NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = J.Bartel

Found 95 matches.

Back to query form

2023BL04      Phys.Rev. C 108, 044618 (2023)

J.M.Blanco, A.Dobrowolski, A.Zdeb, J.Bartel

Spontaneous fission half-lives of actinides and superheavy elements

doi: 10.1103/PhysRevC.108.044618
Citations: PlumX Metrics

2023PO11      Acta Phys.Pol. B54, 9-A2 (2023)

K.Pomorski, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, A.Zdeb, J.Bartel, H.Molique, C.Schmitt, Z.G.Xiao, Y.J.Chen, L.L.Liu

Fission Fragment Mass and Kinetic Energy Yields of Fermium Isotopes

NUCLEAR STRUCTURE 246,248,250,252,254,256,258,260,262Fm; analyzed available data; deduced the post-fission neutron multiplicities, potential energy surfaces.

doi: 10.5506/APhysPolB.54.9-A2
Citations: PlumX Metrics

2022MI06      Phys.Rev. C 105, 044329 (2022)

N.Minkov, L.Bonneau, P.Quentin, J.Bartel, H.Molique, D.Ivanova

K-isomeric states in well-deformed heavy even-even nuclei

NUCLEAR STRUCTURE 234,236U, 236,238,240,244Pu, 244,246,248Cm, 248Cf, 248,250,256Fm, 252,254No; calculated levels, J, π, neutron and proton single-particle spectra, charge radii, quadrupole moments and magnetic moments for ground and isomeric states. Skyrme HF+BCS energy density functional with axial and parity symmetries, and with self-consistent blocking for the isomeric states. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.044329
Citations: PlumX Metrics

2022PO03      Eur.Phys.J. A 58, 77 (2022)

K.Pomorski, A.Dobrowolski, B.Nerlo-Pomorska, M.Warda, J.Bartel, Z.Xiao, Y.Chen, L.Liu, J.-L.Tian, X.Diao

On the stability of superheavy nuclei

doi: 10.1140/epja/s10050-022-00737-3
Citations: PlumX Metrics

2021GO07      Int.J.Mod.Phys. E30, 2150008 (2021)

D.V.Gorpinchenko, A.G.Magner, J.Bartel

Semiclassical and quantum shell-structure calculations of the moment of inertia

doi: 10.1142/S0218301321500087
Citations: PlumX Metrics

2020PO06      Eur.Phys.J. A 56, 107 (2020)

K.Pomorski, B.Nerlo-Pomorska, A.Dobrowolski, J.Bartel, C.M.Petrache

Shape isomers in Pt, Hg and Pb isotopes with N ≤ 126

doi: 10.1140/epja/s10050-020-00115-x
Citations: PlumX Metrics

2020QU03      Phys.Rev. C 102, 054305 (2020)

P.Quentin, J.Bartel

Collective coupling between pairing and rotational degrees of freedom within a simple model

NUCLEAR STRUCTURE 152Nd, 154Sm, 156Gd, 164Dy, 162,164,166,168,170,172Er, 174Yb, 170Hf, 178W, 230,232Th, 234,236U, 236,238,240,242Pu, 246,248Cm; calculated rotational energies as function of angular momentum, averaged neutron and proton gaps, kinematical moments of inertia as a function of angular frequency; deduced collective quenching of pairing correlations due to a global rotational motion. Chandrasekhar's S-ellipsoid model coupling intrinsic and global collective rotational currents, and yielding the Coriolis antipairing (CAP) quenching of pairing correlations. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.054305
Citations: PlumX Metrics

2019PO10      Acta Phys.Pol. B50, 535 (2019)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel, C.Schmitt

On the Properies of Super-heavy Even-Even Nuclei Around 294Og

NUCLEAR STRUCTURE 288,290,292Lv, 290,292,294Og, 296,298,300120; calculated potential energy surfaces. Four-dimensional Fourier parametrization of nuclear shapes, combined with the macroscopic-microscopic approach of the potential energy based on the Lublin-Strasbourg drop and microscopic shell and pairing corrections.

doi: 10.5506/aphyspolb.50.535
Citations: PlumX Metrics

2018PO05      Phys.Rev. C 97, 034319 (2018)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel, C.Schmitt

Stability of superheavy nuclei

NUCLEAR STRUCTURE 280Ds, 276Cn, 268,270,272Hs, 264,266,268Sg, 258,260,262,264Rf, 254,256,258Fm, 252Cf; calculated deformation energy surfaces in (q2, q3), (q3, q4), (q2, η) and (q4, η) planes. Z=94-126, N-Z=42-72; calculated values of the collective coordinates η, q2, q3 and q4 at equilibrium deformation, ground-state microscopic contribution to the potential energy, fission barrier heights. Comparison to available experimental data. Four-dimensional Fourier parametrization of nuclear shapes, combined with the macroscopic-microscopic approach of the potential energy based on the Lublin-Strasbourg drop and microscopic shell and pairing corrections.

RADIOACTIVITY 230,232,234,236,238,240,242,244,246,248,250,252,254,256,258Pu, 232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262Cm, 238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Cf, 242,244,246,248,250,252,254,256,258,260,262,264,266,268,270Fm, 246,248,250,252,254,256,258,260,262,264,266,268,270,272,274No, 250,252,254,256,258,260,262,264,266,268,270,272,274,276,278Rf, 254,256,258,260,262,264,266,268,270,272,274,276,278,280,282Sg, 258,260,262,264,266,268,270,272,274,276,278,280,282,284,286Hs, 262,264,266,268,270,272,274,276,278,280,282,284,286,288,290Ds, 266,268,270,272,274,276,278,280,282,284,286,288,290,292,294Cn, 270,272,274,276,278,280,282,284,286,288,290,292,294,296,298Fl, 274,276,278,280,282,284,286,288,290,292,294,296,298,300,302Lv, 278,280,282,284,286,288,290,292,294,296,298,300,302,304,306Og, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310120, 286,288,290,292,294,296,298,300,302,304,306,308,310,312,314122, 290,292,294,296,298,300,302,304,306,308,310,312,314,316,318124(α); calculated Q(α) and α-decay half-lives using Gamow-type WKB approach, and compared with available experimental data.

