NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = K.Pomorski

Found 186 matches.

    Showing 1 to 100.


Back to query form

2023GU05      Phys.Rev. C 107, 034307 (2023)

X.Guan, T.-C.Wang, W.-Q.Jiang, Y.Su, Y.-J.Chen, K.Pomorski

Impact of the pairing interaction on fission of U isotopes

NUCLEAR REACTIONS 232,233,234,235,236,238U(n, F), E=thermal; calculated fragment mass distribution, total kinetic energy distribution. Deformed mean-field plus standard pairing model. Comparison to experimental data and ENDF/B-VIII.0.

NUCLEAR STRUCTURE 236U; calculated potential-energy surface, static fission path, prescission point, scission process point, asymmetric and symmetric scission points, neutron and proton pairing interaction energy. 231,232,233,234,235,236,238,239,240U; calculated fission barrier height. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.034307
Citations: PlumX Metrics

2023PO07      Phys.Rev. C 107, 054616 (2023)

K.Pomorski, B.Nerlo-Pomorska, C.Schmitt, Z.G.Xiao, Y.J.Chen, L.L.Liu

Fourier-over-spheroid shape parametrization applied to nuclear fission dynamics

NUCLEAR REACTIONS 235U(n, F), E = thermal; calculated fission fragments mass and charge yields, total kinetic energy (TKE) of fission fragments, post-fission neutron multiplicities, fission fragment excitation energy. 3D Langevin code, based on the Fourier-over-spheroid (FoS) shape parametrization, the LSD+Yukawa folded macroscopic-microscopic potential energy landscape, a procedure to account for charge equilibration at scission, and a method to compute the excitation energy available in the primary fragments. Comparison to experimental data.

RADIOACTIVITY 246,248,250,252,254,256,258,260,262Fm(SF); calculated fission fragment mass yields distribution, total kinetic energy (TKE) of fission fragments, post-fission neutron multiplicities. Comparison to experimental data.

NUCLEAR STRUCTURE 236U, 252,254,256,258,260,262Fm; calculated potential energy surfaces. 240Pu; calculated energy at scission as a function of the heavy fragment charge number, Wigner distribution probability of the fission fragment charge number.

doi: 10.1103/PhysRevC.107.054616
Citations: PlumX Metrics

2023PO11      Acta Phys.Pol. B54, 9-A2 (2023)

K.Pomorski, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, A.Zdeb, J.Bartel, H.Molique, C.Schmitt, Z.G.Xiao, Y.J.Chen, L.L.Liu

Fission Fragment Mass and Kinetic Energy Yields of Fermium Isotopes

NUCLEAR STRUCTURE 246,248,250,252,254,256,258,260,262Fm; analyzed available data; deduced the post-fission neutron multiplicities, potential energy surfaces.

doi: 10.5506/APhysPolB.54.9-A2
Citations: PlumX Metrics

2023WA08      Phys.Rev. C 107, L041601 (2023)

Y.Wang, F.Guan, X.Diao, M.Wan, Y.Qin, Z.Qin, Q.Wu, D.Guo, D.Si, S.Xiao, B.Zhang, Y.Zhang, B.Tian, X.Wei, H.Yang, P.Ma, R.J.Hu, L.Duan, F.Duan, Q.Hu, J.Ma, S.Xu, Z.Bai, Y.Yang, J.Wang, W.Liu, W.Su, X.Wei, C.-W.Ma, X.Li, H.Wang, F.Wang, Y.Zhang, M.Warda, A.Dobrowolski, B.Nerlo-Pomorska, K.Pomorski, L.Ou, Z.Xiao

Observing the ping-pong modality of the isospin degree of freedom in cluster emission from heavy-ion reactions

NUCLEAR REACTIONS 208Pb(86Kr, X), E=25 MeV/nucleon; measured reaction products, A=3 isobars in coincidence with the intermediate mass fragments of A=6-11; deduced velocity spectra of 3H and 3He, yields ratios of 3H/3He correlate reversely to the neutron-to-proton ratio N/Z of the intermediate mass fragments. Comparison with ImQMD transport model. Yield ratio 3H/3He exhibits evident anticorrelation with the N/Z of the latter, suggesting the ping-pong modality of the N/Z of the emitted particles. Anti-correlation shows dependence on the slope of the symmetry energy at saturation density. Compact Spectrometer for Heavy IoN Experiment (CSHINE) at the final focal plane of the Radioactive Ion Beam Line at Lanzhou (RIBLL-I).

doi: 10.1103/PhysRevC.107.L041601
Citations: PlumX Metrics

2022PO03      Eur.Phys.J. A 58, 77 (2022)

K.Pomorski, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, J.Bartel, Z.Xiao, Y.Chen, L.Liu, J.-L.Tian, X.Diao

On the stability of superheavy nuclei

doi: 10.1140/epja/s10050-022-00737-3
Citations: PlumX Metrics

2021KO43      Chin.Phys.C 45, 124108 (2021)

P.V.Kostryukov, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, Z.Xia, Y.Chen, L.Liu, J.-L.Tian, K.Pomorski

Potential energy surfaces and fission fragment mass yields of even-even superheavy nuclei

NUCLEAR STRUCTURE 254,256,258,260,262Rf, 258,260,262,264,266Sg, 264,266,268,270,272Hs, 276,278,280,282,284Ds, 278,280,282,284,286Cn, 282,284,286,288,290Fl, 286,288,290,292,294Lv, 290,292,294,296,298Og, 294,296,298,300,302120; calculated potential energy surfaces. The Lublin-Strasbourg Drop (LSD) model.

doi: 10.1088/1674-1137/ac29a3
Citations: PlumX Metrics

2021LI21      Phys.Rev. C 103, 044601 (2021)

L.-L.Liu, Y.-J.Chen, X.-Z.Wu, Z.-X.Li, Z.-G.Ge, K.Pomorski

Analysis of nuclear fission properties with the Langevin approach in Fourier shape parametrization

NUCLEAR REACTIONS 235U(n, F), E=14 MeV; calculated deformation energy contour for 236U in (q2, q3) plane, total kinetic energy (TKE) as function of the heavy fission fragment, mass distribution of fission fragments, mass-energy correlation of the fission fragments, correlations between the distance of the mass centers of two fragments and the heavy fragment mass at the scission point, correlation between neck parameter and the elongation parameter at the scission point. 233,236,238U, 239Pu(n, F), E=14 MeV; calculated fragment mass distributions, total kinetic energy (TKE) and the probability distributions. Langevin approach for nuclear fission within the Fourier shape parametrization, with the potential energy from macroscopic-microscopic model based on Lublin-Strasbourg drop model and Yukawa-folded potential. Comparison with experimental data, and with evaluated data in ENDF/B-VIII.0.

