NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = N.Schunck

Found 81 matches.

Back to query form

2024ZU01      Phys.Rev. C 109, 014319 (2024)

L.Zurek, S.K.Bogner, R.J.Furnstahl, R.Navarro Perez, N.Schunck, A.Schwenk

Optimized nuclear energy density functionals including long-range pion contributions

doi: 10.1103/PhysRevC.109.014319
Citations: PlumX Metrics

2023SC05      Phys.Rev. C 107, 044312 (2023)

N.Schunck, M.Verriere, G.Potel Aguilar, R.C.Malone, J.A.Silano, A.P.D.Ramirez, A.P.Tonchev

Microscopic calculation of fission product yields for odd-mass nuclei

NUCLEAR REACTIONS 236,238U(n, F), E=2.2-7.2 MeV; calculated mass distribution of the light fission fragment before prompt emission, fission fragment mass distribution after neutron emission, ratio of neutron over proton numbers in the fission fragments, axial quadrupole and octupole deformation in the fission fragments, probability to populate a given spin projection. Hartree-Fock-Bogoliubov theory with Skyrme energy functionals combined with FREYA calculations. Comparison to available experimental data, GEF-2021/1.1 calculations and ENDF/B-VIII.0, JEFF-3.3, and JENDL-5 evaluations.

NUCLEAR STRUCTURE 237,239U; calculated levels, J, π, spectrum of quasi-bound states for each spin projection, potential energy curves in as a function of the axial quadrupole moment. Generator coordinate method with Gaussian overlap approximation.

doi: 10.1103/PhysRevC.107.044312
Citations: PlumX Metrics

2022KO12      Phys. Rev. Res. 4, 021001 (2022)

K.Kolos, V.Sobes, R.Vogt, C.E.Romano, M.S.Smith, L.A.Bernstein, D.A.Brown, M.T.Burkey, Y.Danon, M.A.Elsawi, B.L.Goldblum, L.H.Heilbronn, S.L.Hogle, J.Hutchinson, B.Loer, E.A.McCutchan, M.R.Mumpower, E.M.O'Brien, C.Percher, P.N.Peplowski, J.J.Ressler, N.Schunck, N.W.Thompson, A.S.Voyles, W.Wieselquist, M.Zerkle

Current nuclear data needs for applications

doi: 10.1103/PhysRevResearch.4.021001
Citations: PlumX Metrics

2022NE03      Phys.Rev. C 105, 034349 (2022)

E.M.Ney, J.Engel, N.Schunck

Two-body weak currents in heavy nuclei

RADIOACTIVITY 134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174Sn(β-);162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220Gd(β-); calculated decay rates, Gamow-Teller strength distribution, density of the lowest lying Gamow-Teller transition amplitude. Two-body axial currents studied by charge-changing finite amplitude method with Skyrme functional.

doi: 10.1103/PhysRevC.105.034349
Citations: PlumX Metrics

2022SC06      Prog.Part.Nucl.Phys. 125, 103963 (2022)

N.Schunck, D.Regnier

Theory of nuclear fission

doi: 10.1016/j.ppnp.2022.103963
Citations: PlumX Metrics

2021BA41      Phys.Lett. B 820, 136601 (2021)

K.Banerjee, D.J.Hinde, M.Dasgupta, J.Sadhukhan, E.C.Simpson, D.Y.Jeung, C.Simenel, B.M.A.Swinton-Bland, E.Williams, L.T.Bezzina, I.P.Carter, K.J.Cook, H.M.Albers, Ch.E.Dullmann, J.Khuyagbaatar, B.Kindler, B.Lommel, C.Mokry, E.Prasad, J.Runke, N.Schunck, C.Sengupta, J.F.Smith, P.Thorle-Pospiech, N.Trautmann, K.Vo-Phuoc, J.Walshe, A.Yakushev

Sensitive search for near-symmetric and super-asymmetric fusion-fission of the superheavy element Flerovium (Z=114)

NUCLEAR REACTIONS 208Pb, 244Pu(48Ca, X), 232Th(54Cr, X)Fl, E not given; analyzed available data; deduced masses, σ(θ). Comparison with microscopic calculations of Helmholtz free energy surfaces (FES).

doi: 10.1016/j.physletb.2021.136601
Citations: PlumX Metrics

2021BU03      Phys.Rev.Lett. 126, 142502 (2021)

A.Bulgac, I.Abdurrahman, S.Jin, K.Godbey, N.Schunck, I.Stetcu

Fission Fragment Intrinsic Spins and Their Correlations

RADIOACTIVITY 236U, 240Pu(SF); calculated fission fragment intrinsic spins and their correlations using two nuclear energy density functionals.

doi: 10.1103/PhysRevLett.126.142502
Citations: PlumX Metrics

2021MA51      Phys.Rev. C 104, L021601 (2021)

P.Marevic, N.Schunck, J.Randrup, R.Vogt

Angular momentum of fission fragments from microscopic theory

NUCLEAR REACTIONS 239Pu(n, F), E=thermal; calculated angular-momentum distributions of 24 fission fragments over a wide range of fragment masses, and total average photon multiplicities. 239Pu(n, F)128Sn/132Sn/138Xe/130Sn/150Ce/110Ru/90Kr, E=thermal; calculated angular-momentum distributions of primary fission fragments, with binding energy calculated as a function of the quadrupole deformation parameter β2 using the HFB model; deduced dependency of nuclear shell structure and deformation on the angular momentum of the fragments. Calculations used fission model FREYA, and a starting set of 1545 scission configurations.

doi: 10.1103/PhysRevC.104.L021601
Citations: PlumX Metrics

2021VE05      Phys.Rev. C 103, 054602 (2021)

M.Verriere, N.Schunck, D.Regnier

Microscopic calculation of fission product yields with particle-number projection

NUCLEAR REACTIONS 235U, 239Pu(n, F), E=0.5-10 MeV; calculated mass and charge distributions of fission fragments, odd-even staggering in the charge yields of fission fragments, two-dimensional isotopic fission yields as functions of charge and atomic mass, average neutron excess of fragments, isotopic yields. 236U, 240Pu; calculated potential energy surfaces (PES) in (Q20, Q30) planes as a function of the axial quadrupole and axial octupole moments using SkM* density functional. Microscopic collective model calculations of fission fragment distributions within the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA) framework, with the number of particles in fission fragments extracted from direct particle-number projection method. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054602
Citations: PlumX Metrics

2020BE28      J.Phys.(London) G47, 113002 (2020)

M.Bender, R.Bernard, G.Bertsch, S.Chiba, J.Dobaczewski, N.Dubray, S.A.Giuliani, K.Hagino, D.Lacroix, Z.Li, P.Magierski, J.Maruhn, W.Nazarewicz, J.Pei, S.Peru, N.Pillet, J.Randrup, D.Regnier, P.G.Reinhard, L.M.Robledo, W.Ryssens, J.Sadhukhan, G.Scamps, N.Schunck, C.Simenel, J.Skalski, I.Stetcu, P.Stevenson, S.Umar, M.Verriere, D.Vretenar, M.Warda, S.Aberg

Future of nuclear fission theory

doi: 10.1088/1361-6471/abab4f
Citations: PlumX Metrics

2020MA38      Phys.Rev.Lett. 125, 102504 (2020)