doi: 10.1103/PhysRevC.97.034319
Citations: PlumX Metrics

2017NE02      Acta Phys.Pol. B48, 451 (2017)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, C.Schmitt

Potential Energy Surfaces of Thorium Isotopes in the 4D Fourier Parametrisation

NUCLEAR STRUCTURE 218,220,222,224,226,230Th; calculated potential energy surface, deformation. 210,212,214,216,218,220,222,224,226,230,232,234,236,238Th; calculated gs and superdeformed quadrupole moment. Fourier shape parameterization. Detailed studies in progress. Quadrupole moments compared with available data.

doi: 10.5506/APhysPolB.48.451
Citations: PlumX Metrics

2017NE03      Eur.Phys.J. A 53, 67 (2017)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, C.Schmitt

On possible shape isomers in the Pt-Ra region of nuclei

NUCLEAR STRUCTURE 176,178,180,182,184,186,188,190,192Pt, 178,180,182,184,186,188,190,192,194Hg, 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208Pb, 194,196,198,200,202,204,206,208,210Po, 196,198,200,202,204,206,208,210,212Rn, 208,210,212,214,216,218,220,222,224,226,228,230,232,234,236Ra; calculated deformation, potential surface, gs energy, shape isomeric minima, electric quadrupole moment using macroscopic-microscopic model based on Lublin-Strasbourg Drop model; deduced possibility of isomers, rapidly converging shape parameterization. Compared with available data.

doi: 10.1140/epja/i2017-12259-8
Citations: PlumX Metrics

2017PO05      Acta Phys.Pol. B48, 541 (2017)

K.Pomorski, J.Bartel, B.Nerlo-Pomorska

On Jacobi and Poincare Shape Transitions in Rotating Nuclei

NUCLEAR STRUCTURE 46Ti, 120Cd; calculated potential energy surface, mass excess, deformation for different angular momenta of rotating nuclei using LSD (Lublin-Strasbourg Drop) model iwith two additional deformation degrees of freedom of higher multipolarity and without microscopic corrections; deduced no sign of Poincare shape transition.

doi: 10.5506/APhysPolB.48.541
Citations: PlumX Metrics

2017PO08      Phys.Scr. 92, 064006 (2017)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Fourier expansion of deformed nuclear shapes expressed as the deviation from a spheroid

NUCLEAR STRUCTURE 238U; analyzed available data; deduced a Fourier decomposition of nuclear shapes to cover a very wide range of nuclear deformations up to the scission point.

doi: 10.1088/1402-4896/aa7002
Citations: PlumX Metrics

2017SC05      Phys.Rev. C 95, 034612 (2017)

C.Schmitt, K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Performance of the Fourier shape parametrization for the fission process

RADIOACTIVITY Z=78-94(SF); 178,180,184,192Hg, 194,196,202,210Po, 228Ra, 218,222,226,228,230,232,234,236Th, 238,240,242,246Pu(SF); calculated potential energy contours and fission paths, fission valleys, and exotic ground and metastable states for 100 even-even nuclei from Pt to Pu. Macroscopic-microscopic approach, employing a four-dimensional (4D) nuclear shape parametrization based on Fourier expansion, and realistic potential-energy prescription.

doi: 10.1103/PhysRevC.95.034612
Citations: PlumX Metrics

2016GO05      Phys.Rev. C 93, 024304 (2016)

D.V.Gorpinchenko, A.G.Magner, J.Bartel, J.P.Blocki

Surface corrections to the moment of inertia and shell structure in finite Fermi systems

doi: 10.1103/PhysRevC.93.024304
Citations: PlumX Metrics

2016NE05      Acta Phys.Pol. B47, 943 (2016)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

On the Possibility to Observe New Shape Isomers in the Po-Th Region

NUCLEAR STRUCTURE 188,192,196,200,204,208,212,216,220Po; calculated deformation-energy landscapes, rotational energies, charge quadrupole moments.

doi: 10.5506/APhysPolB.47.943
Citations: PlumX Metrics

2015BA48      Phys.Scr. 90, 114004 (2015)

J.Bartel, K.Pomorski, B.Nerlo-Pomorska, C.Schmitt

Fission properties of Po isotopes in different macroscopic-microscopic models

RADIOACTIVITY 212Po, Po(SF); calculated fission-barrier heights of nuclei in the Po isotopic chain. Yukawa-folded single-particle potential, the Lublin-Strasbourg drop (LSD) model.

doi: 10.1088/0031-8949/90/11/114004
Citations: PlumX Metrics

2015BO04      Phys.Rev. C 91, 054307 (2015)

L.Bonneau, N.Minkov, D.D.Duc, P.Quentin, J.Bartel

Effect of core polarization on magnetic dipole moments in deformed odd-mass nuclei

NUCLEAR STRUCTURE 99Sr, 99Y, 103Mo, 103Tc, 175Yb, 175Lu, 179Hf, 179Ta, 235U, 235,237Np; calculated binding energies, mass quadrupole moments, magnetic dipole moments, collective gyromagnetic factors, effective spin gyromagnetic factors; analyzed core-polarization effects. Skyrme-Hartree-Fock-BCS approach with selfconsistent blocking and time-odd terms of the Skyrme EDF. Seniority force in BCS calculations. Axial symmetry. Perturbative analysis of time-odd Hartree-Fock Hamiltonian and core-polarization effect on spin gyromagnetic factor. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.054307
Citations: PlumX Metrics

2015GO19      Phys.Scr. 90, 114008 (2015)

