NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 21, 2024.

Search: Author = S.K.Bogner

Found 48 matches.

Back to query form

2024ZU01      Phys.Rev. C 109, 014319 (2024)

L.Zurek, S.K.Bogner, R.J.Furnstahl, R.Navarro Perez, N.Schunck, A.Schwenk

Optimized nuclear energy density functionals including long-range pion contributions

doi: 10.1103/PhysRevC.109.014319
Citations: PlumX Metrics

2022TR02      Phys.Rev. C 106, 024324 (2022)

A.J.Tropiano, S.K.Bogner, R.J.Furnstahl, M.A.Hisham

Quasi-deuteron model at low renormalization group resolution

NUCLEAR STRUCTURE 9Be, 12C, 16O, 40Ca, 56Fe, 118Sn, 208Pb; calculated ratios of the pn momentum distribution over the deuteron momentum distribution as a function of relative momentum. A=6-115; calculated average Levinger constant. Similarity renormalization group (SRG) transformations applied to several nucleon-nucleon interactions - AV18, Nijmegen II, CD-Bonn, SMS N4LO, and GT+ N2LO. Comparison to the data extracted from experimental results.

doi: 10.1103/PhysRevC.106.024324
Citations: PlumX Metrics

2021TR08      Phys.Rev. C 104, 034311 (2021)

A.J.Tropiano, S.K.Bogner, R.J.Furnstahl

Short-range correlation physics at low renormalization group resolution

NUCLEAR STRUCTURE 12C, 16O, 40,48Ca, 56Fe, 208Pb; calculated proton momentum distributions for 12C, 16O, 40Ca, pp+pn/nn+np pair and pp/pn+np ratios for momentum transfer q=1.5-4.0 fm-1, percentage contributions from s-waves and selected p-waves to proton momentum distributions, short-range correlation (SRC) scaling factors and compared with experimental values. High renormalization group (RG)-resolution SRC physics incorporated at low resolution by unitary RG evolution, with weakly-correlated wave functions and simple evolved operators. Relevance to the analysis of knockout reactions such as (e, e'p) knockout reaction experiments at NIKHEF and other electron scattering facilities.

doi: 10.1103/PhysRevC.104.034311
Citations: PlumX Metrics

2021ZU01      Phys.Rev. C 103, 014325 (2021)

L.Zurek, E.A.Coello Perez, S.K.Bogner, R.J.Furnstahl, A.Schwenk

Comparing different density-matrix expansions for long-range pion exchange

NUCLEAR STRUCTURE 16O, 48Ca, 132Sn; calculated normalized density-matrix square for 132Sn, isoscalar density distributions, and ratios of the DME-approximated and exact exchange energy contributions for Yukawa interaction for 16O, 48Ca, 132Sn, scalar-isoscalar and scalar-isovector exchange-energy integrands for Yukawa interaction in 132Sn. Density-matrix expansion (DME) with two-body scalar terms to embed long-range pion interactions into a Skyrme energy density functional.

doi: 10.1103/PhysRevC.103.014325
Citations: PlumX Metrics

2020TR02      Phys.Rev. C 102, 034005 (2020)

A.J.Tropiano, S.K.Bogner, R.J.Furnstahl

Operator evolution from the similarity renormalization group and the Magnus expansion

doi: 10.1103/PhysRevC.102.034005
Citations: PlumX Metrics

2018NA11      Phys.Rev. C 97, 054304 (2018)

R.Navarro-Perez, N.Schunck, A.Dyhdalo, R.J.Furnstahl, S.K.Bogner

Microscopically based energy density functionals for nuclei using the density matrix expansion. II. Full optimization and validation

ATOMIC MASSES N=10-160; calculated binding energies of even-even nuclei, and compared with measured values from AME-2016.