doi: 10.1103/PhysRevC.103.044601
Citations: PlumX Metrics

2021PO06      Chin.Phys.C 45, 054109 (2021)

K.Pomorski, J.M.Blanco, P.V.Kostryukov, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, Z.-G.Xiao, Y.-J.Chen

Fission fragment mass yields of Th to Rf even-even nuclei

NUCLEAR STRUCTURE 216,218,220,222,224,226,228,230,232,234,236,238,240Th, 220,222,224,226,228,230,232,234,236,238,240,242,244,246U, 222,224,226,228,230,232,234,236,238,240,242,244,246,248,250Pu, 224,226,228,230,232,234,236,238,240,242,244,246,248,250,252Cm, 238,240,242,244,246,248,250,252,254,256,258,260Cf, 240,242,244,246,248,250,252,254,256,258,260,262Fm, 242,244,246,248,250,252,254,256,258,260,262,264No, 250,252,254,256,258,260,262,264,266,268,270,272,274,276Rf; calculated potential energy surfaces, fission barrier heights, fragment mass yields.

doi: 10.1088/1674-1137/abec69
Citations: PlumX Metrics

2020PO06      Eur.Phys.J. A 56, 107 (2020)

K.Pomorski, B.Nerlo-Pomorska, A.Dobrowolski, J.Bartel, C.M.Petrache

Shape isomers in Pt, Hg and Pb isotopes with N ≤ 126

doi: 10.1140/epja/s10050-020-00115-x
Citations: PlumX Metrics

2020PO09      Phys.Rev. C 101, 064602 (2020)

K.Pomorski, A.Dobrowolski, R.Han, B.Nerlo-Pomorska, M.Warda, Z.Xiao, Y.Chen, L.Liu, J.-L.Tian

Mass yields of fission fragments of Pt to Ra isotopes

RADIOACTIVITY 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202Pt, 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202Hg, 174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204Pb, 176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206Po, 196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226Rn, 198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228Ra, 236,238,240,242,244,246Pu(SF); calculated fission fragment mass distributions using collective three-dimensional model with Fourier nuclear shape parametrization and coupling fission, neck and mass asymmetry modes. 184Hg; calculated potential energy surfaces in (q2, q3) and (q3, q4) planes by macroscopic-microscopic model based on the Lublin-Strasbourg drop macroscopic energy and Yukawa-folded single-particle potential. Comparison with experimental fission fragment mass yields for 180,182,184Hg, 194,196Po, 202,204,206,208Rn, and 210,212,214,216,218Ra.

doi: 10.1103/PhysRevC.101.064602
Citations: PlumX Metrics

2020WU10      Phys.Lett. B 811, 135865 (2020)

Q.Wu, F.Guan, X.Diao, Y.Wang, Y.Zhang, Z.Li, X.Wu, A.Dobrowolski, K.Pomorski, Z.Xiao

Symmetry energy effect on emissions of light particles in coincidence with fast fission

NUCLEAR REACTIONS 197Au(40Ar, F), E=30 MeV/nucleon; measured reaction products; deduced the yield ratio of the coalescence-invariant neutrons (CIN) to the coalescence-invariant protons (CIP) in the fission events, significant dependence on the symmetry energy varying with density. Comparison with the Improved Quantum Molecular Dynamics Model (ImQMD) calculations.

doi: 10.1016/j.physletb.2020.135865
Citations: PlumX Metrics

2019PO10      Acta Phys.Pol. B50, 535 (2019)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel, C.Schmitt

On the Properies of Super-heavy Even-Even Nuclei Around 294Og

NUCLEAR STRUCTURE 288,290,292Lv, 290,292,294Og, 296,298,300120; calculated potential energy surfaces. Four-dimensional Fourier parametrization of nuclear shapes, combined with the macroscopic-microscopic approach of the potential energy based on the Lublin-Strasbourg drop and microscopic shell and pairing corrections.

doi: 10.5506/aphyspolb.50.535
Citations: PlumX Metrics

2018PO05      Phys.Rev. C 97, 034319 (2018)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel, C.Schmitt

Stability of superheavy nuclei

NUCLEAR STRUCTURE 280Ds, 276Cn, 268,270,272Hs, 264,266,268Sg, 258,260,262,264Rf, 254,256,258Fm, 252Cf; calculated deformation energy surfaces in (q2, q3), (q3, q4), (q2, η) and (q4, η) planes. Z=94-126, N-Z=42-72; calculated values of the collective coordinates η, q2, q3 and q4 at equilibrium deformation, ground-state microscopic contribution to the potential energy, fission barrier heights. Comparison to available experimental data. Four-dimensional Fourier parametrization of nuclear shapes, combined with the macroscopic-microscopic approach of the potential energy based on the Lublin-Strasbourg drop and microscopic shell and pairing corrections.

RADIOACTIVITY 230,232,234,236,238,240,242,244,246,248,250,252,254,256,258Pu, 232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262Cm, 238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Cf, 242,244,246,248,250,252,254,256,258,260,262,264,266,268,270Fm, 246,248,250,252,254,256,258,260,262,264,266,268,270,272,274No, 250,252,254,256,258,260,262,264,266,268,270,272,274,276,278Rf, 254,256,258,260,262,264,266,268,270,272,274,276,278,280,282Sg, 258,260,262,264,266,268,270,272,274,276,278,280,282,284,286Hs, 262,264,266,268,270,272,274,276,278,280,282,284,286,288,290Ds, 266,268,270,272,274,276,278,280,282,284,286,288,290,292,294Cn, 270,272,274,276,278,280,282,284,286,288,290,292,294,296,298Fl, 274,276,278,280,282,284,286,288,290,292,294,296,298,300,302Lv, 278,280,282,284,286,288,290,292,294,296,298,300,302,304,306Og, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310120, 286,288,290,292,294,296,298,300,302,304,306,308,310,312,314122, 290,292,294,296,298,300,302,304,306,308,310,312,314,316,318124(α); calculated Q(α) and α-decay half-lives using Gamow-type WKB approach, and compared with available experimental data.

doi: 10.1103/PhysRevC.97.034319
Citations: PlumX Metrics

2017NE02      Acta Phys.Pol. B48, 451 (2017)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, C.Schmitt

Potential Energy Surfaces of Thorium Isotopes in the 4D Fourier Parametrisation

NUCLEAR STRUCTURE 218,220,222,224,226,230Th; calculated potential energy surface, deformation. 210,212,214,216,218,220,222,224,226,230,232,234,236,238Th; calculated gs and superdeformed quadrupole moment. Fourier shape parameterization. Detailed studies in progress. Quadrupole moments compared with available data.

doi: 10.5506/APhysPolB.48.451
Citations: PlumX Metrics

2017NE03      Eur.Phys.J. A 53, 67 (2017)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, C.Schmitt

