes incident on a proton

NUCLEAR REACTIONS 1H(12C, X), (13C, X), (14C, X), (15C, X), (16C, X), (17C, X), (18C, X), (19C, X), (20C, X), (22C, X), E=40, 100, 200, 300, 425, 550, 650, 800 MeV/nucleon; calculated reaction σ, density distributions using Glauber model. Comparison with experimental data.

doi: 10.1103/PhysRevC.77.034607
Citations: PlumX Metrics


2008HO08      Phys.Rev. C 78, 034305 (2008)

W.Horiuchi, Y.Suzuki

Inversion doublets of 3N + N cluster structure in excited states of 4He

NUCLEAR STRUCTURE 4He; calculated levels, J, π. Comparison with experimental data.

doi: 10.1103/PhysRevC.78.034305
Citations: PlumX Metrics


2007HO09      Phys.Rev. C 75, 044607 (2007); Erratum Phys.Rev. C 76, 039903 (2007)

W.Horiuchi, Y.Suzuki, B.Abu-Ibrahim, A.Kohama

Systematic analysis of reaction cross sections of carbon isotopes

NUCLEAR REACTIONS 12C(12C, X), (13C, X), (14C, X), (15C, X), (16C, X), (17C, X), (18C, X), (19C, X), (20C, X), (22C, X), E=40-1000 MeV/nucleon; calculated reaction σ. Glauber approximation, eikonal model, comparison with data.

doi: 10.1103/PhysRevC.75.044607
Citations: PlumX Metrics


2007HO15      Phys.Rev. C 76, 024311 (2007)

W.Horiuchi, Y.Suzuki

Momentum distribution and correlation of two-nucleon relative motion in 6He and 6Li

doi: 10.1103/PhysRevC.76.024311
Citations: PlumX Metrics


2007SU12      Nucl.Phys. A790, 223c (2007)

Y.Suzuki, Y.Fujiwara, W.Horiuchi, H.Matsumura, M.Orabi

Dynamics of macroscopic and microscopic three-body systems

NUCLEAR STRUCTURE 3H; calculated binding energies. Quark-model interactions. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.03.039
Citations: PlumX Metrics


2006HO01      Phys.Rev. C 73, 037304 (2006); Erratum Phys.Rev. C 74, 019901 (2006)

W.Horiuchi, Y.Suzuki

Structure of and E2 transition in 16C in a 14C + n + n model

NUCLEAR STRUCTURE 16C; calculated levels, J, π, transition B(E2). Three-body model.

doi: 10.1103/PhysRevC.73.037304
Citations: PlumX Metrics


2006HO15      Phys.Rev. C 74, 034311 (2006)

W.Horiuchi, Y.Suzuki

22C: An s-wave two-neutron halo nucleus

NUCLEAR STRUCTURE 22C; calculated binding energy, density distributions, radii, halo features. Borromean three-body model.

NUCLEAR REACTIONS 12C(12C, X), (20C, X), (22C, X), E=10-1000 MeV/nucleon; calculated reaction σ.

doi: 10.1103/PhysRevC.74.034311
Citations: PlumX Metrics


Back to query form