NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = R.J.Furnstahl

Found 107 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2024ZU01      Phys.Rev. C 109, 014319 (2024)

L.Zurek, S.K.Bogner, R.J.Furnstahl, R.Navarro Perez, N.Schunck, A.Schwenk

Optimized nuclear energy density functionals including long-range pion contributions

doi: 10.1103/PhysRevC.109.014319
Citations: PlumX Metrics


2023GA12      Phys.Rev. C 107, 054001 (2023)

A.J.Garcia, C .Drischler, R.J.Furnstahl, J.A.Melendez, X.Zhang

Wave-function-based emulation for nucleon-nucleon scattering in momentum space

NUCLEAR REACTIONS 1H(n, n), E<360 MeV; calculated phase shifts, σ(θ), σ(E), analyzing power. Scattering emulator based on the Kohn variational principle (KVP) extended to momentum space (including coupled channels) with arbitrary boundary conditions, which enable the mitigation of spurious singularities (Kohn anomalies). Simulations using semilocal momentum-space (SMS) regularized chiral potential at N4LO.

doi: 10.1103/PhysRevC.107.054001
Citations: PlumX Metrics


2022CI08      J.Phys.(London) G49, 120502 (2022)

V.Cirigliano, Z.Davoudi, J.Engel, R.J.Furnstahl, G.Hagen, U.Heinz, H.Hergert, M.Horoi, C.W.Johnson, A.Lovato, E.Mereghetti, W.Nazarewicz, A.Nicholson, T.Papenbrock, S.Pastore, M.Plumlee, D.R.Phillips, P.E.Shanahan, S.R.Stroberg, F.Viens, A.Walker-Loud, K.A.Wendt, S.M.Wild

Towards precise and accurate calculations of neutrinoless double-beta decay

RADIOACTIVITY 48Ca(2β-); calculated neutrinoless nuclear matrix elements using chiral-EFT interactions, EDF, IBM, QRPA, SM-pf, SM-sdpf, SM-MBPT, RSM, QMC+SM, IM-GCM, VS-IMSRG, CCSD, CCSD-T1.

doi: 10.1088/1361-6471/aca03e
Citations: PlumX Metrics


2022HI05      Phys.Rev. C 106, 024616 (2022)

M.A.Hisham, R.J.Furnstahl, A.J.Tropiano

Renormalization group evolution of optical potentials: Explorations using a "toy" model

doi: 10.1103/PhysRevC.106.024616
Citations: PlumX Metrics


2022MA63      Phys.Rev. C 106, 064002 (2022)

P.Maris, R.Roth, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, H.Le, Ulf-G.Meissner, J.A.Melendez, A.Nogga, P.Reinert, R.Skibinski, J.P.Vary, H.Witala, T.Wolfgruber

Nuclear properties with semilocal momentum-space regularized chiral interactions beyond N2LO

NUCLEAR STRUCTURE 14,16,18,20,22,24,26O, 40,48Ca; calculated ground-state energies, point-proton radii. 4,6,8He, 6Li, 10Be, 10,12B, 12C; calculated ground state energies. 10,12B, 12C; calculated low-lying levels, J, π. Chiral EFT calculations with semilocal momentum-space regularized NN potentials up to fourth leading order N4LO.

NUCLEAR REACTIONS 2H(n, X), E=70, 135, 200 MeV; calculated σ(E), σ(θ), vector- and tensor analyzing power. Comparison to experimental data.

doi: 10.1103/PhysRevC.106.064002
Citations: PlumX Metrics


2022SE11      Phys.Rev. C 106, 044002 (2022)

A.C.Semposki, R.J.Furnstahl, D.R.Phillips

Interpolating between small- and large-g expansions using Bayesian model mixing

doi: 10.1103/PhysRevC.106.044002
Citations: PlumX Metrics


2022TR02      Phys.Rev. C 106, 024324 (2022)

A.J.Tropiano, S.K.Bogner, R.J.Furnstahl, M.A.Hisham

Quasi-deuteron model at low renormalization group resolution

NUCLEAR STRUCTURE 9Be, 12C, 16O, 40Ca, 56Fe, 118Sn, 208Pb; calculated ratios of the pn momentum distribution over the deuteron momentum distribution as a function of relative momentum. A=6-115; calculated average Levinger constant. Similarity renormalization group (SRG) transformations applied to several nucleon-nucleon interactions - AV18, Nijmegen II, CD-Bonn, SMS N4LO, and GT+ N2LO. Comparison to the data extracted from experimental results.

doi: 10.1103/PhysRevC.106.024324
Citations: PlumX Metrics


2022ZH32      Phys.Rev. C 105, 064004 (2022)

X.Zhang, R.J.Furnstahl

Fast emulation of quantum three-body scattering

doi: 10.1103/PhysRevC.105.064004
Citations: PlumX Metrics


2021FU10      Few-Body Systems 62, 72 (2021)

R.J.Furnstahl, H.-W.Hammer, A.Schwenk

Nuclear Structure at the Crossroads

doi: 10.1007/s00601-021-01658-5
Citations: PlumX Metrics


2021MA32      Phys.Rev. C 103, 054001 (2021)

P.Maris, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, Ulf-G.Meissner, J.A.Melendez, A.Nogga, P.Reinert, R.Roth, R.Skibinski, V.Soloviov, K.Topolnicki, J.P.Vary, Yu.Volkotrub, H.Witala, T.Wolfgruber, for the LENPIC Collaboration

Light nuclei with semilocal momentum-space regularized chiral interactions up to third order

NUCLEAR STRUCTURE 3H, 3,4,6,8He, 6,7,8,9Li, 8,10Be, 10,11,12,13B, 12,13,14C, 14,15N, 16O; calculated energies of ground and excited states, S(2n) for 6He and 6Li, α+d breakup up for 6Li, and 3α breakup for 12C, energies, wave functions and radii for 3H, 3,4He. Semilocal momentum-space (SMS) regularized two- and three-nucleon forces up to third chiral order (N2LO), with the two low-energy constants entering the three-body force determined from the triton binding energy and the differential cross-section minimum in elastic nucleon-deuteron scattering. Comparison with experimental data.