On possible shape isomers in the Pt-Ra region of nuclei

NUCLEAR STRUCTURE 176,178,180,182,184,186,188,190,192Pt, 178,180,182,184,186,188,190,192,194Hg, 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208Pb, 194,196,198,200,202,204,206,208,210Po, 196,198,200,202,204,206,208,210,212Rn, 208,210,212,214,216,218,220,222,224,226,228,230,232,234,236Ra; calculated deformation, potential surface, gs energy, shape isomeric minima, electric quadrupole moment using macroscopic-microscopic model based on Lublin-Strasbourg Drop model; deduced possibility of isomers, rapidly converging shape parameterization. Compared with available data.

doi: 10.1140/epja/i2017-12259-8
Citations: PlumX Metrics

2017PO05      Acta Phys.Pol. B48, 541 (2017)

K.Pomorski, J.Bartel, B.Nerlo-Pomorska

On Jacobi and Poincare Shape Transitions in Rotating Nuclei

NUCLEAR STRUCTURE 46Ti, 120Cd; calculated potential energy surface, mass excess, deformation for different angular momenta of rotating nuclei using LSD (Lublin-Strasbourg Drop) model iwith two additional deformation degrees of freedom of higher multipolarity and without microscopic corrections; deduced no sign of Poincare shape transition.

doi: 10.5506/APhysPolB.48.541
Citations: PlumX Metrics

2017PO06      Eur.Phys.J. A 53, 59 (2017)

K.Pomorski, F.A.Ivanyuk, B.Nerlo-Pomorska

Mass distribution of fission fragments within the Born-Oppenheimer approximation

NUCLEAR STRUCTURE 236U; calculated potential energy surface, deformation of fissioning nucleus, neck radius, fission probability using approximate solution of collective Hamiltonian describing the fission process. Compared to data.

NUCLEAR REACTIONS 235U(n, f), E=thermal; calculated fission fragment yields using approximate solution of collective Hamiltonian describing the fission process. Compared to data.

doi: 10.1140/epja/i2017-12250-5
Citations: PlumX Metrics

2017PO08      Phys.Scr. 92, 064006 (2017)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Fourier expansion of deformed nuclear shapes expressed as the deviation from a spheroid

NUCLEAR STRUCTURE 238U; analyzed available data; deduced a Fourier decomposition of nuclear shapes to cover a very wide range of nuclear deformations up to the scission point.

doi: 10.1088/1402-4896/aa7002
Citations: PlumX Metrics

2017SC05      Phys.Rev. C 95, 034612 (2017)

C.Schmitt, K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Performance of the Fourier shape parametrization for the fission process

RADIOACTIVITY Z=78-94(SF); 178,180,184,192Hg, 194,196,202,210Po, 228Ra, 218,222,226,228,230,232,234,236Th, 238,240,242,246Pu(SF); calculated potential energy contours and fission paths, fission valleys, and exotic ground and metastable states for 100 even-even nuclei from Pt to Pu. Macroscopic-microscopic approach, employing a four-dimensional (4D) nuclear shape parametrization based on Fourier expansion, and realistic potential-energy prescription.

doi: 10.1103/PhysRevC.95.034612
Citations: PlumX Metrics

2016NE05      Acta Phys.Pol. B47, 943 (2016)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

On the Possibility to Observe New Shape Isomers in the Po-Th Region

NUCLEAR STRUCTURE 188,192,196,200,204,208,212,216,220Po; calculated deformation-energy landscapes, rotational energies, charge quadrupole moments.

doi: 10.5506/APhysPolB.47.943
Citations: PlumX Metrics

2016PO04      52, 144 (2016)

K.Pomorski, B.Nerlo-Pomorska

Remarks on the nuclear shell-correction method

NUCLEAR STRUCTURE 88Sr; calculated smoothed single-particle level density for neutrons and protons using 3D harmonic oscillator and HFB with Gogny force, shell energy corrections using traditional Strutinsky approach and using smoothing over the particle number. Z=36-42; calculated neutron and proton sp levels, J using HFB with Gogny force.

doi: 10.1140/epja/i2016-16144-8
Citations: PlumX Metrics

2016ZD01      Eur.Phys.J. A 52, 323 (2016)

A.Zdeb, M.Warda, C.M.Petrache, K.Pomorski

Proton emission half-lives within a Gamow-like model

RADIOACTIVITY 109I, 113Cs, 131Eu, 145,146,147Tm, 155,156,157Ta, 160,161Re, 166,167Ir, 170,171Au, 177Tl, 141Ho, 146,147Tm, 150,151Lu, 156Ta, 161Re, 166Ir, 177Tl(p); calculated proton emission T1/2 using simple phenomenological Gamow-like formalism; deduced nuclear radius constant parameter. Compared with other formalisms and with data.

NUCLEAR STRUCTURE 109I, 131Eu, 177Tl; calculated levels, J, π.

doi: 10.1140/epja/i2016-16323-7
Citations: PlumX Metrics

2015BA48      Phys.Scr. 90, 114004 (2015)

J.Bartel, K.Pomorski, B.Nerlo-Pomorska, C.Schmitt

Fission properties of Po isotopes in different macroscopic-microscopic models

RADIOACTIVITY 212Po, Po(SF); calculated fission-barrier heights of nuclei in the Po isotopic chain. Yukawa-folded single-particle potential, the Lublin-Strasbourg drop (LSD) model.

doi: 10.1088/0031-8949/90/11/114004
Citations: PlumX Metrics

2015NE15      Phys.Scr. 90, 114010 (2015)

B.Nerlo-Pomorska, K.Pomorski, C.Schmitt, J.Bartel

Potential energy surfaces of Polonium isotopes

NUCLEAR STRUCTURE 188,192,196,200,204,208,212,216,220Po; calculated total deformation energy, potential energy surfaces. Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies.

doi: 10.1088/0031-8949/90/11/114010
Citations: PlumX Metrics

2015PO05      Phys.Rev. C 91, 054605 (2015)

K.Pomorski, B.Nerlo-Pomorska, P.Quentin

b decay of 252Cf in the transition from the exit point to scission

RADIOACTIVITY 252Cf(SF), (β-); calculated branching ratio for rare Fermi β- decay for 252Cf during the spontaneous fission process up to the scission point, nuclear dissipation. Classical dynamical approach.