D.V.Gorpinchenko, A.G.Magner, J.Bartel, J.P.Blocki

Semiclassical moment of inertia shell-structure within the phase-space approach

doi: 10.1088/0031-8949/90/11/114008
Citations: PlumX Metrics

2015NE15      Phys.Scr. 90, 114010 (2015)

B.Nerlo-Pomorska, K.Pomorski, C.Schmitt, J.Bartel

Potential energy surfaces of Polonium isotopes

NUCLEAR STRUCTURE 188,192,196,200,204,208,212,216,220Po; calculated total deformation energy, potential energy surfaces. Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies.

doi: 10.1088/0031-8949/90/11/114010
Citations: PlumX Metrics

2014BA10      Phys.Scr. 89, 054003 (2014)

J.Bartel, B.Nerlo-Pomorska, K.Pomorski, C.Schmitt

The potential energy surface of 240Pu around scission

NUCLEAR STRUCTURE 240Pu; analyzed potential energy surface within the macroscopic-microscopic approach; deduced effect of strong neutron shell corrections on mass distributions.

doi: 10.1088/0031-8949/89/5/054003
Citations: PlumX Metrics

2014NE03      Phys.Scr. 89, 054004 (2014)

B.Nerlo-Pomorska, K.Pomorski, P.Quentin, J.Bartel

Rotational bands in well deformed heavy nuclei

NUCLEAR STRUCTURE 230,232Th, 234,236,238U, 240,242Pu, 246Cm, 252No; calculated energy levels, J, π, rotational bands. Comparison with experimental data.

doi: 10.1088/0031-8949/89/5/054004
Citations: PlumX Metrics

2014NE17      Phys.Scr. 89, 054031 (2014)

B.Nerlo-Pomorska, K.Pomorski, C.Schmitt, J.Bartel

Low-energy fission within the Lublin-Strasbourg drop and Yukawa folded model

NUCLEAR STRUCTURE 180,198Hg, 234U, 240Pu, 260Fm; calculated fission potential energy surface. 222,228Th; calculated potential energy for symmetric and asymmetric fission paths. Macroscopic (Lublin-Strasbourg drop) - microscopic (BCS with Yukawa force) method.

doi: 10.1088/0031-8949/89/5/054031
Citations: PlumX Metrics

2013BA24      Phys.Scr. T154, 014022 (2013)

J.Bartel, K.Pomorski

About the existence of a Poincare transition in rotating nuclei

NUCLEAR STRUCTURE 92Mo, 46Ti, 240Pu; calculated deformation energy, instability of nuclear shapes with respect to reflection asymmetric distortions. Lublin-Strasbourg drop model and the modified Funny-Hills shape parametrization.

doi: 10.1088/0031-8949/2013/T154/014022
Citations: PlumX Metrics

2013DO11      Phys.Scr. T154, 014030 (2013)

A.Dobrowolski, K.Pomorski, J.Bartel

Estimates of the light-particle transmission coefficients from hot, deformed and rotating nuclei

NUCLEAR STRUCTURE A=152-240; calculated average transmission coefficient for neutrons, protons and α-particles from deformed and excited nuclei.

doi: 10.1088/0031-8949/2013/T154/014030
Citations: PlumX Metrics

2012BA22      Int.J.Mod.Phys. E21, 1250023 (2012)

J.Bartel, K.Pomorski, B.Nerlo-Pomorska

Light-Particle Emission From Fissioning Hot Rotating Nuclei

RADIOACTIVITY 160Yb(n), (p), (α); calculated energy spectra of neutrons, protons and alpha particles, En, In, Ep, Ip, Eα, Iα. 208Pb; deduced nuclear potential.

doi: 10.1142/S0218301312500231
Citations: PlumX Metrics

2012IV02      Int.J.Mod.Phys. E21, 1250032 (2012)

F.Ivanyuk, K.Pomorski, J.Bartel

The shape transitions in rotating nuclei

doi: 10.1142/S0218301312500322
Citations: PlumX Metrics

2012LE12      Phys.Rev. C 86, 034332 (2012); Erratum Phys.Rev. C 91, 049901 (2015)

J.Le Bloas, L.Bonneau, P.Quentin, J.Bartel, D.D.Strottman

Effect of pairing correlations on the isospin-mixing parameter in deformed N=Z even-even nuclei

NUCLEAR STRUCTURE 28Si, 48Cr, 68Se, 76Sr; calculated isospin mixing parameters in the ground states. Particle-number conserving highly truncated diagonalization approach (HTDA) and Skyrme SIII effective interaction.

doi: 10.1103/PhysRevC.86.034332
Citations: PlumX Metrics

2012NE04      Int.J.Mod.Phys. E21, 1250050 (2012)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Dynamical coupling of rotation with the pairing field in heavy nuclei

NUCLEAR STRUCTURE 230,232,234,236,238,240U, 242,246,248Cm, 248,250,252,254No; calculated level energies, J, π, rotational bands. Macroscopic-macroscopic model with the Lublin-Strasbourg Drop, the Yukawa-folded single-particle potential, comparison with available data.

doi: 10.1142/S0218301312500504
Citations: PlumX Metrics

2011BA11      Int.J.Mod.Phys. E20, 333 (2011)

J.Bartel, K.Pomorski

Investigations on the breaking of left-right symmetry in light nuclei-the Poincare instability

NUCLEAR STRUCTURE 44Ti, 64Zn, 76Se, 80Kr, 84Sr, 88Mo; calculated deformation energy, parameters of the Lublin-Strasbourg-Drop model.

doi: 10.1142/S0218301311017697
Citations: PlumX Metrics

2011LE15      Int.J.Mod.Phys. E20, 274 (2011)

J.Le Bloas, L.Bonneau, P.Quentin, J.Bartel

Effects of pairing correlations on the isospin-symmetry-breaking correction to super-allowed O+ → O+ Fermi transitions with in the higher Tamm-Dancoff approach

RADIOACTIVITY 50Mn(β+); calculated isospin-symmetry breaking corrections.