NUCLEAR REACTIONS 1H(polarized d, d), E=70, 140, 200, 270 MeV; 2H(p, d), (polarized p, d), E=65 MeV; calculated analyzing powers Ay(θ) and differential cross sections for elastic scattering using semilocal momentum-space (SMS) regularized two- and three-nucleon forces up to third chiral order (N2LO) three-nucleon force (3NF). Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054001
Citations: PlumX Metrics


2021ME07      Eur.Phys.J. A 57, 81 (2021)

J.A.Melendez, R.J.Furnstahl, H.W.Griesshammer, J.A.McGovern, D.R.Phillips, M.T.Pratola

Designing optimal experiments: an application to proton Compton scattering

doi: 10.1140/epja/s10050-021-00382-2
Citations: PlumX Metrics


2021PH05      J.Phys.(London) G48, 072001 (2021)

D.R.Phillips, R.J.Furnstahl, U.Heinz, T.Maiti, W.Nazarewicz, F.M.Nunes, M.Plumlee, M.T.Pratola, S.Pratt, F.G.Viens, S.M.Wild

Get on the BAND Wagon: a Bayesian framework for quantifying model uncertainties in nuclear dynamics

NUCLEAR REACTIONS 208Pb(p, p), E=30 MeV; calculated σ. Comparison with available data.

doi: 10.1088/1361-6471/abf1df
Citations: PlumX Metrics


2021TR08      Phys.Rev. C 104, 034311 (2021)

A.J.Tropiano, S.K.Bogner, R.J.Furnstahl

Short-range correlation physics at low renormalization group resolution

NUCLEAR STRUCTURE 12C, 16O, 40,48Ca, 56Fe, 208Pb; calculated proton momentum distributions for 12C, 16O, 40Ca, pp+pn/nn+np pair and pp/pn+np ratios for momentum transfer q=1.5-4.0 fm-1, percentage contributions from s-waves and selected p-waves to proton momentum distributions, short-range correlation (SRC) scaling factors and compared with experimental values. High renormalization group (RG)-resolution SRC physics incorporated at low resolution by unitary RG evolution, with weakly-correlated wave functions and simple evolved operators. Relevance to the analysis of knockout reactions such as (e, e'p) knockout reaction experiments at NIKHEF and other electron scattering facilities.

doi: 10.1103/PhysRevC.104.034311
Citations: PlumX Metrics


2021WE14      Phys.Rev. C 104, 064001 (2021)

S.Wesolowski, I.Svensson, A.Ekstrom, C.Forssen, R.J.Furnstahl, J.A.Melendez, D.R.Phillips

Rigorous constraints on three-nucleon forces in chiral effective field theory from fast and accurate calculations of few-body observables

NUCLEAR STRUCTURE 3H, 4He; calculated binding energies, rms point-proton radius of 4He, T1/2 of 3H β decay in the LO, NLO, and NNLO orders using three-nucleon force (3NF) of chiral effective field theory (χEFT), and compared with experimental values; evaluated Bayesian statistical methods for effective field theories of nuclei by using eigenvector continuation (EC) emulator.

doi: 10.1103/PhysRevC.104.064001
Citations: PlumX Metrics


2021ZU01      Phys.Rev. C 103, 014325 (2021)

L.Zurek, E.A.Coello Perez, S.K.Bogner, R.J.Furnstahl, A.Schwenk

Comparing different density-matrix expansions for long-range pion exchange

NUCLEAR STRUCTURE 16O, 48Ca, 132Sn; calculated normalized density-matrix square for 132Sn, isoscalar density distributions, and ratios of the DME-approximated and exact exchange energy contributions for Yukawa interaction for 16O, 48Ca, 132Sn, scalar-isoscalar and scalar-isovector exchange-energy integrands for Yukawa interaction in 132Sn. Density-matrix expansion (DME) with two-body scalar terms to embed long-range pion interactions into a Skyrme energy density functional.

doi: 10.1103/PhysRevC.103.014325
Citations: PlumX Metrics


2020DR04      Phys.Rev.Lett. 125, 202702 (2020)

C.Drischler, R.J.Furnstahl, J.A.Melendez, D.R.Phillips

How Well Do We Know the Neutron-Matter Equation of State at the Densities Inside Neutron Stars? A Bayesian Approach with Correlated Uncertainties

doi: 10.1103/PhysRevLett.125.202702
Citations: PlumX Metrics


2020DR05      Phys.Rev. C 102, 054315 (2020)

C.Drischler, J.A.Melendez, R.J.Furnstahl, D.R.Phillips

Quantifying uncertainties and correlations in the nuclear-matter equation of state

doi: 10.1103/PhysRevC.102.054315
Citations: PlumX Metrics


2020FU01      Eur.Phys.J. A 56, 85 (2020)