NUCLEAR STRUCTURE N=10-160; calculated proton radii using the UNEDF2 and NLOΔ+3N functionals, and compared with experimental data. 208Pb; calculated neutron single particle levels using energy density functions (EDFs) from NN and 3N forces with and without Δ excitation. 240Pu; calculated deformation potential energy surface, excitation energy of the fission isomer, and height of the first and second fission barriers using LO, NLO, N2LO, N2LO+3N, NLOΔ, NLOΔ+3N, N2LOΔ, and N2LOΔ+3N energy density functionals, and compared with experimental values.

doi: 10.1103/PhysRevC.97.054304
Citations: PlumX Metrics

2018ZH57      Phys.Rev. C 98, 064306 (2018)

Y.N.Zhang, S.K.Bogner, R.J.Furnstahl

Incorporating Brueckner-Hartree-Fock correlations in energy density functionals

doi: 10.1103/PhysRevC.98.064306
Citations: PlumX Metrics

2017DY02      Phys.Rev. C 95, 054314 (2017)

A.Dyhdalo, S.K.Bogner, R.J.Furnstahl

Applying the density matrix expansion with coordinate-space chiral interactions

doi: 10.1103/PhysRevC.95.054314
Citations: PlumX Metrics

2017DY04      Phys.Rev. C 96, 054005 (2017)

A.Dyhdalo, S.K.Bogner, R.J.Furnstahl

Estimates and power counting in uniform nuclear matter with softened interactions

doi: 10.1103/PhysRevC.96.054005
Citations: PlumX Metrics

2017MO39      Phys.Rev. C 96, 054004 (2017)

S.N.More, S.K.Bogner, R.J.Furnstahl

Scale dependence of deuteron electrodisintegration

NUCLEAR STRUCTURE 2H; calculated initial deuteron wave function, current operator, and the final-state interactions (FSIs) and their combinations at different scales using similarity renormalization group (SRG) for each component of deuteron electro-disintegration for example in 2H(e, e'p)n. Relevance to scale dependence in nuclear knock-out reactions.

doi: 10.1103/PhysRevC.96.054004
Citations: PlumX Metrics

2017PA09      Phys.Rev. C 95, 044304 (2017)

N.M.Parzuchowski, T.D.Morris, S.K.Bogner

Ab initio excited states from the in-medium similarity renormalization group

NUCLEAR STRUCTURE 16,22O; calculated low-lying levels using ab initio approach within the in-medium similarity renormalization group (IMSRG) framework, and Tamm-Dancoff approximation (TDA) with equations-of-motion (EOM) techniques.

doi: 10.1103/PhysRevC.95.044304
Citations: PlumX Metrics

2017PA26      Phys.Rev. C 96, 034324 (2017)

N.M.Parzuchowski, S.R.Stroberg, P.Navratil, H.Hergert, S.K.Bogner

Ab initio electromagnetic observables with the in-medium similarity renormalization group

NUCLEAR STRUCTURE 14C; calculated energies of the ground state and first 2+ state, B(E2) for the first 2+ state. 2H; calculated energy, magnetic dipole moment, electric quadrupole moment and charge radius of the ground state. 6Li; calculated energies of ground-state and first 3+ state, quadrupole moments, B(M1), B(E2). 6He, 14C, 22O, 32S, 48Ca, 56,60Ni; calculated energies and B(E2) of first 2+ states. 14N; calculated energy and B(M1) of the first excited 0+ state. 32S, 32Cl; calculated energies, B(M1) and magnetic-dipole moments of first 1+ states. 16O, 40Ca; calculated energies and B(E3) of first 3- states. 14C, 22O, 32S; calculated E2 and M1 transition matrix elements. Equations-of-motion in-medium similarity renormalization group (EOM-IMSRG), and valence-space VS-IMSRG methods. Comparison with available experimental values, and theoretical calculations from no-core shell-model.

doi: 10.1103/PhysRevC.96.034324
Citations: PlumX Metrics

2017ST03      Phys.Rev.Lett. 118, 032502 (2017)

S.R.Stroberg, A.Calci, H.Hergert, J.D.Holt, S.K.Bogner, R.Roth, A.Schwenk

Nucleus-Dependent Valence-Space Approach to Nuclear Structure

NUCLEAR STRUCTURE 16,18,22O, 10B, 22Na, 46V, C, N, O, Na, Ca, Ni; calculated ground-state energies, J, π, the extension of ab initio nuclear structure calculations.

doi: 10.1103/PhysRevLett.118.032502
Citations: PlumX Metrics

2016ST12      Phys.Rev. C 93, 051301 (2016)