NUCLEAR STRUCTURE 48Cr, 52Fe; calculated isospin-symmetry breaking corrections.

doi: 10.1142/S0218301311017624
Citations: PlumX Metrics

2011NE09      Phys.Rev. C 84, 044310 (2011)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Rotational states and masses of heavy and superheavy nuclei

NUCLEAR STRUCTURE Z=88-112, N=136-170; calculated nuclear masses, rotational bands, single particle levels, potential energy surfaces, deformation energies. 238Cm; calculated energy and moment of inertia contour plots on c, h plane. 238Cm, 236U; calculated Cross section of the potential energies as function of the mass-asymmetry deformation parameter. 230,232U, 236,244Pu, 242,246,248Cm, 248,250Fm, 252,254No; calculated rotational bands. Lublin-Strasbourg drop (LSD), Strutinsky shell-correction method, Yukawa-folded (YF) mean-field potential, BCS approach for pairing correlations. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.044310
Citations: PlumX Metrics

2011PO03      Acta Phys.Pol. B42, 455 (2011)

K.Pomorski, F.Ivanyuk, J.Bartel

On Optimal Shapes of Fissioning and Rotating Nuclei

doi: 10.5506/APhysPolB.42.455
Citations: PlumX Metrics

2011PO05      Int.J.Mod.Phys. E20, 316 (2011)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Microscopic energy corrections at the scission configuration

RADIOACTIVITY 236U(SF); calculated shell energy, single-particle potential, fission fragments, microscopic fission barrier.

doi: 10.1142/S0218301311017673
Citations: PlumX Metrics

2010BA10      Int.J.Mod.Phys. E19, 601 (2010)

J.Bartel, F.Ivanyuk, K.Pomorski

On Poincare instability of rotating stars and nuclei

doi: 10.1142/S0218301310015011
Citations: PlumX Metrics

2010DO07      Int.J.Mod.Phys. E19, 699 (2010)

A.Dobrowolski, B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Rotational bands in heavy and superheavy nuclei within the Lublin Strasbourg Drop + Yukawa folded Model

NUCLEAR STRUCTURE 254No; calculated deformation energy, shell correction, moment of inertia, rotational energies.

doi: 10.1142/S0218301310015126
Citations: PlumX Metrics

2010LE06      Int.J.Mod.Phys. E19, 568 (2010)

J.Le Bloas, L.Bonneau, P.Quentin, J.Bartel, D.Strottman

Effects of vibrational and pairing correlations on isospin mixing in the Higher Tamm-Dancoff Approximation

doi: 10.1142/S0218301310014984
Citations: PlumX Metrics

2010MA22      Int.J.Mod.Phys. E19, 735 (2010)

A.G.Magner, A.M.Gzhebinsky, A.S.Sitdikov, A.A.Khamzin, J.Bartel

Semiclassical shell structure of moments of inertia in deformed Fermi systems

doi: 10.1142/S0218301310015175
Citations: PlumX Metrics

2010MA30      Phys.Rev. C 81, 064302 (2010)

A.G.Magner, A.S.Sitdikov, A.A.Khamzin, J.Bartel

Semiclassical shell structure in rotating Fermi systems

doi: 10.1103/PhysRevC.81.064302
Citations: PlumX Metrics

2009BA33      Int.J.Mod.Phys. E18, 986 (2009)

J.Bartel, B.Nerlo-Pomorska, K.Pomorski

Jacobi bifurcation in hot rotating nuclei with a LSD + Yukawa folded approach

NUCLEAR STRUCTURE 88Mo; calculated deformation energy surfaces for excited nuclei.

doi: 10.1142/S0218301309013130
Citations: PlumX Metrics

2009BO22      Int.J.Mod.Phys. E18, 951 (2009)

L.Bonneau, J.Le Bloas, P.Quentin, J.Bartel, D.Strottman

Isospin mixing in the higher Tamm-Dancoff approximation

NUCLEAR STRUCTURE 16O, 40Ca, 56Ni, 100Sn; calculated mass excess; 100Sn; calculated isospin mixing.

doi: 10.1142/S0218301309013099
Citations: PlumX Metrics

2009DO07      Acta Phys.Pol. B40, 705 (2009)

A.Dobrowolski, B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Fission Barrier Heights of Medium Heavy and Heavy Nuclei

2009MA77      Iader.Fiz.Enerh. 10, 239 (2009); Nuc.phys.atom.energ. 10, 239 (2009)

A.G.Magner, A.S.Sitdikov, A.A.Khamzin, J.Bartel, A.M.Gzhebinsky

Semiclassical shell-structure moments of inertia in heated Fermi systems

doi: 10.15407/jnpae
Citations: PlumX Metrics

2008BA09      Phys.Rev. C 77, 024311 (2008)

J.Bartel, K.Bencheikh, J.Meyer

Extended Thomas-Fermi density functionals in the presence of a tensor interaction in spherical symmetry

NUCLEAR STRUCTURE 90Zr, 208Pb; calculated neutron spin-orbit densities, neutron spin-orbit potentials. T42 Skyrme parameterization.

doi: 10.1103/PhysRevC.77.024311
Citations: PlumX Metrics

2008BA12      Int.J.Mod.Phys. E17, 100 (2008)

J.Bartel, K.Pomorski

Jacobi shape transitions within the LSD model and the Skyrme-ETF approach

NUCLEAR STRUCTURE 90Zr, 154Sm, 232Th, 240Pu; calculated Modified Funny-Hills shape parameterization for fission process using Lublin-Strasbourg Drop Model.

doi: 10.1142/S0218301308009598
Citations: PlumX Metrics

2008NE02      Acta Phys.Pol. B39, 417 (2008)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, A.Dobrowolski

Nuclear Level Density Parameter

2008QU02      Int.J.Mod.Phys. E17, 228 (2008)

P.Quentin, H.Naidja, L.Bonneau, J.Bartel, T.L.Ha

The higher TAMM-DANCOFF approximation theoretical context and phenomenological aspects