R.J.Furnstahl

Turning the nuclear energy density functional method into a proper effective field theory: reflections

doi: 10.1140/epja/s10050-020-00095-y
Citations: PlumX Metrics


2020TR02      Phys.Rev. C 102, 034005 (2020)

A.J.Tropiano, S.K.Bogner, R.J.Furnstahl

Operator evolution from the similarity renormalization group and the Magnus expansion

doi: 10.1103/PhysRevC.102.034005
Citations: PlumX Metrics


2020ZH30      Phys.Rev.Lett. 125, 112503 (2020)

X.Zhang, S.R.Stroberg, P.Navratil, C.Gwak, J.A.Melendez, R.J.Furnstahl, J.D.Holt

Ab Initio Calculations of Low-Energy Nuclear Scattering Using Confining Potential Traps

NUCLEAR REACTIONS 4He, 24O(n, n), E<3.5 MeV; calculated phase shifts and error bands.

doi: 10.1103/PhysRevLett.125.112503
Citations: PlumX Metrics


2019ME05      Phys.Rev. C 100, 044001 (2019)

J.A.Melendez, R.J.Furnstahl, D.R.Phillips, M.T.Pratola, S.Wesolowski

Quantifying correlated truncation errors in effective field theory

doi: 10.1103/PhysRevC.100.044001
Citations: PlumX Metrics


2019WE07      J.Phys.(London) G46, 045102 (2019)

S.Wesolowski, R.J.Furnstahl, J.A.Melendez, D.R.Phillips

Exploring Bayesian parameter estimation for chiral effective field theory using nucleon-nucleon phase shifts

doi: 10.1088/1361-6471/aaf5fc
Citations: PlumX Metrics


2018BI08      Phys.Rev. C 98, 014002 (2018)

S.Binder, A.Calci, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, P.Maris, Ulf-G.Meissner, A.Nogga, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, K.Vobig, H.Witala, at the LENPIC Collaboration

Few-nucleon and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces

NUCLEAR REACTIONS 2H(n, n), E=5, 10, 14.1 MeV; 2H(n, 2np), E=13, 65 MeV; calculated differential σ(θ), Ay analyzing powers, nucleon and deuteron vector analyzing powers, phase shifts, polarization-transfer coefficient, breakup cross sections, and pd analyzing powers.

NUCLEAR STRUCTURE 3H, 3,4He, 6Li; calculated binding energies, ground-state energies of 4He and 6Li, proton rms radii. 3H, 4,6,8He, 6,7,8,9Li, 8,9Be, 10B, 16,24O, 40,48Ca; calculated ground state energies. 3H, 3He, 6,7,8,9Li, 7,9Be, 8,9,10B, 9C; calculated magnetic dipole moments. 16,24O, 40,48Ca; calculated charge radii. Faddeev-Yakubovsky equations, with no-core configuration interaction approach, coupled-cluster (CC) theory, and in-medium similarity renormalization group (IM-SRG)methods with SCS chiral nucleon-nucleon (NN) potentials. Comparison with experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.98.014002
Citations: PlumX Metrics


2018NA11      Phys.Rev. C 97, 054304 (2018)

R.Navarro-Perez, N.Schunck, A.Dyhdalo, R.J.Furnstahl, S.K.Bogner

Microscopically based energy density functionals for nuclei using the density matrix expansion. II. Full optimization and validation

ATOMIC MASSES N=10-160; calculated binding energies of even-even nuclei, and compared with measured values from AME-2016.

NUCLEAR STRUCTURE N=10-160; calculated proton radii using the UNEDF2 and NLOΔ+3N functionals, and compared with experimental data. 208Pb; calculated neutron single particle levels using energy density functions (EDFs) from NN and 3N forces with and without Δ excitation. 240Pu; calculated deformation potential energy surface, excitation energy of the fission isomer, and height of the first and second fission barriers using LO, NLO, N2LO, N2LO+3N, NLOΔ, NLOΔ+3N, N2LOΔ, and N2LOΔ+3N energy density functionals, and compared with experimental values.

doi: 10.1103/PhysRevC.97.054304
Citations: PlumX Metrics


2018ZH57      Phys.Rev. C 98, 064306 (2018)

Y.N.Zhang, S.K.Bogner, R.J.Furnstahl

Incorporating Brueckner-Hartree-Fock correlations in energy density functionals

doi: 10.1103/PhysRevC.98.064306
Citations: PlumX Metrics


2017DY02      Phys.Rev. C 95, 054314 (2017)

A.Dyhdalo, S.K.Bogner, R.J.Furnstahl

Applying the density matrix expansion with coordinate-space chiral interactions

doi: 10.1103/PhysRevC.95.054314
Citations: PlumX Metrics


2017DY04      Phys.Rev. C 96, 054005 (2017)

A.Dyhdalo, S.K.Bogner, R.J.Furnstahl

Estimates and power counting in uniform nuclear matter with softened interactions

doi: 10.1103/PhysRevC.96.054005
Citations: PlumX Metrics


2017HO24      Phys.Rev. C 96, 054002 (2017)

J.Hoppe, C.Drischler, R.J.Furnstahl, K.Hebeler, A.Schwenk

Weinberg eigenvalues for chiral nucleon-nucleon interactions

doi: 10.1103/PhysRevC.96.054002
Citations: PlumX Metrics


2017ME09      Phys.Rev. C 96, 024003 (2017)