S.R.Stroberg, H.Hergert, J.D.Holt, S.K.Bogner, A.Schwenk

Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians

NUCLEAR STRUCTURE 19,23,25,26F, 20,22,24,25,26Ne, 24Mg; calculated levels, J, π, yrast states from ab initio in-medium similarity renormalization group (IM-SRG) Hamiltonians based on NN+3N-induced and NN+3N-full Hamiltonians. Comparison with experimental data, and with phenomenological USDB predictions. 17,18,19,20,21,22,23,24,25,26,27,28,29F, 18,19,20,21,22,23,24,25,26,27,28,29,30Ne; calculated ground-state energies from the A-dependent IM-SRG valence-space Hamiltonian. Comparison with AME-2012 values, and the phenomenological USDB interaction.

doi: 10.1103/PhysRevC.93.051301
Citations: PlumX Metrics

2015CA09      Phys.Rev. C 92, 014327 (2015)

L.Caceres, A.Lepailleur, O.Sorlin, M.Stanoiu, D.Sohler, Zs.Dombradi, S.K.Bogner, B.A.Brown, H.Hergert, J.D.Holt, A.Schwenk, F.Azaiez, B.Bastin, C.Borcea, R.Borcea, C.Bourgeois, Z.Elekes, Zs.Fulop, S.Grevy, L.Gaudefroy, G.F.Grinyer, D.Guillemaud-Mueller, F.Ibrahim, A.Kerek, A.Krasznahorkay, M.Lewitowicz, S.M.Lukyanov, J.Mrazek, F.Negoita, F.de Oliveira, Yu.-E.Penionzhkevich, Zs.Podolyak, M.G.Porquet, F.Rotaru, P.Roussel-Chomaz, M.G.Saint-Laurent, H.Savajols, G.Sletten, J.C.Thomas, J.Timar, C.Timis, Zs.Vajta

Nuclear structure studies of 24F

NUCLEAR REACTIONS 9Be(36S, X)24O/26F/27Ne/28Ne/29Na/30Na, E=77.6 MeV/nucleon; measured energy loss, TOF, yields using LISE achromatic spectrometer at GANIL facility. C(27Na, 24F), E=54-65 MeV/nucleon, [secondary cocktail beam of 25,26Ne, 27,28Na, 29,30Mg from C(36S, X), E=77.6 MeV/nucleon primary reaction, and separated using ALPHA and SPEG spectrometers]; measured Eγ, Iγ, (particle)γ-, γγ-coin using Chateau de Cristal array. 24F; deduced levels, J, π, branching ratios, configurations. Comparison with shell-model calculations using USDA and USDB interactions, and ab initio shell-model calculations, using interactions derived from chiral NN+3N forces by means of IM-SRG.

RADIOACTIVITY 24O(β-), (β-n)[from Be(36S, X), E=77.6 MeV/nucleon using LISE spectrometer at GANIL]; measured Eγ, Iγ, Eβ, βγ-, γγ-coin, (24O)β-correlations, half-life of 24O isotope from (24O)γ-correlated decay curve, β-delayed neutron emission probability Pn using four segmented Ge clover detectors of EXOGAM array for γ rays and DSSSDs for particles. 24F; deduced levels, J, π, branching ratios, β feedings, logft. Comparison with shell-model calculations.

doi: 10.1103/PhysRevC.92.014327
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2015MO19      Phys.Rev. C 92, 034331 (2015)

T.D.Morris, N.M.Parzuchowski, S.K.Bogner

Magnus expansion and in-medium similarity renormalization group

NUCLEAR STRUCTURE 16O; calculated energy of the ground-state of 16O and that of homogeneous electron gas (HEG) using an improved variant of the in-medium similarity renormalization group (IM-SRG) based on the Magnus expansion and a first-order Euler method. Substantial memory savings and modest computational speedups.

doi: 10.1103/PhysRevC.92.034331
Citations: PlumX Metrics

2014BO25      Phys.Rev.Lett. 113, 142501 (2014)

S.K.Bogner, H.Hergert, J.D.Holt, A.Schwenk, S.Binder, A.Calci, J.Langhammer, R.Roth

Nonperturbative Shell-Model Interactions from the In-Medium Similarity Renormalization Group