NUCLEAR STRUCTURE 40Ca; calculated quadrupole-quadrupole residual interaction parameters, odd-even mass differences and energy shifts using Higher Tamm-Dancoff approximation.

doi: 10.1142/S0218301308009732
Citations: PlumX Metrics

2007BA18      Int.J.Mod.Phys. E16, 459 (2007)

J.Bartel, A.Dobrowolski, K.Pomorski

Saddle-point masses of even-even actinide nuclei

NUCLEAR STRUCTURE 232,234Th, 234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250Cf; calculated fission barrier energies, inner and outer saddle point masses. Modified funny-hills shape parameterization.

doi: 10.1142/S0218301307005892
Citations: PlumX Metrics

2007DO03      Phys.Rev. C 75, 024613 (2007)

A.Dobrowolski, K.Pomorski, J.Bartel

Fission barriers in a macroscopic-microscopic model

NUCLEAR STRUCTURE 232,234Th, 236,238U, 236,240Pu, 272Ds, 298Fl; calculated fission barriers. Macroscopic-microscopic model, four-dimensional shape parameterization.

doi: 10.1103/PhysRevC.75.024613
Citations: PlumX Metrics

2007PO02      Int.J.Mod.Phys. E16, 566 (2007)

K.Pomorski, B.Nerlo-Pomorska, J.Bartel

Nuclear level density parameter with Yukawa folded potential

NUCLEAR STRUCTURE O, Ca, Sr, Sn, Sm, Pb, Th; calculated level density parameters. 40Ca, 50Cr, 100Ru, 150Sm, 200Hg, 250Cf; calculated level density parameters vs deformation. Yukawa folded potential.

doi: 10.1142/S0218301307006009
Citations: PlumX Metrics

2006BA12      Int.J.Mod.Phys. E15, 478 (2006)

J.Bartel, K.Pomorski, B.Nerlo-Pomorska

Nuclear level density at finite temperatures

NUCLEAR STRUCTURE Z=8-82; A=16-224; calculated single-particle level densities vs temperature. Selfconsistent mean-field approach.

doi: 10.1142/S0218301306004399
Citations: PlumX Metrics

2006BA13      Int.J.Mod.Phys. E15, 553 (2006)

J.Bartel, K.Bencheikh, P.Quentin

Spin densities and currents in the Routhian approximation

NUCLEAR STRUCTURE 90Zr, 154Sm; calculated deformation vs angular momentum, spin densities and currents.

doi: 10.1142/S021830130600451X
Citations: PlumX Metrics

2006BE06      Nucl.Phys. A764, 79 (2006)

K.Bencheikh, J.Bartel, P.Quentin

Semiclassical description of finite fermion systems at finite temperature in a generalised Routhian approach

NUCLEAR STRUCTURE 90Zr; calculated proton and neutron contributions to moment of inertia. Semi-classical Extended Thomas Fermi approach.

doi: 10.1016/j.nuclphysa.2005.08.018
Citations: PlumX Metrics

2006DO05      Int.J.Mod.Phys. E15, 432 (2006)

A.Dobrowolski, K.Pomorski, J.Bartel

Importance of mass asymmetry and nonaxiality for the description of fission barriers

NUCLEAR STRUCTURE 232,234Th, 236,240U, 236,246Pu, 248Cm, 250Cf; calculated fission barrier heights, role of mass asymmetry and non-axial deformation.

doi: 10.1142/S0218301306004314
Citations: PlumX Metrics

2006DO27      Phys.Scr. T125, 189 (2006)

A.Dobrowolski, K.Pomorski, J.Bartel

Influence of different proton and neutron deformations on fission barriers

NUCLEAR STRUCTURE 240Pu, 298Fl; calculated total energy vs deformation.

doi: 10.1088/0031-8949/2006/T125/044
Citations: PlumX Metrics

2006NE07      Phys.Rev. C 74, 034327 (2006)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel

Shell energy and the level-density parameter of hot nuclei

NUCLEAR STRUCTURE 40Ca, 50Cr, 100Ru, 150Sm, 200Hg, 250Cf; calculated level density parameters, shell-correction energy vs temperature. Macroscopic-microscopic approach.

doi: 10.1103/PhysRevC.74.034327
Citations: PlumX Metrics

2006PO03      Int.J.Mod.Phys. E15, 417 (2006)

K.Pomorski, J.Bartel

Fission dynamics in the four-dimensional deformation space

NUCLEAR STRUCTURE 232Th; calculated fission barrier, related features.

doi: 10.1142/S0218301306004296
Citations: PlumX Metrics

2005BA48      Int.J.Mod.Phys. E14, 437 (2005)

J.Bartel, K.Bencheikh, P.Quentin

Cranking of nuclei at finite temperature: A semiclassical approach

NUCLEAR STRUCTURE 90Zr; calculated proton and neutron contributions to moment of inertia, dependence on nuclear temperature. Extended Thomas Fermi theory.

doi: 10.1142/S0218301305003247
Citations: PlumX Metrics

2005DO08      Acta Phys.Pol. B36, 1373 (2005)

A.Dobrowolski, K.Pomorski, J.Bartel

Dependence of fusion barrier heights on the difference of proton and neutron radii

NUCLEAR REACTIONS 208Pb(16O, X), E not given; calculated fusion barrier heights, dependence on neutron and proton radii. Semiclassical extended Thomas-Fermi approach, Skyrme interaction.

2005DO10      Int.J.Mod.Phys. E14, 457 (2005)

A.Dobrowolski, J.Bartel, K.Pomorski

Influence of different proton and neutron deformations on nuclear energies

NUCLEAR STRUCTURE 232,238U, 240Pu, 270Hs, 272Ds; calculated energy vs deformation. Yukawa-folded model, shell corrections.

doi: 10.1142/S0218301305003272
Citations: PlumX Metrics

2005NE08      Acta Phys.Pol. B36, 1377 (2005)

B.Nerlo-Pomorska, J.Sykut, J.Bartel

Temperature dependence of the nuclear shell energies

NUCLEAR STRUCTURE 216Th; calculated shell correction energies. Ca, Sr, Sn, Sm, Pb, Th; calculated level-density parameters.

