NSR Query Results
Output year order : Descending NSR database version of May 20, 2024. Search: Author = C.Ishizuka Found 23 matches. 2024IV01 Phys.Rev. C 109, 034602 (2024) F.A.Ivanyuk, C.Ishizuka, S.Chiba Five-dimensional Langevin approach to fission of atomic nuclei
doi: 10.1103/PhysRevC.109.034602
2024TU02 Eur.Phys.J. A 60, 25 (2024) A.Tudora, K.Fujio, C.Ishizuka, S.Chiba Prompt emission calculations for ^{239}Pu(n_{th}, f) with the DSE model code and a pre-neutron fragment distribution Y(A, TKE) based on the four-dimensional Langevin model NUCLEAR REACTIONS ^{239}Pu(n, F), E thermal; calculated independent fission product yields (FPY) and other distributions of pre- and post-neutron fragments, prompt neutron multiplicity distributions. Comparison with available data.
doi: 10.1140/epja/s10050-024-01232-7
2023EB02 Int.J.Mod.Phys. E32, 2350030 (2023) S.Ebata, S.Okumura, C.Ishizuka, S.Chiba The difference between charge polarizations of fission fragments deduced by the static theoretical model and in the current data library NUCLEAR REACTIONS ^{235}U(n, F), E low; analyzed available data; deduced a theoretical method to deduce the charge polarization (CP) and most probable charge for fission fragments for the selected range of mass numbers based on a quantum many-body framework, namely, a constrained Skyrme Hartree-Fock+BCS model.
doi: 10.1142/S0218301323500301
2023IW01 J.Nucl.Sci.Technol.(Tokyo) 60, 1 (2023) O.Iwamoto, N.Iwamoto, S.Kunieda, F.Minato, S.Nakayama, Y.Abe, K.Tsubakihara, S.Okumura, C.Ishizuka, T.Yoshida, S.Chiba, N.Otuka, J.-C.Sublet, H.Iwamoto, K.Yamamoto, Y.Nagaya, K.Tada, C.Konno, N.Matsuda, K.Yokoyama, H.Taninaka, A.Oizumi, M.Fukushima, S.Okita, G.Chiba, S.Sato, M.Ohta, S.Kwon Japanese evaluated nuclear data library version 5: JENDL-5 NUCLEAR REACTIONS ^{233,235,238}U, ^{237}Np, ^{238,239,240,242}Pu, ^{241,243}Am, ^{243,244,245,246}Cm(n, F), (n, γ), E<20 MeV; analyzed available data; deduced σ, average energies of prompt fission neutrons, prompt neutron multiplicities. Neutron sublibrary for all of stable and unstable isotopes with the half-lives longer than 1 day for Z<101 except ^{257}Es. Comparison with JENDL-4.0, ENDF/B-VIII.0 and EXFOR libraries.
doi: 10.1080/00223131.2022.2141903
2022AN24 Eur.Phys.J. A 58, 254 (2022) D.Antonopoulou, E.Bozzo, C.Ishizuka, D.I.Jones, M.Oertel, C.Providencia, L.Tolos, S.Typel CompOSE: a repository for neutron star equations of state and transport properties
doi: 10.1140/epja/s10050-022-00908-2
2022IS04 Phys.Rev. C 105, 064314 (2022) C.Ishizuka, H.Takemoto, Y.Chiba, A.Ono, N.Itagaki Role of tensor interaction as salvation of cluster structure in ^{44}Ti NUCLEAR STRUCTURE ^{44}Ti; calculated energy curves and rms matter radius for the 0+ state as a function of the distance between ^{4}He and ^{40}Ca using antisymmetrized quasicluster model (AQCM) and iSMT model, with tensor interaction; discussed competition of spin-orbit and tensor effects in the medium-heavy region nuclei. Comparison with theoretical predictions of Brink Model, and with experimental data. Relevance to ongoing experimental projects to investigate knockout α clusters from medium-heavy nuclei.
doi: 10.1103/PhysRevC.105.064314
2022IV05 Nucl.Phys. A1028, 122526 (2022) F.A.Ivanyuk, S.V.Radionov, C.Ishizuka, S.Chiba The memory effects in the Langevin description of nuclear fission
doi: 10.1016/j.nuclphysa.2022.122526
2022KO07 Prog.Theor.Exp.Phys. 2022, 023D02 (2022) T.Kouno, C.Ishizuka, T.Inakura, S.Chiba Pairing strength in the relativistic mean-field theory determined from the fission barrier heights of actinide nuclei and verified by pairing rotation and binding energies NUCLEAR STRUCTURE ^{16}O, ^{40,48}Ca, ^{56,58}Ni, ^{88}Sr, ^{90}Zr, ^{112,124,132}Sn, ^{146}Gd, ^{208}Pb, ^{234,236}U, ^{240,242}Pu, ^{242,244}Cm; calculated binding energies, diffraction radii, surface thickness, pairing rotation energy, fission barriers using BCS pair correlation as a residual interaction in relativistic mean-field theory. Comparison with available data.