P.Marevic, N.Schunck

Fission of 240Pu with Symmetry-Restored Density Functional Theory

NUCLEAR REACTIONS 239Pu(n, F)240Pu, E<20 MeV; calculated primary fission fragment mass distributions, least-energy fission pathway in the HFB approximation.

doi: 10.1103/PhysRevLett.125.102504
Citations: PlumX Metrics

2020NE08      Phys.Rev. C 102, 034326 (2020)

E.M.Ney, J.Engel, T.Li, N.Schunck

Global description of β- decay with the axially deformed Skyrme finite-amplitude method: Extension to odd-mass and odd-odd nuclei

RADIOACTIVITY Z=20, A=50-61(β-); Z=21, A=50-66(β-); Z=22, A=52-73(β-); Z=23, A=53-74(β-); Z=24, A=56-79(β-); Z=25, A=57-80(β-); Z=26, A=60-83(β-); Z=27, A=62-88(β-); Z=28, A=68-93(β-); Z=29, A=68-96(β-); Z=30, A=74-99(β-); Z=31, A=74-102(β-); Z=32, A=80-103(β-); Z=33, A=80-110(β-); Z=34, A=84-113(β-); Z=35, A=84-116(β-); Z=36, A=88-117(β-); Z=37, A=88-120(β-); Z=38, A=90-121(β-); Z=39, A=90-124(β-); Z=40, A=97-125(β-); Z=41, A=96-128(β-); Z=42, A=102-135(β-); Z=43, A=102-138(β-); Z=44, A=106-143(β-); Z=45, A=106-146(β-); Z=46, A=112-147(β-); Z=47, A=112-150(β-); Z=48, A=118-157(β-); Z=49, A=124-160(β-); Z=50, A=128-163(β-); Z=51, A=128-168(β-); Z=52, A=134-171(β-); Z=53, A=134-176(β-); Z=54, A=138-179(β-); Z=55, A=138-182(β-); Z=56, A=140-183(β-); Z=57, A=141-184(β-); Z=58, A=144-185(β-); Z=59, A=146-186(β-); Z=60, A=152-187(β-); Z=61, A=152-188(β-); Z=62, A=156-189(β-); Z=63, A=156-192(β-); Z=64, A=162-207(β-); Z=65, A=162-210(β-); Z=66, A=166-213(β-); Z=67, A=167-218(β-); Z=68, A=172-221(β-); Z=69, A=172-224(β-); Z=70, A=180-227(β-); Z=71, A=180-228(β-); Z=72, A=184-233(β-); Z=73, A=185-238(β-); Z=74, A=190-241(β-); Z=75, A=191-248(β-); Z=76, A=194-255(β-); Z=77, A=195-256(β-); Z=78, A=202-261(β-); Z=79, A=202-262(β-); Z=80, A=206-265(β-); Z=81, A=210-266(β-); Z=82, A=212-267(β-); Z=83, A=214-268(β-); Z=84, A=220-269(β-); Z=85, A=220-270(β-); Z=86, A=224-271(β-); Z=87, A=225-272(β-); Z=88, A=230-273(β-); Z=89, A=231-274(β-); Z=90, A=236-275(β-); Z=91, A=237-278(β-); Z=92, A=242-281(β-); Z=93, A=242-302(β-); Z=94, A=246-305(β-); Z=95, A=247-308(β-); Z=96, A=252-309(β-); Z=97, A=254-314(β-); Z=98, A=260-315(β-); Z=99, A=260-318(β-); Z=100, A=268-323(β-); Z=101, A=268-326(β-); Z=102, A=274-329(β-); Z=103, A=274-332(β-); Z=104, A=282-335(β-); Z=105, A=282-336(β-); Z=106, A=286-339(β-); Z=107, A=290-340(β-); Z=108, A=292-345(β-); Z=109, A=294-348(β-); Z=110, A=300-369(β-); calculated asymptotic quantum numbers of the blocked proton or neutron quasiparticle, HFB binding energy, β2 deformation parameter, β- decay half-lives of 3983 neutron-rich nuclei, Q(β-), percent first-forbidden rate, QRPA energy and B(GT) Gamow-Teller strength for selected nuclei. Statistical extension of the charge-changing Finite-amplitude method (FAM), with a global Skyrme density functional. Comparison with experimental data, and with other theoretical calculations. Relevance to r process in nucleosynthesis.

doi: 10.1103/PhysRevC.102.034326
Citations: PlumX Metrics

2020SC08      J.Phys.(London) G47, 074001 (2020)

N.Schunck, J.O'Neal, M.Grosskopf, E.Lawrence, S.M.Wild

Calibration of energy density functionals with deformed nuclei

doi: 10.1088/1361-6471/ab8745
Citations: PlumX Metrics

2020SP04      Phys.Rev. C 101, 055803 (2020)

T.M.Sprouse, R.Navarro-Perez, R.Surman, M.R.Mumpower, G.C.McLaughlin, N.Schunck

Propagation of statistical uncertainties of Skyrme mass models to simulations of r-process nucleosynthesis

ATOMIC MASSES Z=1-120; calculated atomic mass tables within the nuclear density functional theory (DFT) approach to nuclear structure with Skyrme energy density functionals (EDFs), and UNEDF1 parametrization. A=120-200; analyzed propagation of uncertainties in the Skyrme mass models using Bayesian statistics for the simulated r-process abundance patterns, by considering nuclear masses and the influence of the masses on β-decay and neutron capture rates.

doi: 10.1103/PhysRevC.101.055803
Citations: PlumX Metrics

2019BU20      Phys.Rev. C 100, 034615 (2019)

A.Bulgac, S.Jin, K.J.Roche, N.Schunck, I.Stetcu

Fission dynamics of 240Pu from saddle to scission and beyond

NUCLEAR REACTIONS 239Pu(n, F), E=thermal, 2, 4, 5.5 MeV; calculated fission pathway for 240Pu along the mass quadrupole moment Q20 using SeaLL1, SkM*, and UNEDF1 energy density functionals (EDFs), contours of neutron and proton densities, magnitudes and phases of neutron and proton pairing fields, snapshots of the induced fission of 240Pu with enhanced pairing strength, fission trajectories using SeaLL1 and SkM* EDFs, initial excitation energy, TKE, neutron and proton numbers, excitation energies of the heavy and light fission fragments (FFs), total excitation energy of FFs, average saddle-to-scission times, internal temperatures for the light and heavy FFs, average neutron multiplicity emitted by FFs as a function of incident neutron energy, time evolution of quadrupole Q20 and octupole Q30 moments of the light and heavy FFs before and after scission, number of neutrons emitted predominantly after scission; deduced minor effect of pairing strength on the fission dynamics. Calculations based on time-dependent superfluid local density approximation (TDSLDA), with no limit on pairing . Comparison with experimental data for average neutron multiplicities.

doi: 10.1103/PhysRevC.100.034615
Citations: PlumX Metrics

2019GI06      Rev.Mod.Phys. 91, 011001 (2019)

S.A.Giuliani, Z.Matheson, W.Nazarewicz, E.Olsen, P.-G.Reinhard, J.Sadhukhan, B.Schuetrumpf, N.Schunck, P.Schwerdtfeger