2005NE09      Int.J.Mod.Phys. E14, 505 (2005)

B.Nerlo-Pomorska, K.Pomorski, J.Sykut, J.Bartel

Temperature dependence of the nuclear energy in relativistic mean-field theory

NUCLEAR STRUCTURE A=16-224; analyzed level densities, temperature-dependent shell corrections.

doi: 10.1142/S021830130500334X
Citations: PlumX Metrics

2004BA15      Int.J.Mod.Phys. E13, 225 (2004)

J.Bartel, K.Bencheikh, P.Quentin

Currents, spin densities and mean-field form factors in rotating nuclei: A semi-classical approach

NUCLEAR STRUCTURE 90Zr; calculated spin densities, form factors, deformation, related features. Semi-classical approach.

doi: 10.1142/S0218301304001989
Citations: PlumX Metrics

2004DO01      Int.J.Mod.Phys. E13, 309 (2004)

A.Dobrowolski, K.Pomorski, J.Bartel

Mean-field description of heavy-ion collisions

doi: 10.1142/S0218301304002107
Citations: PlumX Metrics

2004NE14      Int.J.Mod.Phys. E13, 1147 (2004)

B.Nerlo-Pomorska, K.Pomorski, J.Sykut, J.Bartel

Temperature dependence of nuclear structure in the relativistic mean-field theory with a new parameter set

NUCLEAR STRUCTURE A=16-220; calculated masses, binding energies, level density vs temperature. Relativistic mean-field theory.

doi: 10.1142/S0218301304002636
Citations: PlumX Metrics

2003DO20      Nucl.Phys. A729, 713 (2003)

A.Dobrowolski, K.Pomorski, J.Bartel

Mean-field description of fusion barriers with Skyrme's interaction

NUCLEAR REACTIONS 238U(50Ti, X), 232Th(48Ca, X), E not given; calculated fusion barrier distributions. Z=108-114; calculated fusion barrier heights for reactions leading to superheavy isotopes. Extended Thomas-Fermi method, Skyrme interaction.

doi: 10.1016/j.nuclphysa.2003.09.008
Citations: PlumX Metrics

2003MA30      Yad.Fiz. 66, 1204 (2003); Phys.Atomic Nuclei 66, 1168 (2003)

T.Materna, C.Schmitt, Y.Aritomo, J.Bartel, B.Benoit, A.A.Bogatchev, E.de Goes Brennand, O.Dorvaux, G.Giardina, F.Hanappe, M.G.Itkis, I.M.Itkis, J.Kliman, G.N.Kniajeva, N.A.Kondratiev, E.M.Kozulin, L.Krupa, Yu.Ts.Oganessian, I.V.Pokrovsky, E.V.Prokhorova, N.Rowley, K.Siwek-Wilczynska, L.Stuttge

Tracking Dissipation in Capture Reactions

NUCLEAR REACTIONS 98Mo(28Si, X), E=204 MeV; 208Pb(58Ni, X), E=232Th(40Ca, X), E=166 MeV; analyzed pre- and post-scission neutron multiplicities, correlations. 209Bi(18O, F), E*=26 MeV; analyzed fission fragment mass distribution. Backtracking analysis method.

doi: 10.1134/1.1586432
Citations: PlumX Metrics

2003SC40      Acta Phys.Pol. B34, 2135 (2003)

C.Schmitt, J.Bartel, A.Surowiec, K.Pomorski

Fission of heavy nuclei at low energy

NUCLEAR REACTIONS 209Bi(18O, F), E=76 MeV; measured fission fragment distribution, pre-scission neutron multiplicity; deduced shell and pairing effects. Two-dimensional Langevin equation.

2003SC41      Acta Phys.Pol. B34, 1651 (2003)

C.Schmitt, J.Bartel, K.Pomorski, A.Surowiec

Fission-fragment mass distribution and particle evaporation at low energies

NUCLEAR REACTIONS 98Mo(28Si, X), E=187.2 MeV; calculated fusion and fission σ, fission barrier features.

NUCLEAR STRUCTURE 170Yb, 188Pt; calculated light particle emission widths from excited nuclei. 227Pa; calculated fission fragment mass distributions vs excitation energy.

2002BA64      Eur.Phys.J. A 14, 179 (2002)

J.Bartel, K.Bencheikh

Nuclear Mean Fields Through Self-Consistent Semiclassical Calculations

NUCLEAR STRUCTURE 208Pb; calculated neutron and proton densities, nuclear potentials. Skyrme-type interactions.

doi: 10.1140/epja/i2000-10157-x
Citations: PlumX Metrics

2002DO03      Phys.Rev. C65, 041306 (2002)

A.Dobrowolski, K.Pomorski, J.Bartel

Liquid Drop Model with Different Neutron versus Proton Deformations

NUCLEAR STRUCTURE 98Zr, 146Nd, 150,158,166Dy, 208Pb; calculated binding energies vs neutron-proton deformation difference. Liquid drop model.

doi: 10.1103/PhysRevC.65.041306
Citations: PlumX Metrics

2002NE17      Phys.Rev. C 66, 051302 (2002)

B.Nerlo-Pomorska, K.Pomorski, J.Bartel, K.Dietrich

Nuclear level densities within the relativistic mean-field theory

NUCLEAR STRUCTURE A=30-210; calculated level density parameters. 118Sn; calculated mean-field energy vs temperature. Relativistic mean-field approach.

doi: 10.1103/PhysRevC.66.051302
Citations: PlumX Metrics

2002SC03      Acta Phys.Pol. B33, 431 (2002)

C.Schmitt, J.Bartel, A.Surowiec, K.Pomorski

Influence of Nuclear Curvature on Fission Dynamics

NUCLEAR REACTIONS 154Sm(34S, X), 188Pt(16O, X), 98Mo(28Si, X), 107Ag(19F, X), 208Pb(58Ni, X), (64Ni, X), 238U(40Ar, X), 232Th(40Ca, X), E* ≈ 60-200 MeV; calculated light particles prefission multiplicity; deduced role of nuclear curvature. Langevin equation.