J.A.Melendez, S.Wesolowski, R.J.Furnstahl

Bayesian truncation errors in chiral effective field theory: Nucleon-nucleon observables

doi: 10.1103/PhysRevC.96.024003
Citations: PlumX Metrics


2017MO39      Phys.Rev. C 96, 054004 (2017)

S.N.More, S.K.Bogner, R.J.Furnstahl

Scale dependence of deuteron electrodisintegration

NUCLEAR STRUCTURE 2H; calculated initial deuteron wave function, current operator, and the final-state interactions (FSIs) and their combinations at different scales using similarity renormalization group (SRG) for each component of deuteron electro-disintegration for example in 2H(e, e'p)n. Relevance to scale dependence in nuclear knock-out reactions.

doi: 10.1103/PhysRevC.96.054004
Citations: PlumX Metrics


2016BI06      Phys.Rev. C 93, 044002 (2016)

S.Binder, A.Calci, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, H.Kamada, H.Krebs, J.Langhammer, S.Liebig, P.Maris, Ulf-G.Meissner, D.Minossi, A.Nogga, H.Potter, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, H.Witala, for the LENPIC Collaboration

Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces

NUCLEAR STRUCTURE 3H, 4He, 6Li; calculated energies of ground-state and lowest two states, point-proton radius using improved NN chiral potentials LO, NLO, N2LO, N3LO and N4LO. Comparison with experimental data.

NUCLEAR REACTIONS 3H, 4He, 6Li(d, X), (polarized d, d), E=10, 70, 135, 200 MeV; total σ(E), differential cross section and tensor analyzing powers for elastic scattering based on NN chiral potentials LO, NLO, N2LO, N3LO and N4LO. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.044002
Citations: PlumX Metrics


2016DY01      Phys.Rev. C 94, 034001 (2016)

A.Dyhdalo, R.J.Furnstahl, K.Hebeler, I.Tews

Regulator artifacts in uniform matter for chiral interactions

doi: 10.1103/PhysRevC.94.034001
Citations: PlumX Metrics


2015FU10      Phys.Rev. C 92, 024005 (2015)

R.J.Furnstahl, N.Klco, D.R.Phillips, S.Wesolowski

Quantifying truncation errors in effective field theory

doi: 10.1103/PhysRevC.92.024005
Citations: PlumX Metrics


2015MO26      Phys.Rev. C 92, 064002 (2015)

S.N.More, S.Konig, R.J.Furnstahl, K.Hebeler

Deuteron electrodisintegration with unitarily evolved potentials

NUCLEAR REACTIONS 2H(e, X), E not given; calculated momentum distributions for various potentials. Electrodisintegration of deuteron. Similarity renormalization-group (SRG) method for investigation of RG evolution of structure and reaction components. Unitary transformation matrices.

doi: 10.1103/PhysRevC.92.064002
Citations: PlumX Metrics


2014DA03      Phys.Rev. C 89, 014001 (2014)

B.Dainton, R.J.Furnstahl, R.J.Perry

Universality in similarity renormalization group evolved potential matrix elements and T-matrix equivalence

doi: 10.1103/PhysRevC.89.014001
Citations: PlumX Metrics


2014FU03      Phys.Rev. C 89, 044301 (2014)

R.J.Furnstahl, S.N.More, T.Papenbrock

Systematic expansion for infrared oscillator basis extrapolations

doi: 10.1103/PhysRevC.89.044301
Citations: PlumX Metrics


2014KO46      Phys.Rev. C 90, 064007 (2014)

S.Konig, S.K.Bogner, R.J.Furnstahl, S.N.More, T.Papenbrock

Ultraviolet extrapolations in finite oscillator bases

NUCLEAR STRUCTURE 2H; calculated relative error in the deuteron energy, computed in harmonic-oscillator bases for a wide range of oscillator parameters, infrared (IR) and ultraviolet (UV) corrections and extrapolations in finite oscillator, comparison of UV extrapolations for a deuteron state bases for different potentials.

doi: 10.1103/PhysRevC.90.064007
Citations: PlumX Metrics


2013BO19      Comput.Phys.Commun. 184, 085101 (2013)

S.Bogner, A.Bulgac, J.Carlson, J.Engel, G.Fann, R.J.Furnstahl, S.Gandolfi, G.Hagen, M.Horoi, C.Johnson, M.Kortelainen, E.Lusk, P.Maris, H.Nam, P.Navratil, W.Nazarewicz, E.Ng, G.P.A.Nobre, E.Ormand, T.Papenbrock, J.Pei, S.C.Pieper, S.Quaglioni, K.J.Roche, J.Sarich, N.Schunck, M.Sosonkina, J.Terasaki, I.Thompson, J.P.Vary, S.M.Wild

Computational nuclear quantum many-body problem: The UNEDF project

NUCLEAR REACTIONS 3He(d, p), 7Be(p, γ), E<1MeV; 172Yb, 188Os, 238U(γ, X), E<24 MeV; calculated σ. Comparison with experimental data.

