NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = F.A.Ivanyuk

Found 56 matches.

Back to query form

2024IV01      Phys.Rev. C 109, 034602 (2024)

F.A.Ivanyuk, C.Ishizuka, S.Chiba

Five-dimensional Langevin approach to fission of atomic nuclei

doi: 10.1103/PhysRevC.109.034602
Citations: PlumX Metrics

2022IV05      Nucl.Phys. A1028, 122526 (2022)

F.A.Ivanyuk, S.V.Radionov, C.Ishizuka, S.Chiba

The memory effects in the Langevin description of nuclear fission

doi: 10.1016/j.nuclphysa.2022.122526
Citations: PlumX Metrics

2021SH36      Phys.Rev. C 104, 054609 (2021)

K.Shimada, C.Ishizuka, F.A.Ivanyuk, S.Chiba

Dependence of total kinetic energy of fission fragments on the excitation energy of fissioning systems

NUCLEAR REACTIONS 235U(n, F)236U*,239Pu(n, F)240Pu*, E=thermal MeV; calculated mass distribution of fission fragments, fission product yields, and compared with experimental results and with data in JENDL/FPY-2011 library. 235U(n, F)236U*,239Pu(n, F)240Pu*, E<50 MeV; calculated average total kinetic energy (TKE) of fission fragments, quadrupole moment (Q20) of fission fragments just after scission, dependence of average quadrupole moment (Q20) and average octupole (Q30) of fission fragments, distance between the center of mass of the nascent fragments just after scission using method based on the four-dimensional Langevin equations. Comparison with experimental data. Relevance to decrease of average total kinetic energy of fission fragments as the excitation energy of the compound nuclei increases, as indicated by experimental data of neutron-induced fission reactions.

doi: 10.1103/PhysRevC.104.054609
Citations: PlumX Metrics

2020IS01      Phys.Rev. C 101, 011601 (2020)

C.Ishizuka, X.Zhang, M.D.Usang, F.A.Ivanyuk, S.Chiba

Effect of the doubly magic shell closures in 132Sn and 208Pb on the mass distributions of fission fragments of superheavy nuclei

NUCLEAR STRUCTURE 274Hs, 280Ds, 286Cn, 292Fl, 296Lv, 294Og, 302120, 306122; calculated fission fragment mass distributions for the excitation energy 10 and 30 MeV as a function of fragment mass number; deduced effect of doubly magic nuclei 132Sn and 208Pb on the mass distributions of fission fragments of superheavy nuclei 236U, 240Pu, 244Cm, 252Cf, 256,257,258,259,264Fm, 260Md, 259Lr, 274Hs, 286Cn, 292Fl, 296Lv, 294Og, 302120, 306122; calculated distribution of quadrupole deformation Q20 as function of fission fragment mass number. Calculations used dynamical four-dimensional Langevin approach.

doi: 10.1103/PhysRevC.101.011601
Citations: PlumX Metrics

2020LI21      Phys.Rev. C 101, 064616 (2020)

V.L.Litnevsky, F.A.Ivanyuk, G.I.Kosenko, S.Chiba

Formation of superheavy nuclei in 36S 238U and 64Ni 238U reactions

NUCLEAR REACTIONS 238U(36S, X)274Hs*, E*=35.8, 41.6, 47.3, 57.7 MeV; 238U(64Ni, X)302120*, E*=23.2, 33.5, 45.2, 64.1 MeV; calculated capture, fusion, fission, and evaporation residue formation σ(E), and neutron emission probabilities. Comparison with experimental results for 238U+36S, and with other theoretical calculations for 238U+64Ni.

doi: 10.1103/PhysRevC.101.064616
Citations: PlumX Metrics

2019CA15      Phys.Rev. C 99, 064606 (2019)

N.Carjan, F.A.Ivanyuk, Yu.Ts.Oganessian

Fission of superheavy nuclei: Fragment mass distributions and their dependence on excitation energy

