NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = L.Platter

Found 33 matches.

Back to query form



2023AC12      J.Phys.(London) G50, 095102 (2023)

B.Acharya, L.E.Marcucci, L.Platter

Revisiting proton-proton fusion in chiral effective field theory

NUCLEAR REACTIONS 1H(p, X), E not given; calculated proton-proton fusion S-factor and uncertainties by performing order-by-order computations with a variety of chiral interactions that are regularized and calibrated in different ways.

doi: 10.1088/1361-6471/ace3e2
Citations: PlumX Metrics


2023BO08      Phys.Rev. C 107, 065502 (2023)

J.Bonilla, B.Acharya, L.Platter

Muon capture on the deuteron in chiral effective field theory

NUCLEAR REACTIONS 2H(μ, X), E at <300 MeV/c; calculated total muon capture rate, capture rate from the doublet and quartet channel. Quantified the theoretical uncertainties. Chiral effective field theory at next-to-next-to-leading order (NNLO) currents. Studied the dependence on the cutoff used to regularize the interactions, low energy constants calibrated using different fitting data and strategies, and truncation of the effective-field-theory expansion of the currents. Comparison to available experimental data and other theoretical estimations.

doi: 10.1103/PhysRevC.107.065502
Citations: PlumX Metrics


2023EL03      Phys.Rev. C 108, 015501 (2023)

W.Elkamhawy, H.-W.Hammer, L.Platter

Weak decay of halo nuclei

RADIOACTIVITY 11Be(β-p); calculated differential decay rate for β-delayed proton emission as a function of the final-state particle energy, partial decay rate as a function of the resonance energy, branching ratios, logft. Cluster effective field theory for halo nuclei considering direct decay into the continuum and resonant final state interactions between the proton and the core. Comparison to previous theoretical estimations and available experimental data.

doi: 10.1103/PhysRevC.108.015501
Citations: PlumX Metrics


2022MI13      Phys.Rev. C 106, 024004 (2022)

C.Mishra, A.Ekstrom, G.Hagen, T.Papenbrock, L.Platter

Two-pion exchange as a leading-order contribution in chiral effective field theory

doi: 10.1103/PhysRevC.106.024004
Citations: PlumX Metrics


2021EL08      Phys.Lett. B 821, 136610 (2021)

W.Elkamhawy, Z.Yang, H.-W.Hammer, L.Platter

β-delayed proton emission from 11Be in effective field theory

RADIOACTIVITY 11Be(β-p); calculated decay rate, branching ratios using Halo effective field theory. Comparison with experimental data.

doi: 10.1016/j.physletb.2021.136610
Citations: PlumX Metrics


2021EM01      J.Phys.(London) G48, 035101 (2021)

S.B.Emmons, C.Ji, L.Platter

Pionless effective field theory evaluation of nuclear polarizability in muonic deuterium

doi: 10.1088/1361-6471/abcb58
Citations: PlumX Metrics


2021YA22      Phys.Rev. C 104, 024002 (2021)

Z.Yang, E.Mereghetti, L.Platter, M.R.Schindler, J.Vanasse

Electric dipole moments of three-nucleon systems in the pionless effective field theory

NUCLEAR MOMENTS 3H, 3He; calculated electric dipole moments (EDMs) electric dipole form factor, momentum dependence of the electric dipole form factor in the Wigner limit using leading order (LO) pionless chiral effective field theory (EFT).

doi: 10.1103/PhysRevC.104.024002
Citations: PlumX Metrics


2019AC09      Phys.Rev. C 100, 021001R (2019)

B.Acharya, L.Platter, G.Rupak

Universal behavior of p-wave proton-proton fusion near threshold

NUCLEAR REACTIONS 1H(p, X), E<110 keV; calculated p-wave contribution to the proton-proton fusion S factor and total threshold S factor using chiral effective-field theory (EFT) up to the next-to-leading order.

doi: 10.1103/PhysRevC.100.021001
Citations: PlumX Metrics


2019DE28      Phys.Rev. C 100, 055502 (2019)

H.De-Leon, L.Platter, D.Gazit

Tritium β decay in pionless effective field theory

RADIOACTIVITY 3H(β-); calculated β- decay Fermi and Gamow-Teller matrix elements, three-nucleon scattering amplitudes, Gamow-Teller strength using the pionless effective field theory at next-to-leading order (NLO); deduced a low-energy parameter using the measured half-life of tritium decay. Relevance to high-accuracy prediction of the solar proton-proton fusion rate.

doi: 10.1103/PhysRevC.100.055502
Citations: PlumX Metrics


2019OD02      Phys.Rev. C 100, 054001 (2019)

D.Odell, A.Deltuva, J.Bonilla, L.Platter

Renormalization of a finite-range inverse-cube potential

doi: 10.1103/PhysRevC.100.054001
Citations: PlumX Metrics


2019SC09      Phys.Rev. C 99, 054611 (2019)