NUCLEAR STRUCTURE 21,22,23,24,25,26O; calculated energy levels, J, π. Comparison with experimental data.

doi: 10.1103/PhysRevLett.113.142501
Citations: PlumX Metrics

2014HE23      Phys.Rev. C 90, 041302 (2014)

H.Hergert, S.K.Bogner, T.D.Morris, S.Binder, A.Calci, J.Langhammer, R.Roth

Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes

NUCLEAR STRUCTURE 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90Ni; calculated ground state energies, and S(2n) using multireference in-medium similarity renormalization group based on NN+3N nucleon interactions from chiral effective field theory. Comparison with other calculations and experimental results.

doi: 10.1103/PhysRevC.90.041302
Citations: PlumX Metrics

2014KO46      Phys.Rev. C 90, 064007 (2014)

S.Konig, S.K.Bogner, R.J.Furnstahl, S.N.More, T.Papenbrock

Ultraviolet extrapolations in finite oscillator bases

NUCLEAR STRUCTURE 2H; calculated relative error in the deuteron energy, computed in harmonic-oscillator bases for a wide range of oscillator parameters, infrared (IR) and ultraviolet (UV) corrections and extrapolations in finite oscillator, comparison of UV extrapolations for a deuteron state bases for different potentials.

doi: 10.1103/PhysRevC.90.064007
Citations: PlumX Metrics

2014SH22      Phys.Rev. C 90, 024324 (2014)

A.M.Shirokov, A.G.Negoita, J.P.Vary, S.K.Bogner, A.I.Mazur, E.A.Mazur, D.Gogny

Properties of nuclear matter within the JISP16 NN interaction

doi: 10.1103/PhysRevC.90.024324
Citations: PlumX Metrics

2013HE07      Phys.Rev. C 87, 034307 (2013)

H.Hergert, S.K.Bogner, S.Binder, A.Calci, J.Langhammer, R.Roth, A.Schwenk

In-medium similarity renormalization group with chiral two- plus three-nucleon interactions

NUCLEAR STRUCTURE 4He, 16,24O, 40,48Ca, 48,56Ni; calculated ground states energies, and binding energies using the in-medium similarity renormalization group (IM-SRG), based on chiral two- plus three-nucleon interactions. Comparison with coupled cluster calculations, truncated no-core shell model, and with experimental data.

doi: 10.1103/PhysRevC.87.034307
Citations: PlumX Metrics

2012BO18      Phys.Rev. C 86, 064304 (2012)

S.K.Bogner, D.Roscher

High-momentum tails from low-momentum effective theories

doi: 10.1103/PhysRevC.86.064304
Citations: PlumX Metrics

2012TS02      Phys.Rev. C 85, 061304 (2012)

K.Tsukiyama, S.K.Bogner, A.Schwenk

In-medium similarity renormalization group for open-shell nuclei

NUCLEAR STRUCTURE 6Li, 18O; calculated level energies using the in-medium similarity renormalization group (IM-SRG) approach. Comparison with experimental data, and other theoretical studies.

doi: 10.1103/PhysRevC.85.061304
Citations: PlumX Metrics

2011BO22      Phys.Rev. C 84, 044306 (2011)

S.K.Bogner, R.J.Furnstahl, H.Hergert, M.Kortelainen, P.Maris, M.Stoitsov, J.P.Vary

Testing the density matrix expansion against ab initio calculations of trapped neutron drops

doi: 10.1103/PhysRevC.84.044306
Citations: PlumX Metrics

2011GE02      Nucl.Phys. A851, 17 (2011)

B.Gebremariam, S.K.Bogner, T.Duguet

Microscopically-constrained Fock energy density functionals from chiral effective field theory. I. Two-nucleon interactions

doi: 10.1016/j.nuclphysa.2010.12.009
Citations: PlumX Metrics

2011HE06      Phys.Rev. C 83, 031301 (2011)

K.Hebeler, S.K.Bogner, R.J.Furnstahl, A.Nogga, A.Schwenk

Improved nuclear matter calculations from chiral low-momentum interactions

doi: 10.1103/PhysRevC.83.031301
Citations: PlumX Metrics

2011TS05      Phys.Rev.Lett. 106, 222502 (2011)