RADIOACTIVITY 252,254,256,258,260,262,264,266,268,270No, 264,266,268,270,272,274,276,278Hs, 276,278,280,282,284,286Cn, 290,291,292,293Lv, 268,270,272,274,276,278,280,282,284,288,292Ds, 254,256,258,260,262,264,266,268,270Rf, 272,274,276,280,284,285,286,287,288,292,296,298,300,304Fl, 276,280,284,288,292,294,296,300,304Og(SF); calculated average mass of light and heavy fission fragments, fission fragment mass distribution, average total kinetic energy of fission fragments, second moments of the total kinetic energy distribution of fission using a prescission point model.

doi: 10.1103/PhysRevC.99.064606
Citations: PlumX Metrics

2019LI27      Phys.Rev. C 99, 054624 (2019)

V.L.Litnevsky, F.A.Ivanyuk, G.I.Kosenko, S.Chiba

Description of the mass-asymmetric fission of the Pt isotopes, obtained in the reaction 36Ar + 142Nd within the two-stage fusion-fission model

NUCLEAR REACTIONS 142Nd(36Ar, X)178Pt*,142Nd(36Ar, xn), E(cm)=122.78, 134.68, 142.58 MeV; calculated potential energy of projectile-target system, partial σ(E), fission fragment mass distribution, mass-energy distribution of fission events, and deformation energy and potential energy surface of 178Pt compound nucleus before neutron evaporation, neutron evaporation probability. Two-stage dynamical stochastic model. Comparison with experimental data. 178Pt; calculated deformation and potential energy surfaces.

doi: 10.1103/PhysRevC.99.054624
Citations: PlumX Metrics

2018IV04      Phys.Rev. C 97, 054331 (2018)

F.A.Ivanyuk, C.Ishizuka, M.D.Usang, S.Chiba

Temperature dependence of shell corrections

NUCLEAR STRUCTURE 236U; calculated temperature dependence of shell corrections and averaged in deformation to the energy, entropy and free energy for protons and neutrons of 236U g.s. with and without pairing effects using mean-field approximation; deduced more accurate approximation for the shell corrections to energy and free energy. A=50-250; calculated pairing critical temperature for protons and neutrons along the β-stability line.

NUCLEAR REACTIONS 232Th, 238U(n, F), E=32.8, 45.3, 59.9 MeV; calculated fission fragment mass distributions using new shell corrections to the liquid drop energy and deformed Woods-Saxon potential. Comparison with experimental values and predictions from previous shell corrections.

doi: 10.1103/PhysRevC.97.054331
Citations: PlumX Metrics

2017CA29      Nucl.Phys. A968, 453 (2017)

N.Carjan, F.A.Ivanyuk, Yu.Ts.Oganessian

Pre-scission model predictions of fission fragment mass distributions for super-heavy elements

RADIOACTIVITY 279,280,281Ds, 281Rg, 282,283,284Cn, 284,285,286Fl[from superheavies produced in 48Ca impacting neutron-rich transuranium targets and sequentiual α-decays]; calculated relative yields from 279,281Ds, 281Rg, 282,284Cn vs mass number and vs TKE, potential energy surfaces, deformation of 280Ds and 284Cn. Fl, Lv, Og, Z=126(SF); calculated fragment mass distribution. 284,304Fl, 308,328126; calculated potential energy surface, deformation vs fragment mass. 274,276,278,280,282Fl; calculated yields vs fragment mass, potential energy surface, deformation. 252,254,256,258,262No; calculated fragment mass distribution, yield vs TKER; compared with data; deduced effect of octupole deformation on TKE and mass distribution. Calculations done using Strutinsky prescription, nuclear shapes prior to fission descibed using Cassinian ovals. Deformation described using α1, α3, α4 and α6 parameters.

doi: 10.1016/j.nuclphysa.2017.06.048
Citations: PlumX Metrics

2017IS16      Phys.Rev. C 96, 064616 (2017)