NUCLEAR STRUCTURE 252Cf; calculated potential energy surface contours, Proton and neutron single-particle levels in the ground state and at the scission point. Macroscopic-microscopic calculations.

doi: 10.1103/PhysRevC.91.054605
Citations: PlumX Metrics

2015PO08      Phys.Scr. 90, 114013 (2015)

K.Pomorski, M.Warda, A.Zdeb

On spontaneous fission and α-decay half-lives of atomic nuclei

RADIOACTIVITY Te, I, Xe, Sm, Gd, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Dy, Ho, Er, Tm, Yb, Tl, Rn, Pb, Fr, Bi, Ra, Po, Ac, At, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Fm, Md, No, Lr, Rf, Db, Sg, Bh, Hs, Ds, Mt(α), (SF); calculated T1/2. Comparison with experimental data.

doi: 10.1088/0031-8949/90/11/114013
Citations: PlumX Metrics

2015ZD01      Acta Phys.Pol. B46, 423 (2015)

A.Zdeb, M.Warda, K.Pomorski

On Systematics of Spontaneous Fission Half-lives

RADIOACTIVITY Th, U, Pu, Cm, Cf, Fm, No(SF); analyzed available data; deduced T1/2 systematics.

doi: 10.5506/APhysPolB.46.423
Citations: PlumX Metrics

2014BA10      Phys.Scr. 89, 054003 (2014)

J.Bartel, B.Nerlo-Pomorska, K.Pomorski, C.Schmitt

The potential energy surface of 240Pu around scission

NUCLEAR STRUCTURE 240Pu; analyzed potential energy surface within the macroscopic-microscopic approach; deduced effect of strong neutron shell corrections on mass distributions.

doi: 10.1088/0031-8949/89/5/054003
Citations: PlumX Metrics

2014NE03      Phys.Scr. 89, 054004 (2014)

B.Nerlo-Pomorska, K.Pomorski, P.Quentin, J.Bartel

Rotational bands in well deformed heavy nuclei

NUCLEAR STRUCTURE 230,232Th, 234,236,238U, 240,242Pu, 246Cm, 252No; calculated energy levels, J, π, rotational bands. Comparison with experimental data.

doi: 10.1088/0031-8949/89/5/054004
Citations: PlumX Metrics

2014NE17      Phys.Scr. 89, 054031 (2014)

B.Nerlo-Pomorska, K.Pomorski, C.Schmitt, J.Bartel

Low-energy fission within the Lublin-Strasbourg drop and Yukawa folded model

NUCLEAR STRUCTURE 180,198Hg, 234U, 240Pu, 260Fm; calculated fission potential energy surface. 222,228Th; calculated potential energy for symmetric and asymmetric fission paths. Macroscopic (Lublin-Strasbourg drop) - microscopic (BCS with Yukawa force) method.

doi: 10.1088/0031-8949/89/5/054031
Citations: PlumX Metrics

2014ZD01      Acta Phys.Pol. B45, 303 (2014)

A.Zdeb, M.Warda, K.Pomorski

Alpha Decay Half-lives for Super-heavy Nuclei Within a Gamow-like Model

NUCLEAR STRUCTURE Z=100-122; calculated T1/2. Comparison with available data.

doi: 10.5506/APhysPolB.45.303
Citations: PlumX Metrics

2014ZD02      Phys.Scr. 89, 054015 (2014)

A.Zdeb, M.Warda, K.Pomorski

Half-lives of heavy nuclei within simple phenomenological models

COMPILATION Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr(SF), (α); compiled, analyzed T1/2; deduced simple formula for T1/2.Compared with available data.

doi: 10.1088/0031-8949/89/5/054015
Citations: PlumX Metrics

2013BA24      Phys.Scr. T154, 014022 (2013)

J.Bartel, K.Pomorski

About the existence of a Poincare transition in rotating nuclei

NUCLEAR STRUCTURE 92Mo, 46Ti, 240Pu; calculated deformation energy, instability of nuclear shapes with respect to reflection asymmetric distortions. Lublin-Strasbourg drop model and the modified Funny-Hills shape parametrization.

doi: 10.1088/0031-8949/2013/T154/014022
Citations: PlumX Metrics

2013DO11      Phys.Scr. T154, 014030 (2013)

A.Dobrowolski, K.Pomorski, J.Bartel

Estimates of the light-particle transmission coefficients from hot, deformed and rotating nuclei

NUCLEAR STRUCTURE A=152-240; calculated average transmission coefficient for neutrons, protons and α-particles from deformed and excited nuclei.

doi: 10.1088/0031-8949/2013/T154/014030
Citations: PlumX Metrics

2013IV04      Phys.Scr. T154, 014021 (2013)

F.A.Ivanyuk, K.Pomorski

On the Poincare instability of a rotating liquid drop

NUCLEAR STRUCTURE 58Ni; calculated yrast lines and dependencies; deduced break-up of reflection symmetric shapes appears in light nuclei at high angular momenta when non-axial degrees of freedom are taken into account. The optimal shape theory of Strutinsky.

doi: 10.1088/0031-8949/2013/T154/014021
Citations: PlumX Metrics

2013NE05      Phys.Scr. T154, 014026 (2013)

B.Nerlo-Pomorska, K.Pomorski, C.Schmitt

Potential energy landscapes of Th isotopes within the Lublin Strasbourg drop + Yukawa-folded model

NUCLEAR STRUCTURE 220,226Th, 208Pb; calculated potential energy surfaces in a four-dimensional deformation space. Lublin Strasbourg drop model, Yukawa-folded potential.

doi: 10.1088/0031-8949/2013/T154/014026
Citations: PlumX Metrics

2013NE06      Phys.Scr. T154, 014028 (2013)

B.Nerlo-Pomorska, K.Pomorski

Masses and rotational energies of the heaviest nuclei

NUCLEAR STRUCTURE Z=88-112; calculated ground-state masses of even-even nuclei, pairing strengths, 226Ra, 248Cm, 278Cn. Lublin Strasbourg drop mass formula for the macroscopic part and the Yukawa-folded single-particle potential.

doi: 10.1088/0031-8949/2013/T154/014028
Citations: PlumX Metrics

2013PO03      Phys.Scr. T154, 014023 (2013)


Fission-barrier heights in some newest liquid-drop models

NUCLEAR STRUCTURE A=230, 232, 236, 238, 240, 242, 244, 246, 248, 250; calculated fission-barrier heights, different parameters. Lublin-Strasbourg drop (LSD) model, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014023
Citations: PlumX Metrics

2013ZD01      Phys.Rev. C 87, 024308 (2013)