doi: 10.1093/ptep/ptab167
2022KO28 Int.J.Mod.Phys. E31, 2250080 (2022) T.Kouno, C.Ishizuka, K.Fujio, T.Inakura, S.Chiba Effects of triaxiality and pairing interaction on fission barriers of actinide nuclei NUCLEAR STRUCTURE ^{232,234,236,238,240}U, ^{232,234}Pu, ^{238,240,242,244}Pu, ^{242,244,246,248}Cm; calculated fission barriers. Comparison with available data.
doi: 10.1142/S021830132250080X
2022TY01 Eur.Phys.J. A 58, 221 (2022) S.Typel, M.Oertel, T.Klahn, D.Chatterjee, V.Dexheimer, C.Ishizuka, M.Mancini, J.Novak, H.Pais, C.Providencia, Ad.R.Raduta, M.Servillat, L.Tolos, for the CompOSE Core Collaboration CompOSE reference manual
doi: 10.1140/epja/s10050-022-00847-y
2021SH36 Phys.Rev. C 104, 054609 (2021) K.Shimada, C.Ishizuka, F.A.Ivanyuk, S.Chiba Dependence of total kinetic energy of fission fragments on the excitation energy of fissioning systems NUCLEAR REACTIONS ^{235}U(n, F)^{236}U^{*,239}Pu(n, F)^{240}Pu^{*}, E=thermal MeV; calculated mass distribution of fission fragments, fission product yields, and compared with experimental results and with data in JENDL/FPY-2011 library. ^{235}U(n, F)^{236}U^{*,239}Pu(n, F)^{240}Pu^{*}, E<50 MeV; calculated average total kinetic energy (TKE) of fission fragments, quadrupole moment (Q_{20}) of fission fragments just after scission, dependence of average quadrupole moment (Q_{20}) and average octupole (Q_{30}) of fission fragments, distance between the center of mass of the nascent fragments just after scission using method based on the four-dimensional Langevin equations. Comparison with experimental data. Relevance to decrease of average total kinetic energy of fission fragments as the excitation energy of the compound nuclei increases, as indicated by experimental data of neutron-induced fission reactions.
doi: 10.1103/PhysRevC.104.054609
2020IS01 Phys.Rev. C 101, 011601 (2020) C.Ishizuka, X.Zhang, M.D.Usang, F.A.Ivanyuk, S.Chiba Effect of the doubly magic shell closures in ^{132}Sn and ^{208}Pb on the mass distributions of fission fragments of superheavy nuclei NUCLEAR STRUCTURE ^{274}Hs, ^{280}Ds, ^{286}Cn, ^{292}Fl, ^{296}Lv, ^{294}Og, ^{302}120, ^{306}122; calculated fission fragment mass distributions for the excitation energy 10 and 30 MeV as a function of fragment mass number; deduced effect of doubly magic nuclei 132Sn and 208Pb on the mass distributions of fission fragments of superheavy nuclei ^{236}U, ^{240}Pu, ^{244}Cm, ^{252}Cf, ^{256,257,258,259,264}Fm, ^{260}Md, ^{259}Lr, ^{274}Hs, ^{286}Cn, ^{292}Fl, ^{296}Lv, ^{294}Og, ^{302}120, ^{306}122; calculated distribution of quadrupole deformation Q_{20} as function of fission fragment mass number. Calculations used dynamical four-dimensional Langevin approach.
doi: 10.1103/PhysRevC.101.011601
2020OH04 Prog.Theor.Exp.Phys. 2020, 063D01 (2020) A.Ohnishi, C.Ishizuka, K.Tsubakihara, Y.Hirata Statistical double Λ hypernuclear formation from Ξ-absorption at rest in light nuclei NUCLEAR REACTIONS ^{12}C, ^{14}N, ^{16}O(Ξ^{-}, X)^{6}He/^{10}Be/^{13}B, E at rest; analyzed available data; deduced formation probabilities.
doi: 10.1093/ptep/ptaa047
2018IV04 Phys.Rev. C 97, 054331 (2018) F.A.Ivanyuk, C.Ishizuka, M.D.Usang, S.Chiba Temperature dependence of shell corrections NUCLEAR STRUCTURE ^{236}U; calculated temperature dependence of shell corrections and averaged in deformation to the energy, entropy and free energy for protons and neutrons of ^{236}U g.s. with and without pairing effects using mean-field approximation; deduced more accurate approximation for the shell corrections to energy and free energy. A=50-250; calculated pairing critical temperature for protons and neutrons along the β-stability line. NUCLEAR REACTIONS ^{232}Th, ^{238}U(n, F), E=32.8, 45.3, 59.9 MeV; calculated fission fragment mass distributions using new shell corrections to the liquid drop energy and deformed Woods-Saxon potential. Comparison with experimental values and predictions from previous shell corrections.