C.Ishizuka, M.D.Usang, F.A.Ivanyuk, J.A.Maruhn, K.Nishio, S.Chiba

Four-dimensional Langevin approach to low-energy nuclear fission of 236U

NUCLEAR REACTIONS 235U(n, F), E=14 MeV; 257Fm(n, F), E=thermal; calculated mass distribution of fission fragments, fission events on the mass-TKE plane, TKE distributions. 235U(n, F), E=0.5, 3.5, 5.5, 8.5, 13.5 MeV; calculated TKE of fission fragments, contour map of prescission kinetic energy as a function of mass number of fission fragments, distribution of deformation parameter in its dependence on the mass number. Four-dimensional (4D) Langevin model with infinite-depth two-center shell-model (TCSM) potential and the finite-depth two-center Woods-Saxon (TCWS) potential. Comparison with experimental data in JENDL/FPY-2011 data library.

doi: 10.1103/PhysRevC.96.064616
Citations: PlumX Metrics

2017PO06      Eur.Phys.J. A 53, 59 (2017)

K.Pomorski, F.A.Ivanyuk, B.Nerlo-Pomorska

Mass distribution of fission fragments within the Born-Oppenheimer approximation

NUCLEAR STRUCTURE 236U; calculated potential energy surface, deformation of fissioning nucleus, neck radius, fission probability using approximate solution of collective Hamiltonian describing the fission process. Compared to data.

NUCLEAR REACTIONS 235U(n, f), E=thermal; calculated fission fragment yields using approximate solution of collective Hamiltonian describing the fission process. Compared to data.

doi: 10.1140/epja/i2017-12250-5
Citations: PlumX Metrics

2017US02      Phys.Rev. C 96, 064617 (2017)

M.D.Usang, F.A.Ivanyuk, C.Ishizuka, S.Chiba

Analysis of the total kinetic energy of fission fragments with the Langevin equation

NUCLEAR REACTIONS 235U(n, F), E=14 MeV; 257Fm(n, F), E=thermal; 231Pa, 238U, 239Pu(n, F), E<45 MeV; calculated mass distribution and the total kinetic energy (TKE) of fission fragments at various excitation energies within the three-dimensional Langevin approach with microscopic transport coefficients; deduced systematic trends of TKE with Z2/A1/3 of the fissioning system. Comparison with evaluated post-neutron distributions data stored in JENDL library.

doi: 10.1103/PhysRevC.96.064617
Citations: PlumX Metrics

2016LI32      Phys.Rev. C 93, 064606 (2016)

V.L.Litnevsky, G.I.Kosenko, F.A.Ivanyuk

Description of fusion and evaporation residue formation cross sections in reactions leading to the formation of element Z=122 within the Langevin approach

NUCLEAR REACTIONS 248Cm(58Fe, xn), 244Pu(64Ni, xn), 208Pb(90Zr, xn), E not given; calculated cross sections of touching, fusion, and evaporation residue formation, dependence of the touching and fusion cross sections on the angular momentum in connection with the synthesis of Z=122 isotopes. Dynamical multidimensional stochastic approach, based on Langevin equations.

doi: 10.1103/PhysRevC.93.064606
Citations: PlumX Metrics

2016LI55      Phys.Atomic Nuclei 79, 342 (2016); Yad.Fiz. 79, 236 (2016)

V.L.Litnevsky, G.I.Kosenko, F.A.Ivanyuk

Allowance for the tunnel effect in the entrance channel of fusion-fission reactions

NUCLEAR REACTIONS 238U, 244Pu, 248Cm(48Ca, x), E*=20-50 MeV;248Cm(54Cr, x), E*=20-50 MeV;248Cm(58Fe, x), E*=20-50 MeV;208Pb(90Zr, x), E=20-50 MeV;244Pu(64Ni, x), E*=20-50 MeV;248Cm(58Fe, x), E*=20-50 MeV; calculated grazing σ, capture σ using two-stage model with and without allowance for tunelling effect. Compared with data. 208Pb(48Ca, x), E*=20-50 MeV; calculated capture σ. Compared with data. Deduced possibility for tunelling effect.

doi: 10.1134/S1063778816020113
Citations: PlumX Metrics

2016US04      Phys.Rev. C 94, 044602 (2016)