Colloquium: Superheavy elements: Oganesson and beyond

doi: 10.1103/RevModPhys.91.011001
Citations: PlumX Metrics

2019MA27      Phys.Rev. C 99, 041304 (2019)

Z.Matheson, S.A.Giuliani, W.Nazarewicz, J.Sadhukhan, N.Schunck

Cluster radioactivity of 294118Og176

RADIOACTIVITY 294Og(SF); calculated potential energy surfaces (PES) for 294Og in (Q20, Q30) collective plane, fission fragment distribution, heavy fragment mass and charge yields, collective inertias, dissipation strengths, and nucleon localization function using microscopic energy density functional theory, incorporating fission dynamics, quantum tunneling and stochastic dynamics up to scission. Relevance to search for cluster radioactivity of 294Og.

doi: 10.1103/PhysRevC.99.041304
Citations: PlumX Metrics

2019RE01      Phys.Rev. C 99, 024611 (2019)

D.Regnier, N.Dubray, N.Schunck

From asymmetric to symmetric fission in the fermium isotopes within the time-dependent generator-coordinate-method formalism

RADIOACTIVITY 254,256,258Fm(SF); calculated potential energy surfaces, primary fragment mass and charge yields for spontaneous fission (SF) and neutron-induced fission, total energy as a function of the heavy fragment charge. Time-dependent generator-coordinate-method with the Gaussian overlap approximation (TDGCM+GOA) with D1S, D1N, and D1M parametrizations of the Gogny effective interaction. Comparison with other theoretical approaches, and with experimental data. Relevance to r-process nucleosynthesis and the decay of superheavy elements.

doi: 10.1103/PhysRevC.99.024611
Citations: PlumX Metrics

2019VE06      Phys.Rev. C 100, 024612 (2019)

M.Verriere, N.Schunck, T.Kawano

Number of particles in fission fragments

RADIOACTIVITY 240Pu(SF); calculated mass, neutron and charge fragmentation probabilities for several scission configurations in 240Pu using a macroscopic-microscopic approach or full Hartree-Fock-Bogoliubov calculations. Discussed two methods to estimate particle-number dispersion in fission fragments, Monte Carlo sampling of single-particle configurations, and extended standard projection techniques.

doi: 10.1103/PhysRevC.100.024612
Citations: PlumX Metrics

2018BU07      Phys.Rev. C 97, 044313 (2018)

A.Bulgac, M.McNeil Forbes, Sh.Jin, R.Navarro-Perez, N.Schunck

Minimal nuclear energy density functional

ATOMIC MASSES Z=8-120, N=10-160, A=16-270; calculated ground-state energies, binding energies/nucleon, Coulomb, surface and symmetry energy/nucleon, contribution to the ground-state energies of the terms quartic in isospin density for 2375 nuclei, S(2n) and S(2p) for 606 even-even nuclei, and compared with AME-2012 data; calculated radii for 345 even-even nuclei. 48Ca, 208Pb; calculated proton and charge densities, and single particle energies for various orbitals. 240Pu; calculated potential energy surface, and fission pathway. N<300, Z<120; calculated proton and neutron driplines. Minimal nuclear energy density functional (NEDF) method called "SeaLL1". Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.97.044313
Citations: PlumX Metrics

2018NA11      Phys.Rev. C 97, 054304 (2018)

R.Navarro-Perez, N.Schunck, A.Dyhdalo, R.J.Furnstahl, S.K.Bogner

Microscopically based energy density functionals for nuclei using the density matrix expansion. II. Full optimization and validation

ATOMIC MASSES N=10-160; calculated binding energies of even-even nuclei, and compared with measured values from AME-2016.

NUCLEAR STRUCTURE N=10-160; calculated proton radii using the UNEDF2 and NLOΔ+3N functionals, and compared with experimental data. 208Pb; calculated neutron single particle levels using energy density functions (EDFs) from NN and 3N forces with and without Δ excitation. 240Pu; calculated deformation potential energy surface, excitation energy of the fission isomer, and height of the first and second fission barriers using LO, NLO, N2LO, N2LO+3N, NLOΔ, NLOΔ+3N, N2LOΔ, and N2LOΔ+3N energy density functionals, and compared with experimental values.

doi: 10.1103/PhysRevC.97.054304
Citations: PlumX Metrics

2017SA73      Phys.Rev. C 96, 061301 (2017)

J.Sadhukhan, C.Zhang, W.Nazarewicz, N.Schunck

Formation and distribution of fragments in the spontaneous fission of 240Pu

RADIOACTIVITY 240Pu(SF); calculated density of Langevin trajectories and corresponding effective fission paths (EFPs), neutron and proton localization functions (NLFs), partial mass distributions for different initial configurations, average collective momentum of Langevin trajectories for different EFPs. Stochastic Langevin framework for analysis of the formation and distribution of spontaneous fission yields.

doi: 10.1103/PhysRevC.96.061301
Citations: PlumX Metrics

2016RE10      Phys.Rev. C 93, 054611 (2016)

D.Regnier, N.Dubray, N.Schunck, M.Verriere

Fission fragment charge and mass distributions in 239Pu (n, f) in the adiabatic nuclear energy density functional theory

NUCLEAR REACTIONS 239Pu(n, F), E=low; calculated pre-neutron emission charge and mass distributions of the fission fragments. Potential energy surfaces. Nuclear energy density functional (EDF) method, with the time-dependent generator coordinate method (TDGCM) and Gaussian overlap approximation (GOA). Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.054611
Citations: PlumX Metrics

2016SA03      Phys.Rev. C 93, 011304 (2016)

J.Sadhukhan, W.Nazarewicz, N.Schunck

Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

RADIOACTIVITY 240Pu(SF); calculated static and dynamic SF paths on the potential energy contours, variation of pairing gap for neutrons and protons, mass and charge distributions of SF yields by solving time-dependent dissipative Langevin equations. Microscopic model based on nuclear density functional theory (DFT). Comparison with experimental data.

doi: 10.1103/PhysRevC.93.011304
Citations: PlumX Metrics

2016SC17      Rep.Prog.Phys. 79, 116301 (2016)

N.Schunck, L.M.Robledo

Microscopic theory of nuclear fission: a review

doi: 10.1088/0034-4885/79/11/116301
Citations: PlumX Metrics

2015MC02      Phys.Rev.Lett. 114, 122501 (2015)

J.D.McDonnell, N.Schunck, D.Higdon, J.Sarich, S.M.Wild, W.Nazarewicz

Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements

NUCLEAR STRUCTURE 130,132,134Sn, 134,136,138,140Te, 138,140Xe, 142,144,146Ba, 146,148,150Ce, 158,160Sm, 240Pu; calculated theoretical error bars for the masses of the even-even nuclei, two-neutron dripline, fission barrier. Comparison with available data.

doi: 10.1103/PhysRevLett.114.122501
Citations: PlumX Metrics

2015SC01      Nucl.Data Sheets 123, 115 (2015)

N.Schunck, J.D.McDonnell, D.Higdon, J.Sarich, S.Wild

Quantification of Uncertainties in Nuclear Density Functional Theory

NUCLEAR STRUCTURE Ca, Ni, Sn, Pb; calculated uncertainties for proton radii. Nuclear density functional theory.

