NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = J.Sarich

Found 11 matches.

Back to query form

2017LO02      Phys.Rev. C 95, 024611 (2017)

A.E.Lovell, F.M.Nunes, J.Sarich, S.M.Wild

Uncertainty quantification for optical model parameters

NUCLEAR REACTIONS 12C(d, d), (d, p), E=11.8 MeV; 90Zr(d, d), (d, p), E=12.0 MeV; 12C(n, n), (n, n'), E=17.29 MeV; 48Ca(n, n), (n, n'), E=7.97 MeV; 54Fe(n, n), (n, n'), E=16.93 MeV; 208Pb(n, n), (n, n'), E=26.0 MeV; analyzed differential σ(θ) data using optical potential method, and two reaction models: coupled-channels Born approximation (CCBA) for elastic- and inelastic-scattering calculations, and distorted-wave Born approximation (DWBA) for elastic scattering and transfer calculations; deduced best fit parameters using uncorrelated and correlated χ2 minimization functions, uncertainty quantification for nuclear theories; concluded that correlated χ2 functions, but with broader confidence bands, provide a more natural and better parameterization of the process.

doi: 10.1103/PhysRevC.95.024611
Citations: PlumX Metrics

2015MC02      Phys.Rev.Lett. 114, 122501 (2015)

J.D.McDonnell, N.Schunck, D.Higdon, J.Sarich, S.M.Wild, W.Nazarewicz

Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements

NUCLEAR STRUCTURE 130,132,134Sn, 134,136,138,140Te, 138,140Xe, 142,144,146Ba, 146,148,150Ce, 158,160Sm, 240Pu; calculated theoretical error bars for the masses of the even-even nuclei, two-neutron dripline, fission barrier. Comparison with available data.

doi: 10.1103/PhysRevLett.114.122501
Citations: PlumX Metrics

2015SC01      Nucl.Data Sheets 123, 115 (2015)

N.Schunck, J.D.McDonnell, D.Higdon, J.Sarich, S.Wild

Quantification of Uncertainties in Nuclear Density Functional Theory

NUCLEAR STRUCTURE Ca, Ni, Sn, Pb; calculated uncertainties for proton radii. Nuclear density functional theory.

doi: 10.1016/j.nds.2014.12.020
Citations: PlumX Metrics

2015SC07      J.Phys.(London) G42, 034024 (2015)

N.Schunck, J.D.McDonnell, J.Sarich, S.M.Wild, D.Higdon

Error analysis in nuclear density functional theory

doi: 10.1088/0954-3899/42/3/034024
Citations: PlumX Metrics

2015SC24      Eur.Phys.J. A 51, 169 (2015)

N.Schunck, J.D.McDonnell, D.Higdon, J.Sarich, S.M.Wild

Uncertainty quantification and propagation in nuclear density functional theory

doi: 10.1140/epja/i2015-15169-9
Citations: PlumX Metrics

2014KO13      Phys.Rev. C 89, 054314 (2014)

M.Kortelainen, J.McDonnell, W.Nazarewicz, E.Olsen, P.-G.Reinhard, J.Sarich, N.Schunck, S.M.Wild, D.Davesne, J.Erler, A.Pastore

Nuclear energy density optimization: Shell structure

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron and proton single-particle levels, B(E1) strengths. Z=10-105, N=10-160; calculated binding energies, S(2p), S(2n) for even-even nuclei; deduced deviations from experimental data. 226,228Ra, 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated inner fission barrier residuals, fission isomer excitation energies, outer fission barriers. Skyrme Hartree-Fock-Bogoliubov theory with POUNDERS optimization algorithm and a new parametrization UNEDF2 of the energy density functional. Comparison with other energy density functionals (UNEDF) parametrizations, and with experimental data.

doi: 10.1103/PhysRevC.89.054314
Citations: PlumX Metrics

2013BO19      Comput.Phys.Commun. 184, 085101 (2013)

S.Bogner, A.Bulgac, J.Carlson, J.Engel, G.Fann, R.J.Furnstahl, S.Gandolfi, G.Hagen, M.Horoi, C.Johnson, M.Kortelainen, E.Lusk, P.Maris, H.Nam, P.Navratil, W.Nazarewicz, E.Ng, G.P.A.Nobre, E.Ormand, T.Papenbrock, J.Pei, S.C.Pieper, S.Quaglioni, K.J.Roche, J.Sarich, N.Schunck, M.Sosonkina, J.Terasaki, I.Thompson, J.P.Vary, S.M.Wild

Computational nuclear quantum many-body problem: The UNEDF project

NUCLEAR REACTIONS 3He(d, p), 7Be(p, γ), E<1MeV; 172Yb, 188Os, 238U(γ, X), E<24 MeV; calculated σ. Comparison with experimental data.