M.D.Usang, F.A.Ivanyuk, C.Ishizuka, S.Chiba

Effects of microscopic transport coefficients on fission observables calculated by the Langevin equation

NUCLEAR STRUCTURE 234,236U, 240Pu; calculated fission fragment mass distribution, total kinetic energy, microscopic transport coefficients for fission of compound nuclei at an excitation energy of 20 MeV. Three-dimensional Langevin model. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.044602
Citations: PlumX Metrics

2015CA19      Nucl.Phys. A942, 97 (2015)

N.Carjan, F.A.Ivanyuk, Yu.Oganessian, G.Ter-Akopian

Fission of transactinide elements described in terms of generalized Cassinian ovals: Fragment mass and total kinetic energy distributions

NUCLEAR STRUCTURE 254,264Fm, 254,264Rf; calculated potential energy surface vs mass asymmetry and elongation, scission shapes at fission. 246,248,250,252,254,256,258,260,262,264Fm, 254,256,258,260,262,264,266,268Rf; calculated mass distribution and total kinetic energy distribution. 252,254,256,258,260,262,264No, 258,260,262,264,266,268Sg; calculated mass distribution. Generalized Cassinian ovals.

doi: 10.1016/j.nuclphysa.2015.07.019
Citations: PlumX Metrics

2014IV06      Phys.Rev. C 90, 054607 (2014)

F.A.Ivanyuk, S.Chiba, Y.Aritomo

Scission-point configuration within the two-center shell model shape parameterization

NUCLEAR REACTIONS 236U(n, F), E=thermal; calculated total deformation energy, shell component of scission point deformation energy, total energy (liquid drop plus shell correction) at the scission point, deformation energy before and after scission as function of elongation and heavy fragment mass number, mass distribution of fission fragments, excitation energy available for prompt neutron emission. 233Th, 236U, 240Pu, 246Cm(n, F), E=thermal; calculated total kinetic energies (TKEs), total excitation energies during the neck rupture. 232Th, 233,235,238U, 237Np, 239,240,241Pu, 241,243Am, 245Cm(n, F), E not given; calculated total neutron multiplicity. Optimal shape descriptions for fissioning systems. Two-center shell model parameterization for scission-point configuration. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.054607
Citations: PlumX Metrics

2014IV08      Phys.Scr. 89, 054012 (2014)


The shell effects in the scission-point configuration of fissioning nuclei

NUCLEAR STRUCTURE 236U; calculated energy scission point surface vs deformation using macroscopic-microscopic model.

NUCLEAR REACTIONS 235U(n, F), E=thermal; calculated fission fragments total kinetic energy vs mass number. Compared with available data.

doi: 10.1088/0031-8949/89/5/054012
Citations: PlumX Metrics

2014LI06      Phys.Rev. C 89, 034626 (2014)

V.L.Litnevsky, V.V.Pashkevich, G.I.Kosenko, F.A.Ivanyuk

Description of synthesis of super-heavy elements within the multidimensional stochastic model

NUCLEAR REACTIONS 238U(64Ni, xn), E(cm)=250-350 MeV; 244Pu(58Fe, xn), E=230-350 MeV; 248Cm(48Ca, xn), E=180-280 MeV; 248Cm(54Cr, xn), E(cm)=225-350 MeV; calculated capture σ(E), yield of quasi-fission fragments in the fission of Z=116 isotopes produced in 248Cm+48Ca reaction, fission barrier heights of Z=116 and 120 systems, crossing fission barrier σ(E), evaporation residue σ(E) for Z=116 and 120 superheavy elements. Two-stage reaction model for fusion-fission processes. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034626
Citations: PlumX Metrics

2013IV04      Phys.Scr. T154, 014021 (2013)

F.A.Ivanyuk, K.Pomorski

On the Poincare instability of a rotating liquid drop

NUCLEAR STRUCTURE 58Ni; calculated yrast lines and dependencies; deduced break-up of reflection symmetric shapes appears in light nuclei at high angular momenta when non-axial degrees of freedom are taken into account. The optimal shape theory of Strutinsky.