NUCLEAR STRUCTURE 100Zr; calculated quadrupole deformation parameter, radii, neutron separation energy.

doi: 10.1016/j.cpc.2013.05.020
Citations: PlumX Metrics


2013HE06      Phys.Rev. C 87, 031302 (2013)

K.Hebeler, R.J.Furnstahl

Neutron matter based on consistently evolved chiral three-nucleon interactions

doi: 10.1103/PhysRevC.87.031302
Citations: PlumX Metrics


2013JU01      Phys.Rev. C 87, 054312 (2013)

E.D.Jurgenson, P.Maris, R.J.Furnstahl, P.Navratil, W.E.Ormand, J.P.Vary

Structure of p-shell nuclei using three-nucleon interactions evolved with the similarity renormalization group

NUCLEAR STRUCTURE 3H, 4He, 7Li, 8Be, 10B, 12C; calculated ground-state and low-lying levels, J, π. 7Li, 7Be, 10B; calculated magnetic dipole moments of ground states and low-lying states. No-core full configuration (NCFC) and similarity renormalization group (SRG) ab initio calculations for p-shell nuclei. Assessment of convergence properties, extrapolation techniques, and dependence of energies, including four-body contributions. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.054312
Citations: PlumX Metrics


2013MO11      Phys.Rev. C 87, 044326 (2013)

S.N.More, A.Ekstrom, R.J.Furnstahl, G.Hagen, T.Papenbrock

Universal properties of infrared oscillator basis extrapolations

doi: 10.1103/PhysRevC.87.044326
Citations: PlumX Metrics


2012FU08      Phys.Rev. C 86, 031301 (2012)

R.J.Furnstahl, G.Hagen, T.Papenbrock

Corrections to nuclear energies and radii in finite oscillator spaces

NUCLEAR STRUCTURE 6He, 16O; calculated ground-state energies, nuclear radii. Finite oscillator basis space. Halo nuclei. Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.86.031301
Citations: PlumX Metrics


2012WE06      Phys.Rev. C 86, 014003 (2012)

K.A.Wendt, R.J.Furnstahl, S.Ramanan

Local projections of low-momentum potentials

doi: 10.1103/PhysRevC.86.014003
Citations: PlumX Metrics


2011BO22      Phys.Rev. C 84, 044306 (2011)

S.K.Bogner, R.J.Furnstahl, H.Hergert, M.Kortelainen, P.Maris, M.Stoitsov, J.P.Vary

Testing the density matrix expansion against ab initio calculations of trapped neutron drops

doi: 10.1103/PhysRevC.84.044306
Citations: PlumX Metrics


2011HE06      Phys.Rev. C 83, 031301 (2011)

K.Hebeler, S.K.Bogner, R.J.Furnstahl, A.Nogga, A.Schwenk

Improved nuclear matter calculations from chiral low-momentum interactions

doi: 10.1103/PhysRevC.83.031301
Citations: PlumX Metrics


2011JU02      Phys.Rev. C 83, 034301 (2011)

E.D.Jurgenson, P.Navratil, R.J.Furnstahl

Evolving nuclear many-body forces with the similarity renormalization group

NUCLEAR STRUCTURE 3H, 4He, 6Li; calculated Ground state energies. 6Li; calculated levels, J, π, rms radius, quadrupole moment, B(M1), B(E2). Similarity Renormalization Group method. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.034301
Citations: PlumX Metrics


2011LI46      Phys.Rev. C 84, 054002 (2011)

W.Li, E.R.Anderson, R.J.Furnstahl

Similarity renormalization group with novel generators

doi: 10.1103/PhysRevC.84.054002
Citations: PlumX Metrics


2011WE03      Phys.Rev. C 83, 034005 (2011)

K.A.Wendt, R.J.Furnstahl, R.J.Perry

Decoupling of spurious deeply bound states with the similarity renormalization group

doi: 10.1103/PhysRevC.83.034005
Citations: PlumX Metrics


2010AN14      Phys.Rev. C 82, 054001 (2010)

E.R.Anderson, S.K.Bogner, R.J.Furnstahl, R.J.Perry

Operator evolution via the similarity renormalization group: The deuteron

doi: 10.1103/PhysRevC.82.054001
Citations: PlumX Metrics


2010KO22      Phys.Rev. C 82, 011304 (2010)

M.Kortelainen, R.J.Furnstahl, W.Nazarewicz, M.V.Stoitsov

Natural units for nuclear energy density functional theory

doi: 10.1103/PhysRevC.82.011304
Citations: PlumX Metrics


2010ST12      Phys.Rev. C 82, 054307 (2010)

M.Stoitsov, M.Kortelainen, S.K.Bogner, T.Duguet, R.J.Furnstahl, B.Gebremariam, N.Schunck

Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated kinetic energies for neutrons and protons, surface, volume and total energies, single-particle neutron and proton energies. 54,56,58,60,62,64,66Ni, 68Ni, 70,72,74,76,78,80,82,84,86,88,90,92Ni; calculated two-neutron separation energies, neutron rms radii, and average neutron pairing gaps. 100Zr; calculated deformation energy. 40,42,44,46,48Ca; calculated proton rms radii. Energy density functionals SLy4' and density matrix expansion (DME) in LO, NLO and N2LO.

doi: 10.1103/PhysRevC.82.054307
Citations: PlumX Metrics


2009BO05      Eur.Phys.J. A 39, 219 (2009)

S.K.Bogner, R.J.Furnstahl, L.Platter

Density matrix expansion for low-momentum interactions

doi: 10.1140/epja/i2008-10695-1
Citations: PlumX Metrics


2009JU01      Nucl.Phys. A818, 152 (2009)

E.D.Jurgenson, R.J.Furnstahl

Similarity renormalization group evolution of many-body forces in a one-dimensional model

NUCLEAR STRUCTURE A=2, 3, 4; calculated ground state energies with a no-core shell model.

doi: 10.1016/j.nuclphysa.2008.12.007
Citations: PlumX Metrics


2009JU03      Phys.Rev.Lett. 103, 082501 (2009)