doi: 10.1103/PhysRevC.97.054331
2017IS16 Phys.Rev. C 96, 064616 (2017) C.Ishizuka, M.D.Usang, F.A.Ivanyuk, J.A.Maruhn, K.Nishio, S.Chiba Four-dimensional Langevin approach to low-energy nuclear fission of ^{236}U NUCLEAR REACTIONS ^{235}U(n, F), E=14 MeV; ^{257}Fm(n, F), E=thermal; calculated mass distribution of fission fragments, fission events on the mass-TKE plane, TKE distributions. ^{235}U(n, F), E=0.5, 3.5, 5.5, 8.5, 13.5 MeV; calculated TKE of fission fragments, contour map of prescission kinetic energy as a function of mass number of fission fragments, distribution of deformation parameter in its dependence on the mass number. Four-dimensional (4D) Langevin model with infinite-depth two-center shell-model (TCSM) potential and the finite-depth two-center Woods-Saxon (TCWS) potential. Comparison with experimental data in JENDL/FPY-2011 data library.
doi: 10.1103/PhysRevC.96.064616
2017US02 Phys.Rev. C 96, 064617 (2017) M.D.Usang, F.A.Ivanyuk, C.Ishizuka, S.Chiba Analysis of the total kinetic energy of fission fragments with the Langevin equation NUCLEAR REACTIONS ^{235}U(n, F), E=14 MeV; ^{257}Fm(n, F), E=thermal; ^{231}Pa, ^{238}U, ^{239}Pu(n, F), E<45 MeV; calculated mass distribution and the total kinetic energy (TKE) of fission fragments at various excitation energies within the three-dimensional Langevin approach with microscopic transport coefficients; deduced systematic trends of TKE with Z^{2}/A^{1/3} of the fissioning system. Comparison with evaluated post-neutron distributions data stored in JENDL library.
doi: 10.1103/PhysRevC.96.064617
2016US04 Phys.Rev. C 94, 044602 (2016) M.D.Usang, F.A.Ivanyuk, C.Ishizuka, S.Chiba Effects of microscopic transport coefficients on fission observables calculated by the Langevin equation NUCLEAR STRUCTURE ^{234,236}U, ^{240}Pu; calculated fission fragment mass distribution, total kinetic energy, microscopic transport coefficients for fission of compound nuclei at an excitation energy of 20 MeV. Three-dimensional Langevin model. Comparison with experimental data.
doi: 10.1103/PhysRevC.94.044602
2010OH03 Nucl.Phys. A835, 374c (2010) A.Ohnishi, K.Tsubakihara, K.Sumiyoshi, C.Ishizuka, S.Yamada, H.Suzuki EOS of hyperonic matter for core-collapse supernovae
doi: 10.1016/j.nuclphysa.2010.01.222
2010SU32 Nucl.Phys. A835, 295c (2010) K.Sumiyoshi, K.Nakazato, C.Ishizuka, A.Ohnishi, S.Yamada, H.Suzuki Emergence of hyperons in failed supernovae with short neutrino bursts
doi: 10.1016/j.nuclphysa.2010.01.205
2004IS18 Prog.Theor.Phys.(Kyoto), Suppl. 156, 152 (2004) C.Ishizuka, A.Ohnishi, K.Sumiyoshi, S.Yamada Finite Temperature Effects on Supernova Explosion Energy and Hyperon Composition
doi: 10.1143/PTPS.156.152
2003IS08 Nucl.Phys. A723, 517 (2003) C.Ishizuka, A.Ohnishi, K.Sumiyoshi Liquid-gas phase transition of supernova matter and its relation to nucleosynthesis
doi: 10.1016/S0375-9474(03)01324-1
2002IS14 Prog.Theor.Phys.(Kyoto), Suppl. 146, 373 (2002) C.Ishizuka, A.Ohnishi, K.Sumiyoshi Fragment Distribution in Coexistence Phase of Supernova Matter
doi: 10.1143/PTPS.146.373
2002IS15 Prog.Theor.Phys.(Kyoto), Suppl. 146, 569 (2002) C.Ishizuka, A.Ohnishi, K.Sumiyoshi Nucleosynthesis and Characteristics in Liquid-Gas Coexistence Phase of Supernova Matter
doi: 10.1143/PTPS.146.569
Back to query form |