doi: 10.1016/j.nds.2014.12.020
Citations: PlumX Metrics

2015SC06      Phys.Rev. C 91, 034327 (2015)

N.Schunck, D.Duke, H.Carr

Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

NUCLEAR REACTIONS 239Pu(n, F), E=thermal to fast; calculated internal and free energy along the least-energy fission pathway across multidimensional potential energy surfaces, inner and outer fission barriers as a function of the excitation energy of the compound nucleus, pairing energy in the ground state and fission isomer, Skyrme interaction energy and between the fission fragments of 240Pu as a function of number of particles in the neck and as function of temperature, direct Coulomb interaction energy in the fission of 240Pu. Local density approximation of density functional theory (DFT) at finite temperature for the description of induced fission.

doi: 10.1103/PhysRevC.91.034327
Citations: PlumX Metrics

2015SC07      J.Phys.(London) G42, 034024 (2015)

N.Schunck, J.D.McDonnell, J.Sarich, S.M.Wild, D.Higdon

Error analysis in nuclear density functional theory

doi: 10.1088/0954-3899/42/3/034024
Citations: PlumX Metrics

2015SC24      Eur.Phys.J. A 51, 169 (2015)

N.Schunck, J.D.McDonnell, D.Higdon, J.Sarich, S.M.Wild

Uncertainty quantification and propagation in nuclear density functional theory

doi: 10.1140/epja/i2015-15169-9
Citations: PlumX Metrics

2014KO13      Phys.Rev. C 89, 054314 (2014)

M.Kortelainen, J.McDonnell, W.Nazarewicz, E.Olsen, P.-G.Reinhard, J.Sarich, N.Schunck, S.M.Wild, D.Davesne, J.Erler, A.Pastore

Nuclear energy density optimization: Shell structure

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron and proton single-particle levels, B(E1) strengths. Z=10-105, N=10-160; calculated binding energies, S(2p), S(2n) for even-even nuclei; deduced deviations from experimental data. 226,228Ra, 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated inner fission barrier residuals, fission isomer excitation energies, outer fission barriers. Skyrme Hartree-Fock-Bogoliubov theory with POUNDERS optimization algorithm and a new parametrization UNEDF2 of the energy density functional. Comparison with other energy density functionals (UNEDF) parametrizations, and with experimental data.

doi: 10.1103/PhysRevC.89.054314
Citations: PlumX Metrics

2014SC23      Phys.Rev. C 90, 054305 (2014)

N.Schunck, D.Duke, H.Carr, A.Knoll

Description of induced nuclear fission with Skyrme energy functionals: Static potential energy surfaces and fission fragment properties

NUCLEAR REACTIONS 239Pu(n, F)240Pu*, E=slow; calculated potential energy surfaces of 240Pu in (q20, q22), (q20, q40) and (q20, q30) planes, HFB energy along the least-energy fission pathway, variation of the total HFB energy as a function of the hexadecapole moment, total energy as a function of the density of particles in the neck, approximate position of the scission point, variation of the light and heavy fragment proton and neutron numbers as a function of triaxiality, joint contour net (JCN) graphs near the scission, fragment densities, Skyrme interaction energy and Direct Coulomb interaction energy between the fission fragments in 240Pu as a function of the number of particles in the neck. Nuclear density functional theory with Skyrme energy densities within the HFB approach and three parameterization SkM*, UNEDF0 and UNEDF1 using DFT solvers HFODD and HFBTHO.

doi: 10.1103/PhysRevC.90.054305
Citations: PlumX Metrics

2013BO19      Comput.Phys.Commun. 184, 085101 (2013)

S.Bogner, A.Bulgac, J.Carlson, J.Engel, G.Fann, R.J.Furnstahl, S.Gandolfi, G.Hagen, M.Horoi, C.Johnson, M.Kortelainen, E.Lusk, P.Maris, H.Nam, P.Navratil, W.Nazarewicz, E.Ng, G.P.A.Nobre, E.Ormand, T.Papenbrock, J.Pei, S.C.Pieper, S.Quaglioni, K.J.Roche, J.Sarich, N.Schunck, M.Sosonkina, J.Terasaki, I.Thompson, J.P.Vary, S.M.Wild

Computational nuclear quantum many-body problem: The UNEDF project

NUCLEAR REACTIONS 3He(d, p), 7Be(p, γ), E<1MeV; 172Yb, 188Os, 238U(γ, X), E<24 MeV; calculated σ. Comparison with experimental data.

NUCLEAR STRUCTURE 100Zr; calculated quadrupole deformation parameter, radii, neutron separation energy.

doi: 10.1016/j.cpc.2013.05.020
Citations: PlumX Metrics

2013PA28      Phys.Rev.Lett. 111, 132505 (2013)

R.M.Parrish, E.G.Hohenstein, N.F.Schunck, C.D.Sherrill, T.J.Martinez

Exact Tensor Hypercontraction: A Universal Technique for the Resolution of Matrix Elements of Local Finite-Range N-Body Potentials in Many-Body Quantum Problems

doi: 10.1103/PhysRevLett.111.132505
Citations: PlumX Metrics

2013SC04      Acta Phys.Pol. B44, 263 (2013)


Density Functional Theory Approach to Nuclear Fission

doi: 10.5506/APhysPolB.44.263
Citations: PlumX Metrics

2012KO06      Phys.Rev. C 85, 024304 (2012)

M.Kortelainen, J.McDonnell, W.Nazarewicz, P.-G.Reinhard, J.Sarich, N.Schunck, M.V.Stoitsov, S.M.Wild

Nuclear energy density optimization: Large deformations

NUCLEAR STRUCTURE 236,238U, 240Pu, 242Cm; calculated energies of fission isomers in UNEDF1 optimization. 192,194Hg, 192,194,196Pb; calculated energies of bandheads in superdeformed nuclei. 208Pb; calculated single particle energies. 236,238U, 238,240,242,244Pu, 242,244,246,248Cm; calculated inner barrier heights, outer barrier heights. N=14-156, Z=10-104; deduced rms deviations from experimental values for binding energy, S(2n), S(2p), three-point odd-even mass difference, rms proton radii for even-even nuclei. Hartree-Fock-Bogoliubov theory, POUNDerS optimization algorithm, UNEDF0 and UNEDF1 parameterizations. Neutron drops. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024304
Citations: PlumX Metrics

2012PA23      Phys.Rev. C 86, 024612 (2012)

K.Patton, J.Engel, G.C.McLaughlin, N.Schunck

Neutrino-nucleus coherent scattering as a probe of neutron density distributions

NUCLEAR REACTIONS 40Ar, 74Ge, 132Xe(ν, ν), E at 0-100 MeV/c; calculated event rates in 40Ar as a function of recoil energy and neutron radius, neutron form factors, neutron rms radii, effective moments using density functional theory and Monte Carlo techniques for argon, germanium, and xenon detectors of neutrinos.

doi: 10.1103/PhysRevC.86.024612
Citations: PlumX Metrics

2011NI06      Phys.Rev. C 83, 034305 (2011)