E.D.Jurgenson, P.Navratil, R.J.Furnstahl

Evolution of Nuclear Many-Body Forces with the Similarity Renormalization Group

NUCLEAR STRUCTURE 3H, 4He; calculated ground-state and binding energies. Similarity renormalization group, NNN potential.

doi: 10.1103/PhysRevLett.103.082501
Citations: PlumX Metrics


2008AN02      Phys.Rev. C 77, 037001 (2008)

E.Anderson, S.K.Bogner, R.J.Furnstahl, E.D.Jurgenson, R.J.Perry, A.Schwenk

Block diagonalization using similarity renormalization group flow equations

doi: 10.1103/PhysRevC.77.037001
Citations: PlumX Metrics


2008BO07      Nucl.Phys. A801, 21 (2008)

S.K.Bogner, R.J.Furnstahl, P.Maris, R.J.Perry, A.Schwenk, J.P.Vary

Convergence in the no-core shell model with low-momentum two-nucleon interactions

NUCLEAR STRUCTURE 2,3H, 4,6He, 6,7Li; calculated ground/excited state energies with no core shell model using similarity renormalization group interactions.

doi: 10.1016/j.nuclphysa.2007.12.008
Citations: PlumX Metrics


2008JU05      Phys.Rev. C 78, 014003 (2008)

E.D.Jurgenson, S.K.Bogner, R.J.Furnstahl, R.J.Perry

Decoupling in the similarity renormalization group for nucleon-nucleon forces

NUCLEAR STRUCTURE 2H; calculated rms radius. 4He, 6Li; calculated ground state energies. No-core shell model.

doi: 10.1103/PhysRevC.78.014003
Citations: PlumX Metrics


2007BO03      Nucl.Phys. A784, 79 (2007)

S.K.Bogner, R.J.Furnstahl, S.Ramanan, A.Schwenk

Low-momentum interactions with smooth cutoffs

NUCLEAR STRUCTURE 2,3H; calculated binding energies, radii, wave functions. Low-momentum interactions with smooth cutoffs.

doi: 10.1016/j.nuclphysa.2006.11.123
Citations: PlumX Metrics


2007BO20      Phys.Rev. C 75, 061001 (2007)

S.K.Bogner, R.J.Furnstahl, R.J.Perry

Similarity renormalization group for nucleon-nucleon interactions

doi: 10.1103/PhysRevC.75.061001
Citations: PlumX Metrics


2007BO36      Phys.Lett. B 649, 488 (2007)

S.K.Bogner, R.J.Furnstahl, R.J.Perry, A.Schwenk

Are low-energy nuclear observables sensitive to high-energy phase shifts?

NUCLEAR STRUCTURE 2H; calculated binding energies, wave functions, phase shifts. Low-momentum interactions with smooth cutoffs. Similarity renormalization group.

doi: 10.1016/j.physletb.2007.04.048
Citations: PlumX Metrics


2007RA29      Nucl.Phys. A797, 81 (2007)

S.Ramanan, S.K.Bogner, R.J.Furnstahl

Weinberg eigenvalues and pairing with low-momentum potentials

doi: 10.1016/j.nuclphysa.2007.10.005
Citations: PlumX Metrics


2006BO03      Phys.Lett. B 632, 501 (2006)

S.K.Bogner, R.J.Furnstahl

Variational calculations of nuclei with low-momentum potentials

NUCLEAR STRUCTURE 2,3H; calculated wave functions. Low-momentum potentials.

doi: 10.1016/j.physletb.2005.10.094
Citations: PlumX Metrics


2006BO19      Nucl.Phys. A773, 203 (2006)

S.K.Bogner, R.J.Furnstahl, S.Ramanan, A.Schwenk

Convergence of the Born series with low-momentum interactions

doi: 10.1016/j.nuclphysa.2006.05.004
Citations: PlumX Metrics


2005BH01      Nucl.Phys. A747, 268 (2005)

A.Bhattacharyya, R.J.Furnstahl

The kinetic energy density in Kohn-Sham density functional theory

doi: 10.1016/j.nuclphysa.2004.10.008
Citations: PlumX Metrics


2005BH03      Phys.Lett. B 607, 259 (2005)

A.Bhattacharyya, R.J.Furnstahl

Single-particle properties from Khon-Sham Green's Functions

doi: 10.1016/j.physletb.2004.12.056
Citations: PlumX Metrics


2005BO48      Nucl.Phys. A763, 59 (2005)

S.K.Bogner, A.Schwenk, R.J.Furnstahl, A.Nogga

Is nuclear matter perturbative with low-momentum interactions?

doi: 10.1016/j.nuclphysa.2005.08.024
Citations: PlumX Metrics


2005FU08      J.Phys.(London) G31, S1357 (2005)

R.J.Furnstahl

Density functional theory: methods and problems

doi: 10.1088/0954-3899/31/8/014
Citations: PlumX Metrics


2004FU09      Nucl.Phys. A737, 215 (2004)

R.J.Furnstahl

Three-Body Interactions in Many-Body Effective Field Theory

doi: 10.1016/j.nuclphysa.2004.03.079
Citations: PlumX Metrics


2003PU04      Nucl.Phys. A723, 145 (2003)

S.J.Puglia, A.Bhattacharyya, R.J.Furnstahl

Density functional theory for a confined Fermi system with short-range interaction

doi: 10.1016/S0375-9474(03)01161-8
Citations: PlumX Metrics


2002FU06      Phys.Lett. 531B, 203 (2002)