doi: 10.1088/0031-8949/2013/T154/014021
Citations: PlumX Metrics

2012LI13      Phys.Atomic Nuclei 75, 37 (2012); Yad.Fiz. 75, 39 (2012)

V.L.Litnevsky, G.I.Kosenko, F.A.Ivanyuk, V.V.Pashkevich

Allowance for the shell structure of the 10042Mo and 11046Pd nuclei in the synthesis of 20084Po, 21088Ra, and 22092U

NUCLEAR REACTIONS 100Mo(100Mo, X)200Po, 100Mo(110Pd, X)210Ra, 110Pd(110Pd, X)220U, E(cm) < 300 MeV; calculated potential energy surfaces, σ, touching probabilities. Fusion-fission reactions involving nuclei deformed in the ground state.

doi: 10.1134/S1063778812010115
Citations: PlumX Metrics

2012LI17      Phys.Rev. C 85, 034602 (2012)

V.L.Litnevsky, V.V.Pashkevich, G.I.Kosenko, F.A.Ivanyuk

Influence of the shell structure of colliding nuclei in fusion-fission reactions

NUCLEAR REACTIONS 208Pb(16O, X)224Th, 208Pb(18O, X)226Th, E(cm)=70-96 MeV; 208Pb(48Ca, X)256No, E(cm)=170-205 MeV; calculated fusion and evaporation residue cross sections, yield of fission fragments, mass-energy distribution of fission fragments. Two-stage reaction model for fusion-fission process, Langevin equations for the collective coordinates. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034602
Citations: PlumX Metrics

2012LI55      Phys.Atomic Nuclei 75, 1500 (2012); Yad.Fiz. 75, 1579 (2012)

V.L.Litnevsky, G.I.Kosenko, F.A.Ivanyuk, V.V.Pashkevich

Allowance for the orientation of colliding ions in describing the synthesis of heavy nuclei

NUCLEAR REACTIONS 100Mo(100Mo, X)200Po, 208Pb(16O, X)224Th, 100Mo(110Pd, X)210Ra, 110Pd(110Pd, X)220U, E(cm)<95 MeV; analyzed available data; calculated σ. Comparison with available data.

doi: 10.1134/S1063778812110142
Citations: PlumX Metrics

2010LI50      Iader.Fiz.Enerh. 11, 341 (2010); Nuc.phys.atom.energ. 11, 341 (2010)

V.L.Litnevsky, F.A.Ivanyuk, G.I.Kosenko, V.V.Pashkevich

The fusion of heavy ions within the two step reaction model

NUCLEAR REACTIONS 100Mo(100Mo, X)200Po, 208Pb(18O, X)226Th, E(cm)<260 MeV; calculated deformation energy, touching probability. Two stage model of fusion-fission reactions is extended by the account of the shell structure of colliding nuclei.

2009IV01      Phys.Rev. C 79, 054327 (2009)

F.A.Ivanyuk, K.Pomorski

Optimal shapes and fission barriers of nuclei within the liquid drop model

NUCLEAR STRUCTURE Z=35-110; calculated fission barriers, shapes and heights using Lublin-Strasbourg drop model calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054327
Citations: PlumX Metrics

2008KO30      Phys.Atomic Nuclei 71, 2052 (2008); Yad.Fiz. 71, 2086 (2008)

G.I.Kosenko, F.A.Ivanyuk, V.V.Pashkevich, D.V.Dinner

Application of a two-step dynamical model to calculating properties of fusion-fission reactions

NUCLEAR REACTIONS 244Pu(48Ca, X), E=238 MeV; calculated partial touching cross sections.

doi: 10.1134/S1063778808120065
Citations: PlumX Metrics

2007IV02      Iader.Fiz.Enerh. 8 no.4, 19 (2007); Nuc.phys.atom.energ. 8, no.4, 19 (2007)


The transport coefficients for slow collective motion

NUCLEAR STRUCTURE 224Th, 292Fl; calculated friction coefficients for collective motion, dependence on nuclear temperature and deformation parameters, effects of rotation and potential energy.

