NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = K.Tsubakihara

Found 12 matches.

Back to query form

2023IW01      J.Nucl.Sci.Technol.(Tokyo) 60, 1 (2023)

O.Iwamoto, N.Iwamoto, S.Kunieda, F.Minato, S.Nakayama, Y.Abe, K.Tsubakihara, S.Okumura, C.Ishizuka, T.Yoshida, S.Chiba, N.Otuka, J.-C.Sublet, H.Iwamoto, K.Yamamoto, Y.Nagaya, K.Tada, C.Konno, N.Matsuda, K.Yokoyama, H.Taninaka, A.Oizumi, M.Fukushima, S.Okita, G.Chiba, S.Sato, M.Ohta, S.Kwon

Japanese evaluated nuclear data library version 5: JENDL-5

NUCLEAR REACTIONS 233,235,238U, 237Np, 238,239,240,242Pu, 241,243Am, 243,244,245,246Cm(n, F), (n, γ), E<20 MeV; analyzed available data; deduced σ, average energies of prompt fission neutrons, prompt neutron multiplicities. Neutron sublibrary for all of stable and unstable isotopes with the half-lives longer than 1 day for Z<101 except 257Es. Comparison with JENDL-4.0, ENDF/B-VIII.0 and EXFOR libraries.

doi: 10.1080/00223131.2022.2141903
Citations: PlumX Metrics

2020OH04      Prog.Theor.Exp.Phys. 2020, 063D01 (2020)

A.Ohnishi, C.Ishizuka, K.Tsubakihara, Y.Hirata

Statistical double Λ hypernuclear formation from Ξ-absorption at rest in light nuclei

NUCLEAR REACTIONS 12C, 14N, 16O(Ξ-, X)6He/10Be/13B, E at rest; analyzed available data; deduced formation probabilities.

doi: 10.1093/ptep/ptaa047
Citations: PlumX Metrics

2019FU03      Phys.Rev. C 99, 034605 (2019)

T.Furumoto, K.Tsubakihara, S.Ebata, W.Horiuchi

Microscopic global optical potential for nucleon-nucleus systems in the energy range 50-400 MeV

NUCLEAR STRUCTURE Z=10, A=17-34; Z=20, A=34-60; Z=40, A=80-120; Z=50, A=100-150; Z=70, A=150-210; Z=82, A=180-245; calculated charge radii using relativistic mean field (RMF) and Hartree-Fock (HF)+BCS densities, and compared with available experimental values. 32,36,40,44,48S, 80,90,100,110Sn; calculated point-neutron, proton, and matter density distributions using RMF and HF+BCS models.

NUCLEAR REACTIONS 10C, 276U(n, X), E=50 MeV; 12C, 242U(p, X), E=400 MeV; calculated real and imaginary parts of central and spin-orbit components of the SF potentials using the HF+BCS densities. 12C, 40Ca, 56Fe, 90Zr, 208Pb(p, X), E=50-400 MeV; calculated total reaction σ(E) using the RMF and HF+BCS densities to construct the SF potential. 12C, 16O, 24Mg, 28Si, 40Ca, 48,50Ti, 52Cr, 56Fe, 58Ni, 64,68Zn, 90Zr, 98Mo, 106Pd, 114Cd, 120Sn, 142Nd, 158Gd, 164Dy, 180Hf, 184W, 194Pt, 208Pb, 238U(p, X), E=60, 65.5, 99 MeV; 12C, 40Ca, 56Fe, 90Zr, 114Cd, 184W, 208Pb, 238U(n, X), E=50-400 MeV; Ni(p, X), E=60 MeV for A=50-80 Ni nuclei; Sn(p, X), E=65.5 MeV for A=100-150 Sn nuclei; 12C, 16O, 28Si, 40Ca, 56Fe, 58Ni, 64Zn, 90Zr, 114Cd, 120Sn, 208Pb, 238U(n, X), E=50, 379 MeV; analyzed total reaction σ(E) using microscopic global optical potential (MGOP1 and MGOP2) models. 12C, 40Ca, 208Pb(n, n), E=65-225; 28Si, 56Fe, 90Zr(n, n), E=55, 65, 75 MeV; 16O, 40Ca, 56Fe, Cd, 120Sn(n, n), E=65-351.5 MeV; 238U(n, n), E=52.5-120 MeV; analyzed σ(E, θ). 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 40Ar, 40,42,44,48Ca, 46,48,50Ti, 50,52,54Cr, 54,56Fe, 58,60,62,64Ni, 90Zr, 98,100Mo, 144,148,150,152,154Sm, 160Gd, 164Dy, 166,168Er, 172,174,176Yb, 178,180Hf, 182,184W, 192Os, 208Pb, 232Th, 238U(p, p), (polarized p, p), E=65 MeV; 12C(p, p), (polarized p, p), E=51.93-340 MeV; 16O(p, p), (polarized p, p), E=61-317.4 MeV; 24Mg, 28,30Si, 32,34S, 40,48Ca(p, p), (polarized p, p), E=51.9-400 MeV; 46,48,50Ti, 50Cr, 54,56Fe, 58,60,62Ni, 66,68Zn, 74,76,78,80,82Se(p, p), (polarized p, p), E=51.9-333 MeV; 88Sr, 90,92Zr(p, p), (polarized p, p), E=57.5-200 MeV; 106,108,110Pd, 112Cd, 116Sn(p, p), E=51-61.4 MeV; 116,118,120,122,124Sn(p, p), (polarized p, p), E=61.5-300 MeV; 148,154Sm, 192Os, 194,198Pt, 204,206,208Pb(p, p), (polarized p, p), E=61.4-400 MeV; 22,24O, 56Ni(p, p), E=46.6-285 MeV; 48S(p, p), E=100-400 MeV; 100,110Zr(p, p), (polarized p, p), E=100-400 MeV; analyzed σ(θ, E), analyzing powers Ay(θ, E), and spin-rotation functions; deduced microscopic global optical potential (MGOP) for nucleon-nucleus systems in a wide range of nuclear mass numbers (A=10-276) and incident energies of 50-400 MeV. Microscopic global optical potential (MGOP1 and MGOP2) models, based on a single-folding (SF) model with the complex G-matrix interaction, with nuclear densities generated from mean-field calculations using relativistic-mean-field (RMF) and Skyrme-Hartree-Fock+BCS approaches.