R.J.Furnstahl, H.-W.Hammer

Are Occupation Numbers Observable ?

doi: 10.1016/S0370-2693(01)01504-0
Citations: PlumX Metrics


2002FU08      Nucl.Phys. A706, 85 (2002)

R.J.Furnstahl

Neutron Radii in Mean-Field Models

NUCLEAR STRUCTURE 208Pb; calculated neutron radius, skin thickness vs several mean-field model parameters.

doi: 10.1016/S0375-9474(02)00867-9
Citations: PlumX Metrics


2001FU08      Nucl.Phys. A689, 846 (2001)

R.J.Furnstahl, H.-W.Hammer, N.Tirfessa

Field Redefinitions at Finite Density

doi: 10.1016/S0375-9474(00)00687-4
Citations: PlumX Metrics


2000FU02      Nucl.Phys. A663-664, 513c (2000)

R.J.Furnstahl, B.D.Serot

Effective Field Theory and Nuclear Mean-Field Models

doi: 10.1016/S0375-9474(99)00644-2
Citations: PlumX Metrics


2000FU03      Nucl.Phys. A671, 396 (2000)

R.J.Furnstahl, J.V.Steele, N.Tirfessa

Perturbative Effective Field Theory at Finite Density

doi: 10.1016/S0375-9474(99)00824-6
Citations: PlumX Metrics


2000FU04      Nucl.Phys. A671, 447 (2000)

R.J.Furnstahl, B.D.Serot

Parameter Counting in Relativistic Mean-Field Models

NUCLEAR STRUCTURE 16O, 208Pb; calculated energy contributions from relativistic mean field model terms; deduced parameter constraints, related features.

doi: 10.1016/S0375-9474(99)00839-8
Citations: PlumX Metrics


2000FU07      Nucl.Phys. A673, 298 (2000)

R.J.Furnstahl, B.D.Serot

Large Lorentz Scalar and Vector Potentials in Nuclei

doi: 10.1016/S0375-9474(00)00146-9
Citations: PlumX Metrics


2000HA49      Nucl.Phys. A678, 277 (2000)

H.-W.Hammer, R.J.Furnstahl

Effective Field Theory for Dilute Fermi Systems

doi: 10.1016/S0375-9474(00)00325-0
Citations: PlumX Metrics


2000ST15      Nucl.Phys. A663-664, 999c (2000)

J.V.Steele, R.J.Furnstahl

Describing Nuclear Matter with Effective Field Theories

doi: 10.1016/S0375-9474(99)00753-8
Citations: PlumX Metrics


1999ST02      Nucl.Phys. A645, 439 (1999)

J.V.Steele, R.J.Furnstahl

Removing Pions from Two-Nucleon Effective Field Theory

doi: 10.1016/S0375-9474(98)00619-8
Citations: PlumX Metrics


1998CL04      Phys.Lett. 427B, 231 (1998); Erratum Phys.Lett. 486B, 272 (2000)

B.C.Clark, R.J.Furnstahl, L.Kurth Kerr, J.Rusnak, S.Hama

Pion-Nucleus Scattering at Medium Energies with Densities from Chiral Effective Field Theories

NUCLEAR REACTIONS 208Pb(π+, π+), (π-, π-), E at 790 MeV/c; calculated σ(θ). Relativistic point-coupling models, mean-field meson models. Comparison with data.

doi: 10.1016/S0370-2693(98)00352-9
Citations: PlumX Metrics


1998FU04      Nucl.Phys. A632, 607 (1998)

R.J.Furnstahl, J.J.Rusnak, B.D.Serot

The Nuclear Spin-Orbit Force in Chiral Effective Field Theories

NUCLEAR STRUCTURE 16O, 40Ca, 208Pb; analyzed spin-orbit splitting; deduced role of tensor couplings of vector mesons.

doi: 10.1016/S0375-9474(98)00004-9
Citations: PlumX Metrics


1998ST11      Nucl.Phys. A637, 46 (1998)

J.V.Steele, R.J.Furnstahl

Regularization Methods for Nucleon-Nucleon Effective Field Theory

doi: 10.1016/S0375-9474(98)00219-X
Citations: PlumX Metrics


1997FU03      Nucl.Phys. A615, 441 (1997); Erratum Nucl.Phys. A640, 505 (1998)

R.J.Furnstahl, B.D.Serot, H.-B.Tang

A Chiral Effective Lagrangian for Nuclei

NUCLEAR STRUCTURE 16O, 40,48Ca, 88Sr, 208Pb; calculated binding energies, charge densities, form factors. Quantum chromodynamics approach, chiral effective hadronic lagrangian.

doi: 10.1016/S0375-9474(96)00472-1
Citations: PlumX Metrics


1997FU05      Nucl.Phys. A618, 446 (1997)

R.J.Furnstahl, B.D.Serot, H.-B.Tang

Vacuum Nucleon Loops and Naturalness

doi: 10.1016/S0375-9474(97)00062-6
Citations: PlumX Metrics


1997FU09      Phys.Rev. C56, 2875 (1997)

R.J.Furnstahl, J.C.Hackworth

Skyrme Energy Functional and Naturalness

doi: 10.1103/PhysRevC.56.2875
Citations: PlumX Metrics


1997RU09      Nucl.Phys. A627, 495 (1997)

J.J.Rusnak, R.J.Furnstahl

Relativistic Point-Coupling Models as Effective Theories of Nuclei

doi: 10.1016/S0375-9474(97)00598-8
Citations: PlumX Metrics


1996FU02      Nucl.Phys. A598, 539 (1996)