doi: 10.15407/jnpae
Citations: PlumX Metrics

2005AB31      Iader.Fiz.Enerh. 6 no.2, 7 (2005)

V.I.Abrosimov, F.A.Ivanyuk

V. M. Strutinsky (1929 - 1993)

doi: 10.15407/jnpae
Citations: PlumX Metrics

2005IV03      Phys.Rev.Lett. 95, 082501 (2005)

F.A.Ivanyuk, W.Norenberg

Diabatic States from Nodal Structure Conservation

NUCLEAR STRUCTURE 224Th; calculated single-particle energies and spreading widths vs deformation. Diabatic states, Woods-Saxon potential.

doi: 10.1103/PhysRevLett.95.082501
Citations: PlumX Metrics

2003HO05      Phys.Rev.Lett. 90, 132701 (2003)

H.Hofmann, F.A.Ivanyuk

Mean First Passage Time for Nuclear Fission and the Emission of Light Particles

doi: 10.1103/PhysRevLett.90.132701
Citations: PlumX Metrics

2003HO39      Acta Phys.Hung.N.S. 18, 377 (2003)

H.Hofmann, F.A.Ivanyuk

Time Scales for Fission at Finite Temperature

doi: 10.1556/APH.18.2003.2-4.45
Citations: PlumX Metrics

2002KO47      Yad.Fiz. 65, 1629 (2002); Phys.Atomic Nuclei 65, 1588 (2002)

G.I.Kosenko, F.A.Ivanyuk, V.V.Pashkevich

Multidimensional Langevin Approach to Describing the 18O + 208Pb Fusion-Fission Reaction

NUCLEAR REACTIONS 208Pb(18O, X), E(cm) ≈ 70-100 MeV; calculated potential energy features, fusion σ, fission fragment mass distributions, related features. Multi-step approach, Langevin equations.

doi: 10.1134/1.1508690
Citations: PlumX Metrics

2002KO72      J.Nucl.Radiochem.Sci. 3, No 1, 71 (2002)

G.I.Kosenko, F.A.Ivanyuk, V.V.Pashkevich

The Multi-dimensional Langevin Approach to the Description of Fusion-fission Reaction

NUCLEAR REACTIONS 208Pb(18O, X), E(cm) ≈ 70-95 MeV; calculated fusion, fission σ, fragment mass distributions, neutron multiplicity. Comparison with data.

2002RA24      Yad.Fiz. 65, 856 (2002); Phys.Atomic Nuclei 65, 824 (2002)

S.V.Radionov, F.A.Ivanyuk, V.M.Kolomietz, A.G.Magner

Fission Dynamics of Excited Nuclei within the Liquid-Drop Model

NUCLEAR STRUCTURE 236U; calculated fission fragments kinetic energies, scission time, other fission dynamics features for decay of excited nucleus. Liquid-drop model.

doi: 10.1134/1.1481473
Citations: PlumX Metrics

2001HO31      Phys.Rev. C64, 054316 (2001)

H.Hofmann, F.A.Ivanyuk, C.Rummel, S.Yamaji

Nuclear Fission: The ' onset of dissipation ' from a microscopic point of view

NUCLEAR STRUCTURE 224Th; calculated temperature dependence of fission rate, related parameters. Semianalytical expressions.

doi: 10.1103/PhysRevC.64.054316
Citations: PlumX Metrics

2001IV05      Nucl.Phys. A694, 295 (2001)

F.A.Ivanyuk, S.Yamaji

The Effect of Nuclear Rotation on the Collective Transport Coefficients

NUCLEAR STRUCTURE 224Th; calculated friction and mass coefficients for collective motion, effects of rotation and potential energy.

doi: 10.1016/S0375-9474(01)00990-3
Citations: PlumX Metrics

2001RA46      Iader.Fiz.Enerh. 2 no 1, 19 (2001); Nuc.phys.atom.energ. 2, no.1, 28 (2001)

S.V.Radionov, F.A.Ivanyuk, V.M.Kolomietz, A.G.Magner

Viscosity effects at the nuclear descent from the fission barrier

NUCLEAR STRUCTURE 236U; calculated scission time, time evolution for fissioning system, other fission dynamics features for decay of excited nucleus. Liquid-drop model.

doi: 10.15407/jnpae
Citations: PlumX Metrics

2000IV08      Bull.Rus.Acad.Sci.Phys. 64, 412 (2000)


Effect of Pairing on Collective Nuclear Dynamics

NUCLEAR STRUCTURE 224Th; calculated response functions, collective friction and mass parameter tensors, pairing effects.