M.Schmidt, L.Platter, H.-W.Hammer

Neutron transfer reactions in halo effective field theory

NUCLEAR REACTIONS 10Be(d, p), E=12, 15, 18, 21.4 MeV; calculated differential σ(θ, E) using halo effective field theory (EFT) at leading-order (LO) and next-to-leading-order (NLO). Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.99.054611
Citations: PlumX Metrics


2018AC07      Phys.Rev. C 98, 065506 (2018)

B.Acharya, A.Ekstrom, L.Platter

Effective-field-theory predictions of the muon-deuteron capture rate

NUCLEAR REACTIONS 2H(μ-, X), E=125-300 MeV; calculated distribution of central values and uncertainties for muon-capture rate, and capture rate as a function of proton-proton Spp factor using chiral effective-field-theory, and using the experimental value of triton β-decay half-life. Relevance to forthcoming experimental results from the MuSun Collaboration.

doi: 10.1103/PhysRevC.98.065506
Citations: PlumX Metrics


2018BR18      Eur.Phys.J. A 54, 196 (2018)

J.Braun, H.-W.Hammer, L.Platter

Halo structure of 17C

NUCLEAR STRUCTURE 17C; calculated halo nucleus predictions of charge radius, magnetic moment of (1/2)+ state, γ-ray transition strengths, 16C(n, γ) E1 capture σ to (1/2)+ at E(cm) below 30 MeV using EFT (Effective Field Theory); discussed Halo EFT predictive power for (3/2)+ and (5/2)+ states (neutron in D-wave).

doi: 10.1140/epja/i2018-12630-3
Citations: PlumX Metrics


2017AC01      Phys.Rev. C 95, 031301 (2017)

B.Acharya, A.Ekstrom, D.Odell, T.Papenbrock, L.Platter

Corrections to nucleon capture cross sections computed in truncated Hilbert spaces

NUCLEAR REACTIONS 1H(n, γ), E(cm)=1 MeV; 1H(p, X), E(cm)=50, 1000 keV; calculated dependence of the nucleon capture cross section on the radius of the hard wall with Dirichlet boundary condition using computations based on hyperspherical harmonics. Relevance to rp-process.

doi: 10.1103/PhysRevC.95.031301
Citations: PlumX Metrics


2017PL02      Few-Body Systems 58, 105 (2017)

L.Platter

Effective Field Theory for Halo Nuclei

NUCLEAR STRUCTURE 17F, 8B; analyzed available data; deduced S-factors.

doi: 10.1007/s00601-017-1263-9
Citations: PlumX Metrics


2016OD01      Phys.Rev. C 93, 044331 (2016)

D.Odell, T.Papenbrock, L.Platter

Infrared extrapolations of quadrupole moments and transitions

doi: 10.1103/PhysRevC.93.044331
Citations: PlumX Metrics


2016RY01      Ann.Phys.(New York) 367, 13 (2016)

E.Ryberg, C.Forssen, H.-W.Hammer, L.Platter

Range corrections in proton halo nuclei

NUCLEAR REACTIONS 16O(p, X)17F, E<2.3 MeV; calculated S-factor, charge radii. Comparison with experimental data.

doi: 10.1016/j.aop.2016.01.008
Citations: PlumX Metrics


2014RY03      Phys.Rev. C 89, 014325 (2014)

E.Ryberg, C.Forssen, H.-W.Hammer, L.Platter

Effective field theory for proton halo nuclei

NUCLEAR REACTIONS 16O(p, γ)17F*, E(cm)=0-2000 keV; calculated charge form factor, radiative proton capture cross section, charge radius, astrophysical S factor for excited 1/2+ state in 17F using leading order halo effective field theory (LO halo EFT); comparison with experimental data and other theoretical calculation.

doi: 10.1103/PhysRevC.89.014325
Citations: PlumX Metrics


2014RY06      Eur.Phys.J. A 50, 170 (2014)

E.Ryberg, C.Forssen, H.-W.Hammer, L.Platter

Constraining low-energy proton capture on beryllium-7 through charge radius measurements

NUCLEAR REACTIONS 7Be(p, γ), E(cm)=0-500 keV. 8B calculated charge radius, reaction S-factor using leading-order effective field theory. Compared with reaction data.