R.J.Furnstahl, B.D.Serot, H.-B.Tang

Analysis of Chiral Mean-Field Models for Nuclei

NUCLEAR STRUCTURE 208Pb; calculated charge density, form factors. Chiral mean-field models.

doi: 10.1016/0375-9474(95)00488-2
Citations: PlumX Metrics


1996FU19      Phys.Lett. 387B, 253 (1996)

R.J.Furnstahl, X.Jin, D.B.Leinweber

New QCD Sum Rules for Nucleons in Nuclear Matter

doi: 10.1016/0370-2693(96)01043-X
Citations: PlumX Metrics


1995FU06      Phys.Rev. C52, 1368 (1995)

R.J.Furnstahl, J.-B.Tang, B.D.Serot

Vacuum Contributions in a Chiral Effective Lagrangian for Nuclei

NUCLEAR STRUCTURE 16O, 40Ca, 208Pb; calculated rms charge radii, charge density, binding energy systematics. Relativistic hadronic model.

doi: 10.1103/PhysRevC.52.1368
Citations: PlumX Metrics


1995JI07      Nucl.Phys. A585, 333c (1995)

X.Jin, R.J.Furnstahl, M.Nielsen

QCD Sum Rules for Hyperons in Nuclear Matter

doi: 10.1016/0375-9474(94)00593-C
Citations: PlumX Metrics


1995RU08      Z.Phys. A352, 345 (1995)

J.J.Rusnak, R.J.Furnstahl

Two-Point Fermion Correlation Functions at Finite Density

doi: 10.1007/BF01289507
Citations: PlumX Metrics


1994FU07      Phys.Rev. C50, 1735 (1994)

R.J.Furnstahl

Spectral Asymmetries in Nucleon Sum Rules at Finite Density

doi: 10.1103/PhysRevC.50.1735
Citations: PlumX Metrics


1994JI01      Phys.Rev. C49, 1190 (1994)

X.Jin, R.J.Furnstahl

QCD Sum Rule for (Lambda) Hyperons in Nuclear Matter

doi: 10.1103/PhysRevC.49.1190
Citations: PlumX Metrics


1993FU03      Phys.Rev. C47, 2338 (1993)

R.J.Furnstahl, B.D.Serot

Finite Nuclei in Relativistic Models with a Light Chiral Scalar Meson

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated charge density. 208Pb; calculated proton single-particle spectrum. Different mean field models, light chiral scalar meson.

doi: 10.1103/PhysRevC.47.2338
Citations: PlumX Metrics


1993FU04      Phys.Rev. C47, 2812 (1993)

R.J.Furnstahl, S.J.Wallace

Effective Interaction for Inelastic Proton Scattering Based on the Relativistic Impulse Approximation

NUCLEAR REACTIONS 40Ca(polarized p, p), E=300 MeV; analyzed σ(θ), polarization, spin rotation parameter vs θ. Relativistic impulse approximation, density dependent effective interaction.

doi: 10.1103/PhysRevC.47.2812
Citations: PlumX Metrics


1993FU08      Phys.Lett. 316B, 12 (1993)

R.J.Furnstahl, B.D.Serot

Finite Nuclei in a Relativistic Model with Broken Chiral and Scale Invariance

NUCLEAR STRUCTURE 208Pb; calculated charge density, proton single particle spectra. Relativistic hadronic model, broken chiral, scale invariances.

doi: 10.1016/0370-2693(93)90649-3
Citations: PlumX Metrics


1991CO02      Phys.Rev. C43, 357 (1991)

T.D.Cohen, R.J.Furnstahl, M.K.Banerjee

In-Medium Proton-Neutron Mass Difference and the Systematics of the Nolen-Schiffer Anomaly

NUCLEAR STRUCTURE 17,15O, 17F, 39K, 39,41Ca, 41Sc; analyzed Nolen-Schiffer anomaly; deduced in-medium n-p mass difference role.

doi: 10.1103/PhysRevC.43.357
Citations: PlumX Metrics


1991FU04      Phys.Rev. C44, 895 (1991)

R.J.Furnstahl, C.E.Price

Charge Density Differences Near 208Pb in Relativistic Models

NUCLEAR STRUCTURE 206Pb, 205Tl, 204Hg; calculated charge density differences, σ ratios. Relativistic mean field models.

doi: 10.1103/PhysRevC.44.895
Citations: PlumX Metrics


1990DA14      Phys.Rev. C42, 2009 (1990)

J.F.Dawson, R.J.Furnstahl

Relativistic Spectral Random-Phase Approximation in Finite Nuclei

NUCLEAR STRUCTURE 16O; calculated levels, transition charge to current density ratios, form factors. Relativistic spectral RPA.

NUCLEAR REACTIONS 12C, 16O, 40Ca(e, e'), E not given; calculated longitudinal, transverse form factors. Relativistic spectral RPA.

doi: 10.1103/PhysRevC.42.2009
Citations: PlumX Metrics


1990FU04      Phys.Rev. C41, 1792 (1990)

R.J.Furnstahl, C.E.Price

Vacuum Polarization Currents in Finite Nuclei

NUCLEAR STRUCTURE A=15, 17, 39, 41; calculated isoscalar magnetic moment. 15N, 209Bi; calculated magnetic form factor.

doi: 10.1103/PhysRevC.41.1792
Citations: PlumX Metrics


Back to query form    [Next]