2002SU02      Acta Phys.Pol. B33, 479 (2002)

A.Surowiec, K.Pomorski, C.Schmitt, J.Bartel

Comparison between Weisskopf and Thomas-Fermi Model for Particle Emission Widths from Hot Deformed Nuclei

2001SC13      Acta Phys.Pol. B32, 841 (2001)

C.Schmitt, J.Bartel, A.Surowiec, K.Pomorski

Distribution of Light Particles Emitted from Fissioning Nuclei

NUCLEAR REACTIONS 154Sm(34S, nX), E*=100 MeV; 208Pb(64Ni, nX), E*=138.3 MeV; calculated pre-fission, evaporation neutron multiplicities. Comparison with data.

2000PO23      Nucl.Phys. A679, 25 (2000)

K.Pomorski, B.Nerlo-Pomorska, A.Surowiec, M.Kowal, J.Bartel, K.Dietrich, J.Richert, C.Schmitt, B.Benoit, E.de Goes Brennand, L.Donadille, C.Badimon

Light-Particle Emission from the Fissioning Nuclei 126Ba, 188Pt and 266, 272, 278110: Theoretical predictions and experimental results

NUCLEAR REACTIONS 98Mo(28Si, X), E=166, 187, 204 MeV; 107Ag(19F, X), E=128, 148 MeV; 154Sm(34S, X), E=160, 203 MeV; 172Yb(16O, X), E=138 MeV; 208Pb(58Ni, X), (64Ni, X), 232Th(40Ca, X), 238U(40Ar, X), E=66-186 MeV; calculated fusion, fission σ(L), prefission particle multiplicities; deduced entrance channel effects. Comparisons with data.

doi: 10.1016/S0375-9474(00)00327-4
Citations: PlumX Metrics

1999PI05      Nucl.Phys. A652, 142 (1999)

J.Piperova, D.Samsoen, P.Quentin, K.Bencheikh, J.Bartel, J.Meyer

Bulk Properties of Rotating Nuclei and the Validity of Liquid Drop Model at Finite Angular Momenta

NUCLEAR STRUCTURE Z=20-98; calculated Routhians; deduced liquid-drop model parameters vs spin. 90Zr, 150Sm, 208Pb, 240Pu; calculated proton distribution radii, Coulomb energies. 236U; calculated fissility parameter vs spin.

doi: 10.1016/S0375-9474(99)00159-1
Citations: PlumX Metrics

1999SA19      Nucl.Phys. A652, 34 (1999)

D.Samsoen, P.Quentin, J.Bartel

Generalized Routhian Calculations within the Skyrme-Hartree-Fock Approximation

NUCLEAR STRUCTURE 80Sr, 150Gd; calculated moments of inertia, single-particle Routhians, quadrupole moments. Generalized Routhian calculations, Skyrme-Hartree-Fock approximation.

doi: 10.1016/S0375-9474(99)00134-7
Citations: PlumX Metrics

1996BA11      Z.Phys. A354, 59 (1996)

J.Bartel, K.Mahboub, J.Richert, K.Pomorski

Phenomenological Model of Fission Barriers of Hot Rotating Nuclei

NUCLEAR STRUCTURE 109Cd, 126Ba, 160Yb, 188Pt, 240Pu; calculated fission barrier heights, (mass number/level density parameter) vs deformation parameter, saddle point shapes, potential energies, mass, friction parameters. Phenomenological model, multi-dimensional deformation space.

doi: 10.1007/s002180050013
Citations: PlumX Metrics

1996BA49      Acta Phys.Pol. B27, 133 (1996)

J.Bartel, K.Bencheikh, E.Chabanat, J.Meyer, I.Mikhailov, J.Piperova, P.Quentin, D.Samsoen

Extended Thomas-Fermi Description of Rotating Nuclei

1996PO14      Nucl.Phys. A605, 87 (1996)

K.Pomorski, J.Bartel, J.Richert, K.Dietrich

Evaporation of Light Particles from a Hot, Deformed and Rotating Nucleus

NUCLEAR STRUCTURE 160Yb; calculated nucleon-, α-emission widths, probabilities, prefission multiplicity vs time, fission barrier heights. Evaporation theory, comparison to 144Gd, hot deformed, rotating nucleus.

doi: 10.1016/0375-9474(96)00180-7
Citations: PlumX Metrics

1994BA26      Phys.Rev. C49, 2592 (1994)

J.Bartel, M.B.Johnson, M.Singham, W.Stocker

Microscopic Coupled-Channel Description of Pion Inelastic Scattering from Rotational Nuclei

NUCLEAR REACTIONS 152Sm(π+, π+), (π-, π-), E not given; calculated σ(θ). Microscopic coupled-channels description.

doi: 10.1103/PhysRevC.49.2592
Citations: PlumX Metrics

1994BE05      Nucl.Phys. A571, 518 (1994)

K.Bencheikh, P.Quentin, J.Bartel

Rotations in Nuclei - A Semiclassical Description

NUCLEAR STRUCTURE A ≤ 250; calculated moments of inertia. Semi-classical framework, rotating nuclei.

doi: 10.1016/0375-9474(94)90223-2
Citations: PlumX Metrics

1994CH24      Phys.Lett. 325B, 13 (1994)

E.Chabanat, J.Meyer, K.Bencheikh, P.Quentin, J.Bartel

Equilibrium Deformations of Rotating Nuclei in a Self-Consistent Semiclassical Approach