A.Zdeb, M.Warda, K.Pomorski

Half-lives for α and cluster radioactivity within a Gamow-like model

RADIOACTIVITY 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,206,208,209,210,211,212,213,214,215,216,217,218Po, 193,194,195,196,197,198,199,200,201,202,203,204,205,207,209,211,212,213,214,215,216,217,218,219,220At, 195,196,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222Rn, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221Fr, 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,226Ra, 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225Ac, 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,232Th, 212,213,214,215,216,217,218,219,220,221,223,224,225,226,227,231Pa, 217,218,219,223,225,226,227,228,229,230,232,233,234,235,236,238U, 226,227,229,230,231,237Np, 229,230,232,234,236,237,238,239,240,242,244Pu, 241,243Am, 234,238,240,242,243,244,245,246,247,248Cm, 247Bk, 240,242,243,244,245,246,248,249,250,251,252Cf, 243,245,247,252,253,254Es, 243,246,247,248,250,251,252,253,254,255,256,257Fm, 246,248,249,255,256,257,258Md, 252,253,254,255,256,257,259No, 253,255,257,258Lr, 255,257,259,261Rf, 257,259,260,262Db, 260,265Sg, 261,262Bh, 265,266Hs, 266Mt, 269,270,271,273,281Ds(α); 221Fr, 221,222,223,224,226Ra, 223,225Ac(14C); 223Ac(15N), 226Th(18O); 228Th(20O); 230U(22Ne); 231Pa(23F); 230,232Th, 231Pa, 232,233,234,235,236U(24Ne); 233,235U(25Ne); 232Th, 234,236U(26Ne); 233,234,236U, 236,238Pu(28Mg); 236U, 237Np, 238Pu(30Mg); 238Pu(32Si); 240Pu, 241Am, 242Cm(34Si); calculated T1/2 for α decay and cluster emissions. Phenomenological model based on Gamow theory with WKB approximation for the penetration of Coulomb barrier. Comparison with experimental values of half-lives.

doi: 10.1103/PhysRevC.87.024308
Citations: PlumX Metrics

2013ZD02      Phys.Scr. T154, 014029 (2013)

A.Zdeb, M.Warda, K.Pomorski

Half-lives for α and cluster radioactivity in a simple model

RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 225Ac(14C), 226Th(18O), 228Th(20O), 230Th(24Ne), 230U(22Ne), 231Pa(23F), (24Ne), 232Th(24Ne), (25Ne), 232U(24Ne), 233U(24Ne), (25Ne), (28Mg), 234U(24Ne), (25Ne), (28Mg), 235U(24Ne), (25Ne), 236U(24Ne), (25Ne), (28Mg), (30Mg), 236Pu(28Mg), 237Np(30Mg), 238Pu(28Mg), (30Mg), (32Si), 240Pu(34Si), 241Am(34Si), 242Cm(34Si); calculated cluster radioactivity T1/2. Simple phenomenological model based on the WKB theory, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014029
Citations: PlumX Metrics

2012BA22      Int.J.Mod.Phys. E21, 1250023 (2012)

J.Bartel, K.Pomorski, B.Nerlo-Pomorska

Light-Particle Emission From Fissioning Hot Rotating Nuclei

RADIOACTIVITY 160Yb(n), (p), (α); calculated energy spectra of neutrons, protons and alpha particles, En, In, Ep, Ip, Eα, Iα. 208Pb; deduced nuclear potential.

doi: 10.1142/S0218301312500231
Citations: PlumX Metrics

2012IV02      Int.J.Mod.Phys. E21, 1250032 (2012)

F.Ivanyuk, K.Pomorski, J.Bartel

The shape transitions in rotating nuclei

doi: 10.1142/S0218301312500322
Citations: PlumX Metrics

2012NE04      Int.J.Mod.Phys. E21, 1250050 (2012)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Dynamical coupling of rotation with the pairing field in heavy nuclei

NUCLEAR STRUCTURE 230,232,234,236,238,240U, 242,246,248Cm, 248,250,252,254No; calculated level energies, J, π, rotational bands. Macroscopic-macroscopic model with the Lublin-Strasbourg Drop, the Yukawa-folded single-particle potential, comparison with available data.

doi: 10.1142/S0218301312500504
Citations: PlumX Metrics

2011BA11      Int.J.Mod.Phys. E20, 333 (2011)

J.Bartel, K.Pomorski

Investigations on the breaking of left-right symmetry in light nuclei-the Poincare instability

NUCLEAR STRUCTURE 44Ti, 64Zn, 76Se, 80Kr, 84Sr, 88Mo; calculated deformation energy, parameters of the Lublin-Strasbourg-Drop model.

doi: 10.1142/S0218301311017697
Citations: PlumX Metrics

2011NE05      Int.J.Mod.Phys. E20, 539 (2011)

B.Nerlo-Pomorska, K.Pomorski, A.Dobrowolski

Rotational states in heaviest isotopes

NUCLEAR STRUCTURE 248,252,254,256Fm, 254No; calculated deformation energy, pairing strength, rotational energies, masses. Comparison with experimental data.

doi: 10.1142/S0218301311017971
Citations: PlumX Metrics

2011NE09      Phys.Rev. C 84, 044310 (2011)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Rotational states and masses of heavy and superheavy nuclei

NUCLEAR STRUCTURE Z=88-112, N=136-170; calculated nuclear masses, rotational bands, single particle levels, potential energy surfaces, deformation energies. 238Cm; calculated energy and moment of inertia contour plots on c, h plane. 238Cm, 236U; calculated Cross section of the potential energies as function of the mass-asymmetry deformation parameter. 230,232U, 236,244Pu, 242,246,248Cm, 248,250Fm, 252,254No; calculated rotational bands. Lublin-Strasbourg drop (LSD), Strutinsky shell-correction method, Yukawa-folded (YF) mean-field potential, BCS approach for pairing correlations. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.044310
Citations: PlumX Metrics

2011PO03      Acta Phys.Pol. B42, 455 (2011)

K.Pomorski, F.Ivanyuk, J.Bartel

On Optimal Shapes of Fissioning and Rotating Nuclei

doi: 10.5506/APhysPolB.42.455
Citations: PlumX Metrics

2011PO05      Int.J.Mod.Phys. E20, 316 (2011)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Microscopic energy corrections at the scission configuration

RADIOACTIVITY 236U(SF); calculated shell energy, single-particle potential, fission fragments, microscopic fission barrier.

doi: 10.1142/S0218301311017673
Citations: PlumX Metrics

2010BA10      Int.J.Mod.Phys. E19, 601 (2010)

J.Bartel, F.Ivanyuk, K.Pomorski

On Poincare instability of rotating stars and nuclei

doi: 10.1142/S0218301310015011
Citations: PlumX Metrics

2010DO07      Int.J.Mod.Phys. E19, 699 (2010)

A.Dobrowolski, B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Rotational bands in heavy and superheavy nuclei within the Lublin Strasbourg Drop + Yukawa folded Model

NUCLEAR STRUCTURE 254No; calculated deformation energy, shell correction, moment of inertia, rotational energies.

doi: 10.1142/S0218301310015126
Citations: PlumX Metrics

2010IV01      Int.J.Mod.Phys. E19, 514 (2010)

F.Ivanyuk, K.Pomorski

The fission barriers of heavy and exotic nuclei

doi: 10.1142/S0218301310014923
Citations: PlumX Metrics

2009BA33      Int.J.Mod.Phys. E18, 986 (2009)