N.Nikolov, N.Schunck, W.Nazarewicz, M.Bender, J.Pei

Surface symmetry energy of nuclear energy density functionals

NUCLEAR STRUCTURE 192,194Hg, 192,194,196Pb, 236,238U, 240Pu, 242Cm; calculated deformation energies versus deformation parameter, 0+ superdeformed bandhead energies in Hg and Pb nuclei, and fission isomers in actinides. 236,248,260,270,298U; calculated contributions of the Coulomb, surface symmetry, curvature, and surface terms of fission isomers. 100Sn, 100Zr; calculated contribution to the total deformation energy per nucleon. Nuclear energy density functional (EDF) theory applied to examine the role of the surface symmetry energy in nuclei using various Skyrme energy density functionals (EDFs). Comparison with experimental data.

doi: 10.1103/PhysRevC.83.034305
Citations: PlumX Metrics

2010DO13      Phys.Rev. C 82, 067306 (2010)

Q.T.Doan, A.Vancraeyenest, O.Stezowski, D.Guinet, D.Curien, J.Dudek, Ph.Lautesse, G.Lehaut, N.Redon, Ch.Schmitt, G.Duchene, B.Gall, H.Molique, J.Piot, P.T.Greenlees, U.Jakobsson, R.Julin, S.Juutinen, P.Jones, S.Ketelhut, M.Nyman, P.Peura, P.Rahkila, A.Gozdz, K.Mazurek, N.Schunck, K.Zuber, P.Bednarczyk, A.Maj, A.Astier, I.Deloncle, D.Verney, G.de Angelis, J.Gerl

Spectroscopic information about a hypothetical tetrahedral configuration in 156Gd

NUCLEAR REACTIONS 154Sm(4He, 2n), E=27 MeV; measured Eγ, Iγ, γγ-coin, γ(θ) using JUROGAM array. 156Gd; deduced levels, J, π, bands, multipolarity, mixing ratio. Search for evidence of hypothetical tetrahedral configuration in 156Gd.

doi: 10.1103/PhysRevC.82.067306
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2010KO29      Phys.Rev. C 82, 024313 (2010)

M.Kortelainen, T.Lesinski, J.More, W.Nazarewicz, J.Sarich, N.Schunck, M.V.Stoitsov, S.Wild

Nuclear energy density optimization

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron and proton single-particle energies. 92,94,96,98,100,102,104Zr, 106Zr, 108Zr, 110Zr; calculated deformation energy curves as function of β2 deformation. Z, N>8; calculated S(2n) and nuclear binding energies for 520 even-even nuclei. Nuclear binding energy and proton charge radius data for 28 even-even spherical nuclei (Z=20, N=20-30; Z=28, N=28-36; Z=50, N-58-74; Z=82, N=116-132) and 44 deformed nuclei (Z=64-108, N=88-156) used to optimize the standard Skyrme functional. Hartree-Fock-Bogoliubov theory with optimization of a nuclear energy density of Skyrme type. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.024313
Citations: PlumX Metrics

2010SC05      Phys.Rev. C 81, 024316 (2010)

N.Schunck, J.Dobaczewski, J.McDonnell, J.More, W.Nazarewicz, J.Sarich, M.V.Stoitsov

One-quasiparticle states in the nuclear energy density functional theory

NUCLEAR STRUCTURE 121Sn; calculated quasineutron energies, neutron chemical potential, neutron pairing energy, average neutron pairing gap, total rms radius, axial quadrupole deformation, total quadrupole moment, kinetic energy (for protons and neutrons), total spin-orbit energy, direct Coulomb energy, and total energy. 163Tb; calculated quasiproton energies, quadrupole moments and configurations. 164Dy; calculated Nilsson proton levels as a function of axial quadrupole deformation. 155,157,159,161,163,165,167,169,171Ho; calculated one-quasiproton bandhead energies with SkP, SIII and SLy4 Skyrme functionals. 159,161,163,165,167Ho, 157,159,161Lu, 161,163Ta; calculated equilibrium deformation of the 3/2[402] blocked configuration with the SLy4 interaction. All calculations performed in the framework of nuclear density functional theory in the Skyrme-Hartree-Fock-Bogoliubov variant. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.024316
Citations: PlumX Metrics

2010ST12      Phys.Rev. C 82, 054307 (2010)

M.Stoitsov, M.Kortelainen, S.K.Bogner, T.Duguet, R.J.Furnstahl, B.Gebremariam, N.Schunck

Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated kinetic energies for neutrons and protons, surface, volume and total energies, single-particle neutron and proton energies. 54,56,58,60,62,64,66Ni, 68Ni, 70,72,74,76,78,80,82,84,86,88,90,92Ni; calculated two-neutron separation energies, neutron rms radii, and average neutron pairing gaps. 100Zr; calculated deformation energy. 40,42,44,46,48Ca; calculated proton rms radii. Energy density functionals SLy4' and density matrix expansion (DME) in LO, NLO and N2LO.

doi: 10.1103/PhysRevC.82.054307
Citations: PlumX Metrics

2009BE10      Phys.Rev. C 79, 034306 (2009)

G.F.Bertsch, C.A.Bertulani, W.Nazarewicz, N.Schunck, M.V.Stoitsov

Odd-even mass differences from self-consistent mean field theory

NUCLEAR STRUCTURE A=50-250, N=10-150, Z=10-102; calculated odd-even staggering in nuclear binding energies using density functional theory and and multiple treatments of pairing interactions; Sn, N=55-85, Dy, N=79-101, Pb, N=99-131, Z=65-81, N=98, 102; calculated binding energy differences. 25Ne, 39P, 52Ti, 61Cu, 87Kr, 111Ag, 147Gd, 173Tm, 203Tl, 207Pb; calculated deformation parameters. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.034306
Citations: PlumX Metrics

2009DO08      Acta Phys.Pol. B40, 725 (2009)

Q.T.Doan, D.Curien, O.Stezowski, J.Dudek, K.Mazurek, A.Gozdz, J.Piot, G.Duchene, B.Gall, H.Molique, M.Richet, P.Medina, D.Guinet, N.Redon, Ch.Schmitt, P.Jones, P.Peura, S.Ketelhut, M.Nyman, U.Jakobsson, P.T.Greenlees, R.Julin, S.Juutinen, P.Rahkila, A.Maj, K.Zuber, P.Bednarczyk, N.Schunck, J.Dobaczewski, A.Astier, I.Deloncle, D.Verney, G.de Angelis, J.Gerl

Search for Fingerprints of Tetrahedral Symmetry in 156Gd

NUCLEAR REACTIONS 154Sm(α, 2n), E=27 MeV; measured Eγ, Iγ, γγ-coin; deduced B(E2)/B(E1).