NUCLEAR STRUCTURE 100Zr; calculated quadrupole deformation parameter, radii, neutron separation energy.

doi: 10.1016/j.cpc.2013.05.020
Citations: PlumX Metrics

2013EK01      Phys.Rev.Lett. 110, 192502 (2013)

A.Ekstrom, G.Baardsen, C.Forssen, G.Hagen, M.Hjorth-Jensen, G.R.Jansen, R.Machleidt, W.Nazarewicz, T.Papenbrock, J.Sarich, S.M.Wild

Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-Leading Order

NUCLEAR STRUCTURE 3H, 3,4He, 10B, 17,22,24O, 40,48,50,52,54,56Ca; calculated energy of the first 2+ state, energy per nucleon for neutron matter, phase shifts. The nucleon-nucleon interaction from chiral effective field theory at next-to-next-to-leading order (NNLO).

doi: 10.1103/PhysRevLett.110.192502
Citations: PlumX Metrics

2012KO06      Phys.Rev. C 85, 024304 (2012)

M.Kortelainen, J.McDonnell, W.Nazarewicz, P.-G.Reinhard, J.Sarich, N.Schunck, M.V.Stoitsov, S.M.Wild

Nuclear energy density optimization: Large deformations

NUCLEAR STRUCTURE 236,238U, 240Pu, 242Cm; calculated energies of fission isomers in UNEDF1 optimization. 192,194Hg, 192,194,196Pb; calculated energies of bandheads in superdeformed nuclei. 208Pb; calculated single particle energies. 236,238U, 238,240,242,244Pu, 242,244,246,248Cm; calculated inner barrier heights, outer barrier heights. N=14-156, Z=10-104; deduced rms deviations from experimental values for binding energy, S(2n), S(2p), three-point odd-even mass difference, rms proton radii for even-even nuclei. Hartree-Fock-Bogoliubov theory, POUNDerS optimization algorithm, UNEDF0 and UNEDF1 parameterizations. Neutron drops. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024304
Citations: PlumX Metrics

2010KO29      Phys.Rev. C 82, 024313 (2010)

M.Kortelainen, T.Lesinski, J.More, W.Nazarewicz, J.Sarich, N.Schunck, M.V.Stoitsov, S.Wild

Nuclear energy density optimization

NUCLEAR STRUCTURE 48Ca, 208Pb; calculated neutron and proton single-particle energies. 92,94,96,98,100,102,104Zr, 106Zr, 108Zr, 110Zr; calculated deformation energy curves as function of β2 deformation. Z, N>8; calculated S(2n) and nuclear binding energies for 520 even-even nuclei. Nuclear binding energy and proton charge radius data for 28 even-even spherical nuclei (Z=20, N=20-30; Z=28, N=28-36; Z=50, N-58-74; Z=82, N=116-132) and 44 deformed nuclei (Z=64-108, N=88-156) used to optimize the standard Skyrme functional. Hartree-Fock-Bogoliubov theory with optimization of a nuclear energy density of Skyrme type. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.024313
Citations: PlumX Metrics

2010SC05      Phys.Rev. C 81, 024316 (2010)

N.Schunck, J.Dobaczewski, J.McDonnell, J.More, W.Nazarewicz, J.Sarich, M.V.Stoitsov

One-quasiparticle states in the nuclear energy density functional theory

NUCLEAR STRUCTURE 121Sn; calculated quasineutron energies, neutron chemical potential, neutron pairing energy, average neutron pairing gap, total rms radius, axial quadrupole deformation, total quadrupole moment, kinetic energy (for protons and neutrons), total spin-orbit energy, direct Coulomb energy, and total energy. 163Tb; calculated quasiproton energies, quadrupole moments and configurations. 164Dy; calculated Nilsson proton levels as a function of axial quadrupole deformation. 155,157,159,161,163,165,167,169,171Ho; calculated one-quasiproton bandhead energies with SkP, SIII and SLy4 Skyrme functionals. 159,161,163,165,167Ho, 157,159,161Lu, 161,163Ta; calculated equilibrium deformation of the 3/2[402] blocked configuration with the SLy4 interaction. All calculations performed in the framework of nuclear density functional theory in the Skyrme-Hartree-Fock-Bogoliubov variant. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.024316
Citations: PlumX Metrics

Back to query form