1999HO14      Phys.Rev.Lett. 82, 4603 (1999)

H.Hofmann, F.A.Ivanyuk

Nuclear Transport at Low Excitations

NUCLEAR STRUCTURE 224Th; calculated transport coefficients.

doi: 10.1103/PhysRevLett.82.4603
Citations: PlumX Metrics

1999IV02      Acta Phys.Slovaca 49, 53 (1999)


The Transport Coefficients for Fusion-Fission Reactions

NUCLEAR REACTIONS 208Pb(18O, X), 249Cf(20Ne, X), 238U(48Ca, X), E not given; calculated compound systems collective friction, inertia tensors.

1999IV09      Nucl.Phys. A657, 19 (1999)

F.A.Ivanyuk, H.Hofmann

Pairing and Shell Effects in the Transport Coefficients of Collective Motion

NUCLEAR STRUCTURE 224Th; calculated response functions, transport coefficients, friction coefficients; deduced shell and pairing effects. Woods-Saxon potential, particle number conservation.

doi: 10.1016/S0375-9474(99)00324-3
Citations: PlumX Metrics

1997IV01      Phys.Rev. C55, 1730 (1997)

F.A.Ivanyuk, H.Hofmann, V.V.Pashkevich, S.Yamaji

Transport Coefficients for Shape Degrees in Terms of Cassini Ovaloids

NUCLEAR STRUCTURE 224Th; calculated deformation energy along liquid drop fission valley, time-dependent nucleon response. Shape degrees transport coefficients in terms of Cassini ovaloids.

doi: 10.1103/PhysRevC.55.1730
Citations: PlumX Metrics

1997YA01      Nucl.Phys. A612, 1 (1997)

S.Yamaji, F.A.Ivanyuk, H.Hofmann

Variation of Transport Coefficients for Average Fission Dynamics with Temperature and Shape

NUCLEAR STRUCTURE 224Th; calculated liquid drop energy surface, free energy, local stiffness vs model parameters. 224Th, 140Yb, 206Pb; calculated friction coefficient vs temperature; deduced average fission dynamics transport coefficients variation with temperature, shape. Linear response theory, locally harmonic approximation.

doi: 10.1016/S0375-9474(96)00275-8
Citations: PlumX Metrics

1996HO03      Nucl.Phys. A598, 187 (1996)

H.Hofmann, F.A.Ivanyuk, S.Yamaji

On the Nature of Nuclear Dissipation, as a Hallmark for Collective Dynamics at Finite Excitation

doi: 10.1016/0375-9474(95)00442-4
Citations: PlumX Metrics

1996IV01      Phys.Rev. C53, 1861 (1996)

F.A.Ivanyuk, K.Pomorski

Collective Friction Coefficients in the Relaxation Time Approximation

NUCLEAR STRUCTURE 208Pb, 160Yb; calculated collective friction coefficients. Relaxation time approximation framework.

doi: 10.1103/PhysRevC.53.1861
Citations: PlumX Metrics

1995IV02      Phys.Rev. C52, 678 (1995)

F.A.Ivanyuk, V.M.Kolomietz, A.G.Magner

Liquid Drop Surface Dynamics for Large Nuclear Deformations

doi: 10.1103/PhysRevC.52.678
Citations: PlumX Metrics

1993KO58      Bull.Rus.Acad.Sci.Phys. 57, 1684 (1993)

V.M.Kolomiets, A.G.Magner, F.A.Ivanyuk

A Variational Principle for Macroscopic Dynamics of Large Deformations of Nuclei

1992KI25      Nucl.Phys. A550, 473 (1992)