2009DU04      Acta Phys.Pol. B40, 713 (2009)

J.Dudek, K.Mazurek, D.Curien, A.Dobrowolski, A.Gozdz, D.Hartley, A.Maj, L.Riedinger, N.Schunck

Theory of Nuclear Stability Using Point GROUP Symmetries: Outline and Illustrations

2009ST15      Int.J.Mod.Phys. E18, 816 (2009)

M.Stoitsov, W.Nazarewicz, N.Schunck

Large-scale mass table calculations

doi: 10.1142/S0218301309012914
Citations: PlumX Metrics

2008BA29      Phys.Rev. C 78, 014318 (2008)

A.Baran, A.Bulgac, M.McNeil Forbes, G.Hagen, W.Nazarewicz, N.Schunck, M.V.Stoitsov

Broyden's method in nuclear structure calculations

doi: 10.1103/PhysRevC.78.014318
Citations: PlumX Metrics

2008PE29      Phys.Rev. C 78, 064306 (2008)

J.C.Pei, M.V.Stoitsov, G.I.Fann, W.Nazarewicz, N.Schunck, F.R.Xu

Deformed coordinate-space Hartree-Fock-Bogoliubov approach to weakly bound nuclei and large deformations

NUCLEAR STRUCTURE 90Ni, 102,110Zr, 120Sn; calculated pairing energies. 84,86,88,90Ni; calculated pairing densities. 240Pu; calculated fission path. Hartree-Fock-Bogoliubov calculations.

doi: 10.1103/PhysRevC.78.064306
Citations: PlumX Metrics

2008RO02      Phys.Rev. C 77, 014308 (2008)

J.Robin, Th.Byrski, G.Duchene, F.A.Beck, D.Curien, N.Dubray, J.Dudek, A.Gozdz, A.Odahara, N.Schunck, N.Adimi, D.E.Appelbe, P.Bednarczyk, A.Bracco, B.Cederwall, S.Courtin, D.M.Cullen, O.Dorvaux, S.Ertuck, G.de France, B.Gall, P.Joshi, S.L.King, A.Korichi, K.Lagergren, G.Lo Bianco, S.Leoni, A.Lopez-Martens, S.Lunardi, B.Million, A.Nourredine, E.Pachoud, E.S.Paul, C.Petrache, I.Piqueras, N.Redon, A.Saltarelli, J.Simpson, O.Stezowski, R.Venturelli, J.P.Vivien, K.Zuber

Extended investigation of superdeformed bands in 151, 152Tb nuclei

NUCLEAR REACTIONS 130Te(27Al, xn), E=155 MeV; measured Eγ, Iγ, γγ-coin. 151,152Tb; deduced levels, J, π, superdeformed bands, dynamical moments, configurations; calculated single-particle energy levels. Compared with calculations and superdeformed bands in 150Tb, 152Dy.

doi: 10.1103/PhysRevC.77.014308
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2008SC02      Phys.Rev. C 77, 011301 (2008)

N.Schunck, J.L.Egido

Continuum and symmetry-conserving effects in drip-line nuclei using finite-range forces

NUCLEAR STRUCTURE 208Pb; calculated neutron and proton single particle energies. 10,20C, 14,26O, 18,30Ne, 20,40Mg, 24,46Si, 28,50S, 32,56Ar, 36,64Ca, 40,72Ti, 44,76Cr, 46,82Fe, 52,86Ni, 58,92Zn, 62,104Ge, 66,114Se, 68,116Kr, 72,120Sr, 78,122Zr, 82,130Mo, 86,136Ru, 90,140Pd, 94,152Cd, 102,170Sn, 110,176Te, 114,178Xe, 118,180Ba, 122,184Ce, 126,186Nd, 130,188Sm, 134,190Gd, 140,198Dy, 144,206Er, 148,220Yb, 152,240Hf, 158,252W, 162,258Os, 166,260Pt, 170,262Hg, 182,264Pb, 194,268Po, 198,270Rn, 204,272Ra, 208,274Th, 214,276U, 220,282Pu, 222,296Cm; calculated Fermi levels, proton and neutron separation energies. 132,150,170,172Sn; calculated neutron densities. 42Mg; calculated projected energy. Hartree-Fock Bogoliubov mean-field theory.

doi: 10.1103/PhysRevC.77.011301
Citations: PlumX Metrics

2008SC19      Phys.Rev. C 78, 064305 (2008)

N.Schunck, J.L.Egido

Nuclear halos and drip lines in symmetry-conserving continuum Hartree-Fock-Bogoliubov theory

NUCLEAR STRUCTURE 20C, 26O, 30Ne, 40,42Mg, 46Si, 50,52S, 56,58Ar, 62,64Ca, 72Ti, 76,78Cr, 82Fe, 86,88Ni, 92,98Zn, 104Ge, 114Se, 118Kr, 120Sr, 122,124Zr, 130Mo, 136,138Ru, 140,148Pd, 152,158Cd, 168,170Sn, 178Te, 180Xe, 182Ba, 184Ce, 186Nd, 188Sm, 190,194Gd, 198,204Dy, 206,216Er, 220,230Yb, 240,244Hf, 252,254W, 258Os, 260Pt, 264Hg, 266Pb, 268Po, 270Rn, 272Ra, 274Th, 276,280U, 282,294Pu; calculated one- and two-neutron driplines, halo radii, two-neutron separation energy, neutron density. Hartree-Fock-Bogoliubov theory.

doi: 10.1103/PhysRevC.78.064305
Citations: PlumX Metrics

2007BR25      Nucl.Phys. A788, 224c (2007)

M.Brekiesz, A.Maj, M.Kmiecik, K.Mazurek, W.Meczynski, J.Styczen, K.Zuber, P.Papka, C.Beck, F.Haas, V.Rauch, M.Rousseau, A.Sanchez i Zafra, J.Dudek, N.Schunck

Deformation Effects in Hot Rotating 46Ti Probed by the Charged Particle Emission and GDR γ-Decay

NUCLEAR REACTIONS 19F(27Al, X), E=144 MeV; measured Eγ, Iγ, Eα, Iα, (residue)α-coin. 46Ti deduced giant dipole resonance strength distributions.

doi: 10.1016/j.nuclphysa.2007.01.061
Citations: PlumX Metrics

2007DU07      Int.J.Mod.Phys. E16, 516 (2007)

J.Dudek, J.Dobaczewski, N.Dubray, A.Gozdz, V.Pangon, N.Schunck

Nuclei with tetrahedral symmetry

NUCLEAR STRUCTURE 154Gd; calculated single-particle level energies vs tetrahedral deformation. 156Dy; calculated potential energy surfaces. 148,150,152Sm, 150,152,154Gd; calculated energy differences between spherical and tetrahedral minima.

doi: 10.1142/S0218301307005958
Citations: PlumX Metrics

2007DU15      Acta Phys.Pol. B38, 1389 (2007)

J.Dudek, A.Gozdz, D.Curien, V.Pangon, N.Schunck

Nuclear Tetrahedral Symmetry and Collective Rotation

2007HE20      Acta Phys.Pol. B38, 1421 (2007)

B.Herskind, G.B.Hagemann, Th.Dossing, C.R.Hansen, N.Schunck, G.Sletten, S.Odegard, H.Hubel, P.Bringel, A.Burger, A.Neusser, A.K.Singh, A.Al-Khatib, S.B.Patel, B.M.Nyako, A.Algora, Z.Dombradi, J.Gal, G.Kalinka, D.Sohler, J.Molnar, J.Timar, L.Zolnai, K.Juhasz, A.Bracco, S.Leoni, F.Camera, G.Benzoni, P.Mason, A.Paleni, B.Million, O.Wieland, P.Bednarczyk, F.Azaiez, Th.Byrski, D.Curien, O.Dakov, G.Duchene, F.Khalfallah, B.Gall, L.Piqeras, J.Robin, J.Dudek, N.Rowley, N.Redon, F.Hannachi, J.N.Scheurer, J.N.Wilson, A.Lopez-Martens, A.Korichi, K.Hauschild, J.Roccaz, S.Siem, P.Fallon, I.Y.Lee, A.Gorgen, A.Maj, M.Kmiecik, M.Brekiesz, J.Styczen, K.Zuber, J.C.Lisle, B.Cederwall, K.Lagergren, A.O.Evans, G.Rainovski, G.De Angelis, G.La Rana, R.Moro, R.M.Lieder, E.O.Lieder, W.Gast, H.Jager, A.A.Pasternak, C.M.Petrache, D.Petrache

Light Charged Particles as Gateway to Hyperdeformation

NUCLEAR REACTIONS 64Ni(64Ni, F), E=255, 261 MeV; measured Eγ, Iγ, (particle)γ-coinc, charged particle angular distributions. 118Te, 124Xe, 124,125Cs deduced levels, J.