J.Bartel, B.Nerlo-Pomorska, K.Pomorski

Jacobi bifurcation in hot rotating nuclei with a LSD + Yukawa folded approach

NUCLEAR STRUCTURE 88Mo; calculated deformation energy surfaces for excited nuclei.

doi: 10.1142/S0218301309013130
Citations: PlumX Metrics

2009DO07      Acta Phys.Pol. B40, 705 (2009)

A.Dobrowolski, B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Fission Barrier Heights of Medium Heavy and Heavy Nuclei

2009IV01      Phys.Rev. C 79, 054327 (2009)

F.A.Ivanyuk, K.Pomorski

Optimal shapes and fission barriers of nuclei within the liquid drop model

NUCLEAR STRUCTURE Z=35-110; calculated fission barriers, shapes and heights using Lublin-Strasbourg drop model calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054327
Citations: PlumX Metrics

2009NE01      Int.J.Mod.Phys. E18, 123 (2009)

B.Nerlo-Pomorska, K.Pomorski, F.Ivanyuk

Remarks on the nuclear shell-correction method

NUCLEAR STRUCTURE 40Ca, 132Sn; calculated single particle energies, shell corrections.

doi: 10.1142/S0218301309012070
Citations: PlumX Metrics

2009NE08      Int.J.Mod.Phys. E18, 1099 (2009)

B.Nerlo-Pomorska, K.Pomorski

Simple tool to search quasi-magic structures in deformed nuclei

NUCLEAR STRUCTURE 264Hs; calculated level energies, deformation, quasi-magic structures.

doi: 10.1142/S0218301309013324
Citations: PlumX Metrics

2009PO08      Int.J.Mod.Phys. E18, 900 (2009)

K.Pomorski, F.Ivanyuk

Pairing correlations and fission barrier heights

NUCLEAR STRUCTURE 75Br, 90,92,94,98Mo, 171,173Lu, 213At, 228Ra, 252Cf; calculated fission barriers using Lublin-Strasbourg drop model and folded Yukawa single-particle potential, compared to data, shown influence of pairing energy.

doi: 10.1142/S0218301309013026
Citations: PlumX Metrics

2008BA12      Int.J.Mod.Phys. E17, 100 (2008)

J.Bartel, K.Pomorski

Jacobi shape transitions within the LSD model and the Skyrme-ETF approach

NUCLEAR STRUCTURE 90Zr, 154Sm, 232Th, 240Pu; calculated Modified Funny-Hills shape parameterization for fission process using Lublin-Strasbourg Drop Model.

doi: 10.1142/S0218301308009598
Citations: PlumX Metrics

2008NE02      Acta Phys.Pol. B39, 417 (2008)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, A.Dobrowolski

Nuclear Level Density Parameter

2008PO01      Int.J.Mod.Phys. E17, 245 (2008)


Role of the zero-point corrections in fission dynamics

NUCLEAR STRUCTURE 148Ce, 250Fm; calculated spontaneous fission half-lives, fission probabilities using Cranking and generator coordinate method (WKB approximation).

doi: 10.1142/S0218301308009756
Citations: PlumX Metrics

2007BA18      Int.J.Mod.Phys. E16, 459 (2007)

J.Bartel, A.Dobrowolski, K.Pomorski

Saddle-point masses of even-even actinide nuclei

NUCLEAR STRUCTURE 232,234Th, 234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250Cf; calculated fission barrier energies, inner and outer saddle point masses. Modified funny-hills shape parameterization.

doi: 10.1142/S0218301307005892
Citations: PlumX Metrics

2007DO03      Phys.Rev. C 75, 024613 (2007)

A.Dobrowolski, K.Pomorski, J.Bartel

Fission barriers in a macroscopic-microscopic model

NUCLEAR STRUCTURE 232,234Th, 236,238U, 236,240Pu, 272Ds, 298Fl; calculated fission barriers. Macroscopic-microscopic model, four-dimensional shape parameterization.

doi: 10.1103/PhysRevC.75.024613
Citations: PlumX Metrics

2007NE02      Int.J.Mod.Phys. E16, 328 (2007)

B.Nerlo-Pomorska, K.Pomorski

On the average pairing energy in nuclei

NUCLEAR STRUCTURE 232,234Th, 240,246Pu, 236U, 246Cm; calculated pairing energy vs deformation.

doi: 10.1142/S0218301307005764
Citations: PlumX Metrics

2007NE03      Int.J.Mod.Phys. E16, 474 (2007)

B.Nerlo-Pomorska, K.Pomorski, M.Zwierzchowska

Predictions of nuclear masses in different models

ATOMIC MASSES Z=8-112; analyzed masses. Comparison of Lublin-Strasbourg drop and Thomas-Fermi approaches.

doi: 10.1142/S0218301307005909
Citations: PlumX Metrics

2007PO01      Int.J.Mod.Phys. E16, 237 (2007)


Pairing as a collective mode

NUCLEAR STRUCTURE 240Pu; calculated pairing strength. 132,134Ba, 118,120,124,126,128,130Xe; calculated 0+ states energies. 104Ru; calculated rotational bands level energies, B(E2). 236,238,240,242,244,246,248,250,252,254Cm, 242,244,246,248,250,252,254,256,258Cf, 240,242,244,246,248,250,252,254,256,258,260Fm, 248,250,252,254,256,258,260,262No; calculated spontaneous fission T1/2. Collective pairing Hamiltonian.

doi: 10.1142/S0218301307005685
Citations: PlumX Metrics

2007PO02      Int.J.Mod.Phys. E16, 566 (2007)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Nuclear level density parameter with Yukawa folded potential

NUCLEAR STRUCTURE O, Ca, Sr, Sn, Sm, Pb, Th; calculated level density parameters. 40Ca, 50Cr, 100Ru, 150Sm, 200Hg, 250Cf; calculated level density parameters vs deformation. Yukawa folded potential.

doi: 10.1142/S0218301307006009
Citations: PlumX Metrics

2007SO01      Prog.Part.Nucl.Phys. 58, 292 (2007)

A.Sobiczewski, K.Pomorski

Description of structure and properties of superheavy nuclei

doi: 10.10106/j.ppnp.2006.05.001
Citations: PlumX Metrics

2006BA12      Int.J.Mod.Phys. E15, 478 (2006)

J.Bartel, K.Pomorski, B.Nerlo-Pomorska

Nuclear level density at finite temperatures

NUCLEAR STRUCTURE Z=8-82; A=16-224; calculated single-particle level densities vs temperature. Selfconsistent mean-field approach.

doi: 10.1142/S0218301306004399
Citations: PlumX Metrics

2006DO05      Int.J.Mod.Phys. E15, 432 (2006)