doi: 10.1103/PhysRevC.99.034605
Citations: PlumX Metrics

2013TS03      Nucl.Phys. A914, 438c (2013)

K.Tsubakihara, A.Ohnishi

Three-body couplings in RMF and its effects on hyperonic star equation of state

NUCLEAR STRUCTURE C, O, Si, Ca, Ni, Zr, Sn, Pb; calculated Λ hypernuclei mass, Q using three-body coupling parameters sets TB-a and TB-b within relativistic mean field. Compared to data.

doi: 10.1016/j.nuclphysa.2013.04.006
Citations: PlumX Metrics

2011MA10      Phys.Rev. C 83, 024312 (2011)

H.Matsumiya, K.Tsubakihara, M.Kimura, A.Dote, A.Ohnishi

Level structure and production cross section of 12 over Ξ Be studied with coupled-channels antisymmetrized molecular dynamics

NUCLEAR STRUCTURE 11,12C, 11B, 12Be; calculated levels, J, π, rms radii, β and γ deformations, density distributions. Coupled-channel antisymmetrized molecular dynamics. Multistrangeness system. Comparison with experimental data and with shell model predictions.

NUCLEAR REACTIONS 12C(π+, K+)12C, E at 1050 MeV/c; 12C(K-, K+)12Be, E at 1800 MeV/c; calculated spectra, differential cross sections for production of hypernuclei 12C and 12Be, spectroscopic factors. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.024312
Citations: PlumX Metrics

2010MA71      Nucl.Phys. A835, 366c (2010)

H.Matsumiya, K.Tsubakihara, M.Isaka, M.Kimura, A.Dote, A.Ohnishi

Spin-dependence of the Ξ-N interaction and the Ξ hypernuclear production spectrum

NUCLEAR STRUCTURE 12Be; calculated Ξ hypernucleus levels, J, π using different interactions. 12C; calculated Λ hypernucleus quadrupole deformation energy.

doi: 10.1016/j.nuclphysa.2010.01.220
Citations: PlumX Metrics

2010OH03      Nucl.Phys. A835, 374c (2010)

A.Ohnishi, K.Tsubakihara, K.Sumiyoshi, C.Ishizuka, S.Yamada, H.Suzuki

EOS of hyperonic matter for core-collapse supernovae

doi: 10.1016/j.nuclphysa.2010.01.222
Citations: PlumX Metrics

2010SA03      Phys.Rev. C 81, 014002 (2010)

P.K.Sahu, K.Tsubakihara, A.Ohnishi

Nuclear matter and finite nuclei in an effective chiral model

NUCLEAR STRUCTURE 208Pb; calculated neutron single-particle energies in the effective chiral models TM1, SCL2, SCL2 and STO.

doi: 10.1103/PhysRevC.81.014002
Citations: PlumX Metrics

2010TS02      Phys.Rev. C 81, 065206 (2010)

K.Tsubakihara, H.Maekawa, H.Matsumiya, A.Ohnishi

Λ hypernuclei and neutron star matter in a chiral SU(3) relativistic mean field model with a logarithmic potential

NUCLEAR STRUCTURE 12C, 16O, 28Si, 40,48Ca, 58Ni, 90Zr, 116Sn, 196,208Pb; calculated binding energies, charge rms radii. 12,13C; calculated separation energies of hypernuclei. Chiral SU(3) symmetric RMF model with SCL3, SCL2, TM1 and TM2 calculations.

doi: 10.1103/PhysRevC.81.065206
Citations: PlumX Metrics

2009OH04      Phys.Rev. C 80, 038202 (2009)

A.Ohnishi, D.Jido, T.Sekihara, K.Tsubakihara

Possibility of an s-wave pion condensate in neutron stars reexamined

doi: 10.1103/PhysRevC.80.038202
Citations: PlumX Metrics

2007MA73      Eur.Phys.J. A 33, 269 (2007)

H.Maekawa, K.Tsubakihara, A.Ohnishi

Analysis of (π±, K+) and (K-, K+) hypernuclear production spectra in distorted-wave impulse approximation

NUCLEAR REACTIONS 28Si(π+, K+), E at 1.2 GeV/c; C, Al, Cu, Ag, Pb(π+, K+), E at 1.65 GeV/c; 12C, 27Al(K-, K+), E at 1.65 GeV/c; calculated hypernuclei production σ(θ, E).

doi: 10.1140/epja/i2007-10479-1
Citations: PlumX Metrics

2007TS08      Eur.Phys.J. A 33, 295 (2007)

K.Tsubakihara, H.Maekawa, A.Ohnishi

Hypernuclei and nuclear matter in a chiral SU(3) RMF model

doi: 10.1140/epja/i2007-10474-6
Citations: PlumX Metrics

Back to query form