2007KM01      Acta Phys.Pol. B38, 1437 (2007)

M.Kmiecik, A.Maj, M.Brekiesz, K.Mazurek, P.Bednarczyk, J.Grebosz, W.Meczynski, J.Styczen, M.Zieblinski, K.Zuber, P.Papka, C.Beck, D.Curien, F.Haas, V.Rauch, M.Rousseau, J.Dudek, N.Schunck, A.Bracco, F.Camera, G.Benzoni, O.Wieland, B.Herskind, E.Farnea, G.De Angelis

Strong Deformation Effects in Hot Rotating 46Ti

NUCLEAR REACTIONS 28Si(18O, F), E=105 MeV; measured Eγ, Ep, Eα, yields, angular distributions, and (particle)γ-coinc. 46Ti deduced deformation effects.

2007MA42      Acta Phys.Pol. B38, 1455 (2007)

K.Mazurek, M.Kmiecik, A.Maj, J.Dudek, N.Schunck

Effective GDR Width of 132Ce at High Spins and Temperatures from the LSD Model

NUCLEAR STRUCTURE 132Ce; calculated effective GDR width as a function of angular momentum and temperature using the thermal shape fluctuation method. Compared results to data.

2007SC22      Phys.Rev. C 75, 054304 (2007)

N.Schunck, J.Dudek, B.Herskind

Nuclear hyperdeformation and the Jacobi shape transition

NUCLEAR STRUCTURE 108Cd, 122Xe, 125Cs, 152Dy, 170Yb; calculated total free energy, deformation parameters, and kinematical moments using state of the art mean field theory.

doi: 10.1103/PhysRevC.75.054304
Citations: PlumX Metrics

2007SC27      Acta Phys.Pol. B38, 1143 (2007)

N.Schunck, J.L.Egido

Inclusion of Continuum Effects in Mean-Field Theories

2007ZB01      Int.J.Mod.Phys. E16, 533 (2007)

K.Zberecki, P.Magierski, P.-H.Heenen, N.Schunck

Quantum fluctuations and stability of tetrahedral deformations in atomic nuclei

NUCLEAR STRUCTURE 80,98Zr; calculated correlation and excitation energies vs deformation; deduced dynamic nature of octupole and tetrahedral shapes.

doi: 10.1142/S021830130700596X
Citations: PlumX Metrics

2006DU12      Phys.Rev.Lett. 97, 072501 (2006)

J.Dudek, D.Curien, N.Dubray, J.Dobaczewski, V.Pangon, P.Olbratowski, N.Schunck

Island of Rare Earth Nuclei with Tetrahedral and Octahedral Symmetries: Possible Experimental Evidence

NUCLEAR STRUCTURE 152,154,156Gd; calculated energy vs deformation; deduced possible tetrahedral and octahedral symmetries. 156Gd; analyzed levels, J, π, possible tetrahedral rotational band. Mean-field approach.

doi: 10.1103/PhysRevLett.97.072501
Citations: PlumX Metrics

2006HE26      Phys.Scr. T125, 108 (2006)

B.Herskind, G.B.Hagemann, G.Sletten, Th.Dossing, C.R.Hansen, N.Schunck, S.Odegard, H.Hubel, P.Bringel, A.Burger, A.Neusser, A.K.Singh, A.Al-Khatib, S.B.Patel, A.Bracco, S.Leoni, F.Camera, G.Benzoni, P.Mason, A.Paleni, B.Million, O.Wieland, P.Bednarczyk, F.Azaiez, Th.Byrski, D.Curien, O.Dakov, G.Duchene, F.Khalfallah, B.Gall, I.Piqueras, J.Robin, J.Dudek, N.Rowley, B.M.Nyako, A.Algora, Z.Dombradi, J.Gal, G.Kalinka, D.Sohler, J.Molnar, J.Timar, L.Zolnai, K.Juhasz, N.Redon, F.Hannachi, J.N.Scheurer, J.N.Wilson, A.Lopez-Martens, A.Korichi, K.Hauschild, J.Roccaz, S.Siem, P.Fallon, I.Y.Lee, A.Gorgen, A.Maj, M.Kmiecik, M.Brekiesz, J.Styczen, K.Zuber, J.C.Lisle, B.Cederwall, K.Lagergren, A.O.Evans, G.Rainovski, G.De Angelis, G.La Rana, R.Moro, W.Gast, R.M.Lieder, E.Podsvirova, H.Jager, C.M.Petrache, D.Petrache

Charged particle feeding of hyperdeformed nuclei in the A=118-126 region

NUCLEAR REACTIONS 64Ni(64Ni, xnypzα), E=255, 261 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin. 118,120Te, 121,122I, 121,122,123,124Xe, 124,125Cs, 126Ba deduced superdeformed and hyperdeformed ridge structures. Euroball IV and Diamant arrays.

doi: 10.1088/0031-8949/2006/T125/025
Citations: PlumX Metrics

2006MA15      Int.J.Mod.Phys. E15, 542 (2006)

K.Mazurek, N.Dubray, J.Dudek, N.Schunck

Exotic deformations in the actinide region

doi: 10.1142/S0218301306004491
Citations: PlumX Metrics

2006SC08      Int.J.Mod.Phys. E15, 490 (2006)

N.Schunck, P.Olbratowski, J.Dudek, J.Dobaczewski

Rotation of tetrahedral nuclei in the cranking model

NUCLEAR STRUCTURE 110Zr; calculated deformation parameters of tetrahedral minimum vs rotational frequency. Self-consistent Skyrme-HFB approach.

doi: 10.1142/S0218301306004417
Citations: PlumX Metrics

2006SC28      Phys.Scr. T125, 218 (2006)

N.Schunck, J.Dudek, B.Herskind

Nuclear hyper-deformation and the Jacobi shape transition

NUCLEAR STRUCTURE 122Xe; calculated potential energy surfaces, superdeformation. Macroscopic-microscopic model, thermal effects.

doi: 10.1088/0031-8949/2006/T125/059
Citations: PlumX Metrics

2006ZB01      Phys.Rev. C 74, 051302 (2006)