A.Dobrowolski, K.Pomorski, J.Bartel

Importance of mass asymmetry and nonaxiality for the description of fission barriers

NUCLEAR STRUCTURE 232,234Th, 236,240U, 236,246Pu, 248Cm, 250Cf; calculated fission barrier heights, role of mass asymmetry and non-axial deformation.

doi: 10.1142/S0218301306004314
Citations: PlumX Metrics

2006DO27      Phys.Scr. T125, 189 (2006)

A.Dobrowolski, K.Pomorski, J.Bartel

Influence of different proton and neutron deformations on fission barriers

NUCLEAR STRUCTURE 240Pu, 298Fl; calculated total energy vs deformation.

doi: 10.1088/0031-8949/2006/T125/044
Citations: PlumX Metrics

2006NE02      Int.J.Mod.Phys. E15, 471 (2006)

B.Nerlo-Pomorska, K.Pomorski

Pairing energy obtained by folding in the nucleon number space

doi: 10.1142/S0218301306004387
Citations: PlumX Metrics

2006NE07      Phys.Rev. C 74, 034327 (2006)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Shell energy and the level-density parameter of hot nuclei

NUCLEAR STRUCTURE 40Ca, 50Cr, 100Ru, 150Sm, 200Hg, 250Cf; calculated level density parameters, shell-correction energy vs temperature. Macroscopic-microscopic approach.

doi: 10.1103/PhysRevC.74.034327
Citations: PlumX Metrics

2006PO03      Int.J.Mod.Phys. E15, 417 (2006)

K.Pomorski, J.Bartel

Fission dynamics in the four-dimensional deformation space

NUCLEAR STRUCTURE 232Th; calculated fission barrier, related features.

doi: 10.1142/S0218301306004296
Citations: PlumX Metrics

2006PO04      Acta Phys.Pol. B37, 101 (2006)


Shell correction and particle-phonon coupling

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 208Pb; calculated shell correction energies, effect of coupling to shape vibration.

2006PO17      Phys.Scr. T125, 21 (2006)

K.Pomorski, B.Nerlo-Pomorska

Shell and pairing energies obtained by folding in N space

NUCLEAR STRUCTURE 208Pb; N=20-200; calculated shell and pairing energies vs deformation. Modified Strutinsky method.

doi: 10.1088/0031-8949/2006/T125/005
Citations: PlumX Metrics

2006SR01      Nucl.Phys. A766, 25 (2006)

J.Srebrny, T.Czosnyka, Ch.Droste, S.G.Rohozinski, L.Prochniak, K.Zajac, K.Pomorski, D.Cline, C.Y.Wu, A.Backlin, L.Hasselgren, R.M.Diamond, D.Habs, H.J.Korner, F.S.Stephens, C.Baktash, R.P.Kostecki

Experimental and theoretical investigations of quadrupole collective degrees of freedom in 104Ru

NUCLEAR REACTIONS 104Ru(208Pb, 208Pb'), E=954 MeV; 104Ru(136Xe, 136Xe'), E=525 MeV; 104Ru(58Ni, 58Ni'), E=165, 190 MeV; measured Eγ, Iγ, (particle)γ -coin following Coulomb excitation. 104Ru deduced levels, J, π, E2 and M1 matrix elements, quadrupole collectivity. Comparison with model predictions.

doi: 10.1016/j.nuclphysa.2005.11.013
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2005DO08      Acta Phys.Pol. B36, 1373 (2005)

A.Dobrowolski, K.Pomorski, J.Bartel

Dependence of fusion barrier heights on the difference of proton and neutron radii

NUCLEAR REACTIONS 208Pb(16O, X), E not given; calculated fusion barrier heights, dependence on neutron and proton radii. Semiclassical extended Thomas-Fermi approach, Skyrme interaction.

2005DO10      Int.J.Mod.Phys. E14, 457 (2005)

A.Dobrowolski, J.Bartel, K.Pomorski

Influence of different proton and neutron deformations on nuclear energies

NUCLEAR STRUCTURE 232,238U, 240Pu, 270Hs, 272Ds; calculated energy vs deformation. Yukawa-folded model, shell corrections.

doi: 10.1142/S0218301305003272
Citations: PlumX Metrics

2005MO14      Int.J.Mod.Phys. E14, 499 (2005)

H.Molique, J.Dudek, K.Pomorski

The particle conserving shell correction method and the nuclear zero-point motion

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 208Pb; calculated shell energy reduction due to dynamical averaging.

doi: 10.1142/S0218301305003338
Citations: PlumX Metrics

2005NE09      Int.J.Mod.Phys. E14, 505 (2005)

B.Nerlo-Pomorska, K.Pomorski, J.Sykut, J.Bartel

Temperature dependence of the nuclear energy in relativistic mean-field theory

NUCLEAR STRUCTURE A=16-224; analyzed level densities, temperature-dependent shell corrections.

doi: 10.1142/S021830130500334X
Citations: PlumX Metrics

2005PO06      Acta Phys.Pol. B36, 1221 (2005)


Nuclear shell energy obtained by averaging in particle-number space

NUCLEAR STRUCTURE 208Pb; calculated shell-correction energies.

2005PO08      Int.J.Mod.Phys. E14, 485 (2005)


Shell and pairing energies obtained by folding in the particle number space

doi: 10.1142/S0218301305003314
Citations: PlumX Metrics

2005WA13      Int.J.Mod.Phys. E14, 403 (2005)

M.Warda, K.Pomorski, J.L.Egido, L.M.Robledo

The fission of 252Cf from a mean field perspective

NUCLEAR STRUCTURE 252Cf; calculated potential energy surface, shape evolution during fission. Hartree-Fock-Bogoliubov approach, Gogny force.

doi: 10.1142/S0218301305003193
Citations: PlumX Metrics

2005WA30      J.Phys.(London) G31, S1555 (2005)

M.Warda, K.Pomorski, J.L.Egido, L.M.Robledo

Multimodal fission of 252Cf in the Gogny HFB model

NUCLEAR STRUCTURE 252Cf; calculated potential energy surfaces, scission configurations. Hartree-Fock-Bogolubov model, Gogny force.

doi: 10.1088/0954-3899/31/10/031
Citations: PlumX Metrics

2004DI05      Int.J.Mod.Phys. E13, 1 (2004)

K.Dietrich, M.Garny, K.Pomorski

On charged insulated metallic clusters

doi: 10.1142/S0218301304001667
Citations: PlumX Metrics

2004DO01      Int.J.Mod.Phys. E13, 309 (2004)

A.Dobrowolski, K.Pomorski, J.Bartel

Mean-field description of heavy-ion collisions

doi: 10.1142/S0218301304002107
Citations: PlumX Metrics

2004DU09      Eur.Phys.J. A 20, 15 (2004)