K.Tsukiyama, S.K.Bogner, A.Schwenk

In-Medium Similarity Renormalization Group For Nuclei

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated ground-state energies, two-body matrix elements. Ab initio calculations.

doi: 10.1103/PhysRevLett.106.222502
Citations: PlumX Metrics

2010AN14      Phys.Rev. C 82, 054001 (2010)

E.R.Anderson, S.K.Bogner, R.J.Furnstahl, R.J.Perry

Operator evolution via the similarity renormalization group: The deuteron

doi: 10.1103/PhysRevC.82.054001
Citations: PlumX Metrics

2010GE02      Phys.Rev. C 82, 014305 (2010)

B.Gebremariam, T.Duguet, S.K.Bogner

Improved density matrix expansion for spin-unsaturated nuclei

NUCLEAR STRUCTURE 46,64,80Cr, 102,114,132Sn, 180,198,214Pb; calculated quadrupole anisotropy. Z=24, A=44-82; Z=50, A=100-132; Z=82, A=176-214; calculated energy density expansions for even-even nuclei. Nuclear energy density functionals.

doi: 10.1103/PhysRevC.82.014305
Citations: PlumX Metrics

2010ST12      Phys.Rev. C 82, 054307 (2010)

M.Stoitsov, M.Kortelainen, S.K.Bogner, T.Duguet, R.J.Furnstahl, B.Gebremariam, N.Schunck

Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated kinetic energies for neutrons and protons, surface, volume and total energies, single-particle neutron and proton energies. 54,56,58,60,62,64,66Ni, 68Ni, 70,72,74,76,78,80,82,84,86,88,90,92Ni; calculated two-neutron separation energies, neutron rms radii, and average neutron pairing gaps. 100Zr; calculated deformation energy. 40,42,44,46,48Ca; calculated proton rms radii. Energy density functionals SLy4' and density matrix expansion (DME) in LO, NLO and N2LO.

doi: 10.1103/PhysRevC.82.054307
Citations: PlumX Metrics

2009BO05      Eur.Phys.J. A 39, 219 (2009)

S.K.Bogner, R.J.Furnstahl, L.Platter

Density matrix expansion for low-momentum interactions

doi: 10.1140/epja/i2008-10695-1
Citations: PlumX Metrics

2008AN02      Phys.Rev. C 77, 037001 (2008)

E.Anderson, S.K.Bogner, R.J.Furnstahl, E.D.Jurgenson, R.J.Perry, A.Schwenk

Block diagonalization using similarity renormalization group flow equations

doi: 10.1103/PhysRevC.77.037001
Citations: PlumX Metrics

2008BO07      Nucl.Phys. A801, 21 (2008)

S.K.Bogner, R.J.Furnstahl, P.Maris, R.J.Perry, A.Schwenk, J.P.Vary

Convergence in the no-core shell model with low-momentum two-nucleon interactions

NUCLEAR STRUCTURE 2,3H, 4,6He, 6,7Li; calculated ground/excited state energies with no core shell model using similarity renormalization group interactions.

doi: 10.1016/j.nuclphysa.2007.12.008
Citations: PlumX Metrics

2008DE04      Phys.Rev. C 77, 024002 (2008)

A.Deltuva, A.C.Fonseca, S.K.Bogner

Low-momentum interactions in three- and four-nucleon scattering

NUCLEAR REACTIONS 2H(n, n), E=13 MeV; calculated binding energy, σ(θ), analyzing power. 3H(n, n), E=3.5 MeV; calculated cross sections, neutron analyzing power.

doi: 10.1103/PhysRevC.77.024002
Citations: PlumX Metrics

2008JU05      Phys.Rev. C 78, 014003 (2008)

E.D.Jurgenson, S.K.Bogner, R.J.Furnstahl, R.J.Perry

Decoupling in the similarity renormalization group for nucleon-nucleon forces

NUCLEAR STRUCTURE 2H; calculated rms radius. 4He, 6Li; calculated ground state energies. No-core shell model.

doi: 10.1103/PhysRevC.78.014003
Citations: PlumX Metrics

2007BO03      Nucl.Phys. A784, 79 (2007)