D.Kiderlen, H.Hofmann, F.A.Ivanyuk

Dynamical Aspects of Thermal Nuclear Properties

NUCLEAR STRUCTURE 208Pb; calculated free energy local stiffness, correction term vs degrees of freedom. Liquid drop model. Dynamical aspects treated in locally harmonic approximation, collective motion.

doi: 10.1016/0375-9474(92)90019-G
Citations: PlumX Metrics

1990AL41      Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 861 (1990); Bull.Acad.Sci.USSR, Phys.Ser. 54, No.5, 45 (1990)

V.P.Aleshin, F.A.Ivanyuk

The Form of Intermediate Systems in Fusion-Fission Reactions

NUCLEAR REACTIONS Ag(35Cl, αF), E=350 MeV; 124Sn(37Cl, αF), E=200-254 MeV; 141Pr(28Si, αF), E=318 MeV; analyzed σ(θα), Eα following fission. Semi-classical approach.

1988ST21      Izv.Akad.Nauk SSSR, Ser.Fiz. 52, 834 (1988); Bull.Acad.Sci.USSR, Phys.Ser. 52, No.5, 1 (1988)

V.M.Strutinsky, F.A.Ivanyuk, V.V.Pashkevich

Highly Deformed States in Rotating Nuclei

NUCLEAR STRUCTURE 152Dy, 132Ce; calculated deformation energies. Rotating nuclei.

1984IV01      Z.Phys. A316, 233 (1984)


Shell Corrections for Finite Depth Potentials. 3.

NUCLEAR STRUCTURE N=80-200; calculated shell correction factors. Z=50-120; calculated proton shell correction factors. N=100-160; calculated neutron shell correction factors; deduced parameters. Finite depth potentials.

doi: 10.1007/BF01412268
Citations: PlumX Metrics

1984IV02      Yad.Fiz. 40, 1430 (1984); Sov.J.Nucl.Phys. 40, 908 (1984)


Determination of Shell Corrections for Finite-Depth Potentials

NUCLEAR STRUCTURE 208Pb; calculated proton, neutron shell corrections. N=80-200; calculated neutron shell corrections. N=146; calculated neutron shell correction deformation parameter dependence.

1980ST30      Yad.Fiz. 31, 88 (1980); Sov.J.Nucl.Phys. 31, 46 (1980)

V.M.Strutinsky, F.A.Ivanyuk, V.V.Pashkevich

Accuracy of Calculations of Shell Corrections

NUCLEAR STRUCTURE 208Pb, 204Hg, 196Os; calculated shell correction energies for protons, neutrons; deduced accuracy conditions. Woods-Saxon potential, harmonic oscillator basis.

1979IV01      Z.Phys. A290, 107 (1979)

F.A.Ivanyuk, V.M.Strutinsky

Shell Corrections for Finite Depth Deformed Potentials. II

NUCLEAR STRUCTURE 238U; calculated deformation energies. Smooth level densities including shell corrections for finite depth potentials.

doi: 10.1007/BF01408485
Citations: PlumX Metrics

1975BU25      Yad.Fiz. 22, 1142 (1975); Sov.J.Nucl.Phys. 22, 595 (1975)

V.V.Burov, F.A.Ivanyuk, B.D.Konstantinov

Effect of Oscillations of Nuclear Charge Density in Electron Elastic Scattering

NUCLEAR REACTIONS 40Ca, 66Zn, 208Pb(e, e); calculated form factors. Strutinskii shell-correction method.

1973IV04      Yad.Fiz. 18, 1203 (1973); Sov.J.Nucl.Phys. 18, 616 (1974)

F.A.Ivanyuk, B.D.Konstantinov

Influence of Nuclear Shell Structure on the Polarization of Elastically Scattered Neutrons

NUCLEAR REACTIONS Ca(n, n), E=6 MeV; Ni(n, n), E=11 MeV; Pb(n, n), E=14 MeV; calculated P(θ).

Back to query form