J.Dudek, K.Pomorski, N.Schunck, N.Dubray

Hyperdeformed and megadeformed nuclei: Lessons from the slow progress and emerging new strategies

doi: 10.1140/epja/i2002-10313-4
Citations: PlumX Metrics

2004MA15      Nucl.Phys. A731, 319 (2004)

A.Maj, M.Kmiecik, A.Bracco, F.Camera, P.Bednarczyk, B.Herskind, S.Brambilla, G.Benzoni, M.Brekiesz, D.Curien, G.De Angelis, E.Farnea, J.Grebosz, M.Kicinska-Habior, S.Leoni, W.Meczynski, B.Million, D.R.Napoli, J.Nyberg, C.M.Petrache, J.Styczen, O.Wieland, M.Zieblinski, K.Zuber, N.Dubray, J.Dudek, K.Pomorski

Evidence for the Jacobi shape transition in hot 46Ti

NUCLEAR REACTIONS 28Si(18O, X), E=105 MeV; measured Eγ, Iγ, γγ-, (particle)γ-coin. 46Ti deduced Jacobi shape transition. Euroball IV, Hector, and Euclides arrays, thermal shape fluctuation model.

doi: 10.1016/j.nuclphysa.2003.11.043
Citations: PlumX Metrics

2004MA33      Eur.Phys.J. A 20, 165 (2004)

A.Maj, M.Kmiecik, M.Brekiesz, J.Grebosz, W.Meczynski, J.Styczen, M.Zieblinski, K.Zuber, A.Bracco, F.Camera, G.Benzoni, B.Million, N.Blasi, S.Brambilla, S.Leoni, M.Pignanelli, O.Wieland, B.Herskind, P.Bednarczyk, D.Curien, J.P.Vivien, E.Farnea, G.De Angelis, D.R.Napoli, J.Nyberg, M.Kicinska-Habior, C.M.Petrache, J.Dudek, K.Pomorski

Search for the Jacobi shape transition in light nuclei

NUCLEAR REACTIONS 28Si(18O, X), E=105 MeV; measured Eγ, Iγ, (particle)γ-coin. 46Ti deduced GDR features, Jacobi shape transition in excited nucleus.

doi: 10.1140/epja/i2002-10345-8
Citations: PlumX Metrics

2004NE14      Int.J.Mod.Phys. E13, 1147 (2004)

B.Nerlo-Pomorska, K.Pomorski, J.Sykut, J.Bartel

Temperature dependence of nuclear structure in the relativistic mean-field theory with a new parameter set

NUCLEAR STRUCTURE A=16-220; calculated masses, binding energies, level density vs temperature. Relativistic mean-field theory.

doi: 10.1142/S0218301304002636
Citations: PlumX Metrics

2004PO05      Int.J.Mod.Phys. E13, 107 (2004)

K.Pomorski, J.Dudek

Fission barriers within the liquid drop model with the surface-curvature term

NUCLEAR STRUCTURE 75Br, 98Mo, 186Os, 210Po, 232Th, 240Pu, 252Cf; calculated fission barrier and binding energies, compression effect.

doi: 10.1142/S0218301304001801
Citations: PlumX Metrics

2004PO18      Phys.Rev. C 70, 044306 (2004)


Particle number conserving shell-correction method

NUCLEAR STRUCTURE 208Pb; calculated proton and neutron shell-correction energies. Particle-number conserving approach.

doi: 10.1103/PhysRevC.70.044306
Citations: PlumX Metrics

2004SI18      Eur.Phys.J. A 20, 413 (2004)

K.Sieja, A.Baran, K.Pomorski

δ-pairing forces and collective pairing vibrations

doi: 10.1140/epja/i2003-10169-0
Citations: PlumX Metrics

2004WA07      Int.J.Mod.Phys. E13, 169 (2004)

M.Warda, K.Pomorski, J.L.Egido, L.M.Robledo

Microscopic structure of the bimodal fission of 258Fm

NUCLEAR STRUCTURE 258Fm; calculated single-particle level energies vs deformation, fission mechanism features.

doi: 10.1142/S0218301304001904
Citations: PlumX Metrics

2003DO20      Nucl.Phys. A729, 713 (2003)

A.Dobrowolski, K.Pomorski, J.Bartel

Mean-field description of fusion barriers with Skyrme's interaction

NUCLEAR REACTIONS 238U(50Ti, X), 232Th(48Ca, X), E not given; calculated fusion barrier distributions. Z=108-114; calculated fusion barrier heights for reactions leading to superheavy isotopes. Extended Thomas-Fermi method, Skyrme interaction.

doi: 10.1016/j.nuclphysa.2003.09.008
Citations: PlumX Metrics

2003DO22      Acta Phys.Pol. B34, 2457 (2003)

A.Dobrowolski, M.Kowal, K.Pomorski

Fusion barriers derived from the Hartree-Fock functional with Skyrme interactions

NUCLEAR REACTIONS 238U(50Ti, X), 208Pb(76Ge, X), E not given; calculated fusion barrier features. Other reactions leading to Z=114 discussed.

2003LO17      Acta Phys.Pol. B34, 1801 (2003)

Z.Lojewski, A.Baran, K.Pomorski

Spontaneous fission and α-decay half-lives of superheavy nuclei in different macroscopic energy models

NUCLEAR STRUCTURE Z=100-106; calculated spontaneous fission and α-decay T1/2, Qα for even-even isotopes. Macroscopic model.

2003PO03      Phys.Rev. C 67, 044316 (2003)

K.Pomorski, J.Dudek

Nuclear liquid-drop model and surface-curvature effects

NUCLEAR STRUCTURE 232Th, 240Pu, 160,162,164,166,168,170,172,174,176,178,180Yb, 240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270Fm; calculated liquid-drop fission barriers, surface-curvature dependent effects.

doi: 10.1103/PhysRevC.67.044316
Citations: PlumX Metrics

2003SC40      Acta Phys.Pol. B34, 2135 (2003)

C.Schmitt, J.Bartel, A.Surowiec, K.Pomorski

Fission of heavy nuclei at low energy

NUCLEAR REACTIONS 209Bi(18O, F), E=76 MeV; measured fission fragment distribution, pre-scission neutron multiplicity; deduced shell and pairing effects. Two-dimensional Langevin equation.

2003SC41      Acta Phys.Pol. B34, 1651 (2003)

C.Schmitt, J.Bartel, K.Pomorski, A.Surowiec

Fission-fragment mass distribution and particle evaporation at low energies

NUCLEAR REACTIONS 98Mo(28Si, X), E=187.2 MeV; calculated fusion and fission σ, fission barrier features.

NUCLEAR STRUCTURE 170Yb, 188Pt; calculated light particle emission widths from excited nuclei. 227Pa; calculated fission fragment mass distributions vs excitation energy.

Back to query form    [Next]