K.Zberecki, P.Magierski, P.-H.Heenen, N.Schunck

Tetrahedral correlations in 80Zr and 98Zr

NUCLEAR STRUCTURE 80,98Zr; calculated energy vs deformation for axial octupole and tetrahedral deformation, correlation energies. Generator coordinate method.

doi: 10.1103/PhysRevC.74.051302
Citations: PlumX Metrics

2005DU08      Acta Phys.Pol. B36, 975 (2005)

J.Dudek, N.Schunck, N.Dubray

Search for the nuclear hyper-deformation: motivations and new strategies

2005DU12      Int.J.Mod.Phys. E14, 389 (2005)

J.Dudek, N.Schunck, N.Dubray, A.Gozdz

Exotic nuclear shapes: today and tomorrow

NUCLEAR STRUCTURE 126Xe; calculated total energy vs quadrupole deformation. 78Se; calculated neutron single-particle energies vs octahedral deformation.

doi: 10.1142/S021830130500317X
Citations: PlumX Metrics

2005DU13      Int.J.Mod.Phys. E14, 493 (2005)

N.Dubray, J.Dudek, N.Schunck

The problem of universality of nuclear mean-field parametrizations

NUCLEAR STRUCTURE 40,48Ca, 56Ni, 90Zr, 100,132Sn, 146Gd, 208Pb; analyzed neutron and proton single-particle level energies; deduced mean-field parameters.

doi: 10.1142/S0218301305003326
Citations: PlumX Metrics

2005JO11      Acta Phys.Pol. B36, 1323 (2005)

G.A.Jones, Zs.Podolyak, N.Schunck, P.M.Walker, G.De Angelis, Y.H.Zhang, M.Axiotis, D.Bazzacco, P.G.Bizzeti, F.Brandolini, R.Broda, D.Bucurescu, E.Farnea, W.Gelletly, A.Gadea, M.Ionescu-Bujor, A.Iordachescu, Th.Kroll, S.D.Langdown, S.Lunardi, N.Marginean, T.Martinez, N.H.Medina, B.Quintana, P.H.Regan, B.Rubio, C.A.Ur, J.J.Valiente-Dobon, S.J.Williams

Oblate collectivity in the yrast structure of 194Pt

NUCLEAR REACTIONS 192Os(82Se, X)194Pt, E=460 MeV; measured Eγ, Iγ, γγ-coin. 194Pt deduced levels, J, π, configurations, B(E2). GASP array.

Data from this article have been entered in the XUNDL database. For more information, click here.

2005KM01      Acta Phys.Pol. B36, 1169 (2005)

M.Kmiecik, A.Maj, J.Styczen, P.Bednarczyk, M.Brekiesz, J.Grebosz, M.Lach, W.Meczynski, M.Zieblinski, K.Zuber, A.Bracco, F.Camera, G.Benzoni, B.Million, S.Leoni, O.Wieland, B.Herskind, D.Curien, N.Dubray, J.Dudek, N.Schunck, K.Mazurek

GDR feeding of the highly-deformed band in 42Ca

NUCLEAR REACTIONS 28Si(18O, X), E=105 MeV; measured Eγ, Iγ. 46Ti deduced GDR strength function. 42Ca deduced feeding of highly-deformed rotational band from GDR decay. Euroball IV and Hector arrays.

2005SC06      Acta Phys.Pol. B36, 1071 (2005)

N.Schunck, J.Dudek, S.Frauendorf

Collective rotation of nuclei with tetrahedral symmetry

2004DU09      Eur.Phys.J. A 20, 15 (2004)

J.Dudek, K.Pomorski, N.Schunck, N.Dubray

Hyperdeformed and megadeformed nuclei: Lessons from the slow progress and emerging new strategies

doi: 10.1140/epja/i2002-10313-4
Citations: PlumX Metrics

2004KM01      Phys.Rev. C 70, 064317 (2004)

M.Kmiecik, A.Maj, B.Million, M.Brekiesz, W.Krolas, W.Meczynski, J.Styczen, M.Zieblinski, A.Bracco, F.Camera, G.Benzoni, S.Leoni, O.Wieland, S.Brambilla, B.Herskind, M.Kicinska-Habior, N.Dubray, J.Dudek, N.Schunck

Probing nuclear shapes close to the fission limit with the giant dipole resonance in 216Rn

NUCLEAR REACTIONS 198Pt(18O, X), E=96 MeV; measured prompt and delayed Eγ, Iγ, γγ-coin. 216Rn deduced GDR energy, width, deformation features. Hector array, comparison with model predictions. 211,212Rn; measured γ-decays from isomeric states.

doi: 10.1103/PhysRevC.70.064317
Citations: PlumX Metrics

2004SC10      Int.J.Mod.Phys. E13, 213 (2004)

N.Schunck, J.Dudek

Nuclear tetrahedral symmetry

NUCLEAR STRUCTURE 108,110,112Zr; calculated deformation, shape isomers, tetrahedral symmetry.

doi: 10.1142/S0218301304001965
Citations: PlumX Metrics

2004SC26      Phys.Rev. C 69, 061305 (2004)

N.Schunck, J.Dudek, A.Gozdz, P.H.Regan

Tetrahedral symmetry in ground and low-lying states of exotic A ∼ 110 nuclei

NUCLEAR STRUCTURE 104,106,108,110,112Zr; calculated single-particle energies, potential energy surfaces; deduced deformation, tetrahedral symmetry. Possible experimental signatures discussed.

doi: 10.1103/PhysRevC.69.061305
Citations: PlumX Metrics

2003DU26      Acta Phys.Pol. B34, 2491 (2003)

J.Dudek, A.Gozdz, N.Schunck

Atomic nuclei with tetrahedral and octahedral symmetries

2002DU14      Phys.Rev.Lett. 88, 252502 (2002)

J.Dudek, A.Gozdz, N.Schunck, M.Miskiewicz

Nuclear Tetrahedral Symmetry: Possibly present throughout the periodic table

NUCLEAR STRUCTURE 80,108Zr, 160Yb, 242Fm; calculated energy vs deformation, tetrahedral symmetry features.

doi: 10.1103/PhysRevLett.88.252502
Citations: PlumX Metrics

2001SC15      Acta Phys.Pol. B32, 1103 (2001)

N.Schunck, J.Dudek

Dirac Equation for the Nuclear Mean-Field with a Woods-Saxon Potential

NUCLEAR STRUCTURE 208Pb; calculated single-particle levels. Dirac equation with Woods-Saxon potential, comparison with relativistic mean field approach, experimental data.

2001SC42      Acta Phys.Pol. B32, 2639 (2001)

N.Schunck, J.Dudek

Towards Explanation of the ' Inertia Anomalies ' in Realistic Mean Field Calculations

NUCLEAR STRUCTURE 152Dy; calculated superdeformed band moment of inertia. Origin of systematic differences between experiment and theory discussed.

2000DU17      Acta Phys.Hung.N.S. 12, 177 (2000)

J.Dudek, N.Schunck, Z.Lojewski

Parametrization of the Nuclear Mean Field within Dirac Formalism

NUCLEAR STRUCTURE 208Pb; calculated single-particle level energies. Relativistic mean field, Dirac formalism, Woods-Saxon potential.

Back to query form

Note: The following list of authors and aliases matches the search parameter N.Schunck: , N.F.SCHUNCK