NUCLEAR STRUCTURE 90Zr, 56Ni, 208Pb; calculated deformation to sphericity energies ratio. 90Zr; calculated extended Thomas-Fermi moment of inertia vs rotational energy frequency. Other nuclei also studied. Self-consistent semi-classical approach.

doi: 10.1016/0370-2693(94)90064-7
Citations: PlumX Metrics

1993BE31      Nucl.Phys. A557, 459c (1993)

K.Bencheikh, P.Quentin, J.Bartel, J.Meyer

A Semiclassical Description of Rapidly Rotating Nuclei

NUCLEAR STRUCTURE 16O, 56Ni, 90Zr, 140Ce, 240Pu, 202,208,214Pb, 116,132Sn; calculated moments of inertia. Extended Thomas-Fermi model, other Sn, Pb isotopes included.

doi: 10.1016/0375-9474(93)90562-C
Citations: PlumX Metrics

1993PO06      Z.Phys. A345, 311 (1993)

K.Pomorski, J.Richert, J.Bartel, K.Dietrich

Electromagnetic Emission from Damped Vibrations of Fission Fragments

RADIOACTIVITY 252Cf(SF); calculated fission fragment quadrupole moment vs time, γ-spectrum vs temperature. Two fragments, damped quadrupole surface vibrations.

doi: 10.1007/BF01280839
Citations: PlumX Metrics

1992BA64      Phys.Lett. 296B, 5 (1992)

J.Bartel, M.B.Johnson, M.K.Singham, W.Stocker

Pion Inelastic Scattering and the Neutron Density in 152Sm

NUCLEAR REACTIONS 152Sm(π+, π+), (π-, π-), (π+, π+'), (π-, π-'), E=180 MeV; analyzed σ(θ). 152Sm deduced neutron radius features, n-, p-deformations.

doi: 10.1016/0370-2693(92)90795-6
Citations: PlumX Metrics

1989BA75      Ann.Phys.(New York) 196, 89 (1989)

J.Bartel, M.B.Johnson, M.K.Singham

Pion Single-Charge-Exchange Scattering and Nuclear Structure in Deformed Nuclei

NUCLEAR REACTIONS 165Ho(π+, π+), (π+, π+'), (π-, π-), (π-, π-'), (π-, π0), E=165 MeV; calculated σ(θ). Coupled-channel optical model.

doi: 10.1016/0003-4916(89)90046-8
Citations: PlumX Metrics

1988AU07      Phys.Rev. C38, 2921 (1988)

N.Auerbach, J.Bartel, G.Wenes

Core Polarization Effects in sd-Shell Nuclei and Charge-Symmetry Breaking in the Nuclear Mean Field

NUCLEAR STRUCTURE 28Si, 32Si, 40Ca; calculated proton, neutron densities, single-particle potentials. Hartree-Fock method, spherical, deformed nuclei, symmetry potential.

doi: 10.1103/PhysRevC.38.2921
Citations: PlumX Metrics

1986ME03      Phys.Lett. 172B, 122 (1986)

J.Meyer, J.Bartel, M.Brack, P.Quentin, S.Aicher

A Simple Gaussian Approximation for the One-Body Density Matrix

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated defect function, proton distribution, total binding energies. 16O, 48Ca, 90Zr; calculated total binding energies. Gaussian density matrix approach.

doi: 10.1016/0370-2693(86)90820-8
Citations: PlumX Metrics

1985BA05      Phys.Lett. 152B, 29 (1985)

J.Bartel, P.Quentin

Fission Barriers of Excited Nuclei

NUCLEAR STRUCTURE 240Pu; calculated fission barrier vs temperature. Hartree-Fock approximation, finite temperature, Skyrme interaction.

doi: 10.1016/0370-2693(85)91132-3
Citations: PlumX Metrics

1984BA21      Phys.Lett. 139B, 1 (1984)

J.Bartel, M.Brack, C.Guet, H.-B.Hakansson

On the Semiclassical Treatment of Hot Nuclear Systems

NUCLEAR STRUCTURE 208Pb; calculated neutron, proton rms radii vs temperature, effective level density parameter vs excitation energy. Realistic Skyrme force, hot nuclear systems, semi-classical treatment.

doi: 10.1016/0370-2693(84)90021-2
Citations: PlumX Metrics

1982BA35      Phys.Lett. 114B, 303 (1982)

J.Bartel, M.Vallieres

Selfconstistent Semiclassical Calculations using the Partial h-Bar Resummation Method

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 114Sn, 140Ce, 208Pb; calculated energies, rms radii. Self-consistent, semi-classical model, partial summation method.

doi: 10.1016/0370-2693(82)90349-5
Citations: PlumX Metrics

1982BA39      Nucl.Phys. A386, 79 (1982)

J.Bartel, P.Quentin, M.Brack, C.Guet, H.-B.Hakansson

Towards a Better Parametrisation of Skyrme-Like Effective Forces: A critical study of the SkM Force

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 114,132Sn, 140Ce, 208Pb; calculated rms charge radii, Hartree-Fock, extended Thomas-Fermi binding energies. 90Zr, 208Pb, 166Er, 240Pu; calculated neutron, proton single particle levels. 166Er, 240Pu; calculated rms charge radii, quadrupole, hexadecapole moments. 240Pu calculated fission barrier. Hartree-Fock plus BCS, Skyrme type forces.

doi: 10.1016/0375-9474(82)90403-1
Citations: PlumX Metrics

1980BA48      Z.Phys. A297, 333 (1980)

J.Bartel, H.Feldmeier

One- and Two-Body Dissipation in Peripheral Heavy Ion Collisions

NUCLEAR REACTIONS 16O(16O, X), E(cm)=2-20 MeV/nucleon; calculated excitation energies; deduced one-body dissipation dominance. Peripheral collisions, many-body Schrodinger equation, time-dependent perturbation theory.

doi: 10.1007/BF01422794
Citations: PlumX Metrics

Back to query form