NUCLEAR STRUCTURE 8B; calculated S-factor vs charge radius; deduced threshold S-factor using charge radius data.

doi: 10.1140/epja/i2014-14170-2
Citations: PlumX Metrics


2013HA32      Phys.Rev.Lett. 111, 132501 (2013)

G.Hagen, P.Hagen, H.-W.Hammer, L.Platter

Efimov Physics Around the Neutron-Rich 60Ca Isotope

NUCLEAR STRUCTURE 60,61,62Ca; calculated neutron S-wave scattering phase shifts; deduced correlations between different three-body observables and the two-neutron separation energy. Modern ab initio interactions derived from chiral effective theory.

doi: 10.1103/PhysRevLett.111.132501
Citations: PlumX Metrics


2013HA33      Eur.Phys.J. A 49, 118 (2013)

P.Hagen, H.-W.Hammer, L.Platter

Charge form factors of two-neutron halo nuclei in halo EFT

NUCLEAR STRUCTURE 9,10,11Li, 12,13,14Be, 20,21,22C; calculated charge formfactors, charge radii including halo nuclei using EFT (effective field theory); deduced parameters. Compared with available measurement.

doi: 10.1140/epja/i2013-13118-4
Citations: PlumX Metrics


2011AK02      Eur.Phys.J. A 47, 122 (2011)

O.Akerlund, E.J.Lindgren, J.Bergsten, B.Grevholm, P.Lerner, R.Linscott, C.Forssen, L.Platter

The similarity renormalization group for three-body interactions in one dimension

doi: 10.1140/epja/i2011-11122-4
Citations: PlumX Metrics


2011BE12      Phys.Rev. C 83, 045803 (2011)

P.F.Bedaque, T.Luu, L.Platter

Quark mass variation constraints from Big Bang nucleosynthesis

doi: 10.1103/PhysRevC.83.045803
Citations: PlumX Metrics


2011DR03      Phys.Rev. C 84, 014318 (2011)

J.E.Drut, L.Platter

Exact-exchange density functional theory for neutron drops

doi: 10.1103/PhysRevC.84.014318
Citations: PlumX Metrics


2009BO05      Eur.Phys.J. A 39, 219 (2009)

S.K.Bogner, R.J.Furnstahl, L.Platter

Density matrix expansion for low-momentum interactions

doi: 10.1140/epja/i2008-10695-1
Citations: PlumX Metrics


2007HA41      Eur.Phys.J. A 32, 113 (2007)

H.-W.Hammer, L.Platter

Universal properties of the four-body system with large scattering length

doi: 10.1140/epja/i2006-10301-8
Citations: PlumX Metrics


2007HA42      Eur.Phys.J. A 32, 335 (2007)

H.-W.Hammer, D.R.Phillips, L.Platter

Pion-mass dependence of three-nucleon observables

NUCLEAR STRUCTURE 3H; calculated ground and excited state binding energies using effective field theory.

doi: 10.1140/epja/i2007-10380-y
Citations: PlumX Metrics


2007PL05      Nucl.Phys. A790, 394c (2007)

L.Platter

Effective range corrections in few-body systems with large scattering length

NUCLEAR REACTIONS 2H(n, n), E=low; calculated S-wave phase shifts, 3H binding energy. Three-body forces discussed. Effective field theory with contact interactions. Comparison with data.

doi: 10.1016/j.nuclphysa2007.03.142
Citations: PlumX Metrics


2006PL02      Nucl.Phys. A766, 132 (2006)

L.Platter, H.-W.Hammer

Universality in the triton charge form factor

NUCLEAR STRUCTURE 3H; calculated charge form factor, charge radius, correlations. Comparison with data.

doi: 10.1016/j.nuclphysa.2005.11.023
Citations: PlumX Metrics


2006PL09      Phys.Rev. C 74, 037001 (2006)

L.Platter

Three-nucleon system at next-to-next-to-leading order

NUCLEAR STRUCTURE 3H; calculated S-wave phase shifts, three-nucleon bound state spectrum, scattering lengths. range corrections, correlations. Three-body forces discussed. Effective field theory calculations, comparison with data.

NUCLEAR REACTIONS 2H(n, n), E=low; calculated S-wave phase shifts, three-nucleon bound state spectrum, range corrections, scattering lengths, correlations. Three-body forces discussed. Effective field theory calculations, comparison with data.

doi: 10.1103/PhysRevC.74.037001
Citations: PlumX Metrics


2006PL10      Phys.Lett. B 641, 164 (2006)

L.Platter, D.R.Phillips

Deuteron matrix elements in chiral effective theory at leading order

doi: 10.1016/j.physletb.2006.08.053
Citations: PlumX Metrics


2005PL01      Phys.Lett. B 607, 254 (2005)

L.Platter, H.-W.Hammer, Ulf.-G.Meissner

On the correlation between the binding energies of the triton and the α-particle

NUCLEAR STRUCTURE 3H, 4He; calculated binding energies, correlations.

doi: 10.1016/j.physletb.2004.12.068
Citations: PlumX Metrics


2003PL01      Nucl.Phys. A714, 250 (2003)

L.Platter, H.-W.Hammer, U.-G.Meissner

Quasiparticle properties in effective field theory

doi: 10.1016/S0375-9474(02)01365-9
Citations: PlumX Metrics


Back to query form