S.K.Bogner, R.J.Furnstahl, S.Ramanan, A.Schwenk

Low-momentum interactions with smooth cutoffs

NUCLEAR STRUCTURE 2,3H; calculated binding energies, radii, wave functions. Low-momentum interactions with smooth cutoffs.

doi: 10.1016/j.nuclphysa.2006.11.123
Citations: PlumX Metrics

2007BO20      Phys.Rev. C 75, 061001 (2007)

S.K.Bogner, R.J.Furnstahl, R.J.Perry

Similarity renormalization group for nucleon-nucleon interactions

doi: 10.1103/PhysRevC.75.061001
Citations: PlumX Metrics

2007BO36      Phys.Lett. B 649, 488 (2007)

S.K.Bogner, R.J.Furnstahl, R.J.Perry, A.Schwenk

Are low-energy nuclear observables sensitive to high-energy phase shifts?

NUCLEAR STRUCTURE 2H; calculated binding energies, wave functions, phase shifts. Low-momentum interactions with smooth cutoffs. Similarity renormalization group.

doi: 10.1016/j.physletb.2007.04.048
Citations: PlumX Metrics

2007RA29      Nucl.Phys. A797, 81 (2007)

S.Ramanan, S.K.Bogner, R.J.Furnstahl

Weinberg eigenvalues and pairing with low-momentum potentials

doi: 10.1016/j.nuclphysa.2007.10.005
Citations: PlumX Metrics

2006BO03      Phys.Lett. B 632, 501 (2006)

S.K.Bogner, R.J.Furnstahl

Variational calculations of nuclei with low-momentum potentials

NUCLEAR STRUCTURE 2,3H; calculated wave functions. Low-momentum potentials.

doi: 10.1016/j.physletb.2005.10.094
Citations: PlumX Metrics

2006BO19      Nucl.Phys. A773, 203 (2006)

S.K.Bogner, R.J.Furnstahl, S.Ramanan, A.Schwenk

Convergence of the Born series with low-momentum interactions

doi: 10.1016/j.nuclphysa.2006.05.004
Citations: PlumX Metrics

2005BO48      Nucl.Phys. A763, 59 (2005)

S.K.Bogner, A.Schwenk, R.J.Furnstahl, A.Nogga

Is nuclear matter perturbative with low-momentum interactions?

doi: 10.1016/j.nuclphysa.2005.08.024
Citations: PlumX Metrics

2005HO29      Phys.Rev. C 72, 041304 (2005)

J.D.Holt, J.W.Holt, T.T.S.Kuo, G.E.Brown, S.K.Bogner

Low momentum shell model effective interactions with all-order core polarizations

NUCLEAR STRUCTURE 18O, 18F; calculated levels, J, π. All-order summation of core-polarization diagrams.

doi: 10.1103/PhysRevC.72.041304
Citations: PlumX Metrics

2004HO05      Nucl.Phys. A733, 153 (2004)

J.D.Holt, T.T.Kuo, G.E.Brown, S.K.Bogner

Counter terms for low momentum nucleon-nucleon interactions

doi: 10.1016/j.nuclphysa.2003.12.004
Citations: PlumX Metrics

2004NO19      Phys.Rev. C 70, 061002 (2004)

A.Nogga, S.K.Bogner, A.Schwenk

Low-momentum interaction in few-nucleon systems

NUCLEAR STRUCTURE 3H, 3,4He; calculated binding energies, three-nucleon force effects, related features. Low-momentum interactions.

doi: 10.1103/PhysRevC.70.061002
Citations: PlumX Metrics

2003BO28      Phys.Rep. 386, 1 (2003)

S.K.Bogner, T.T.S.Kuo, A.Schwenk

Model-independent low momentum nucleon interaction from phase shift equivalence

doi: 10.1016/j.physrep.2003.07.001
Citations: PlumX Metrics

2003BO37      Phys.Lett. B 576, 265 (2003)

S.K.Bogner, T.T.S.Kuo, A.Schwenk, D.R.Entem, R.Machleidt

Towards a model-independent low momentum nucleon-nucleon interactions

doi: 10.1016/j.physletb.2003.10.012
Citations: PlumX Metrics

2002KU42      Prog.Theor.Phys.(Kyoto), Suppl. 146, 159 (2002)

T.T.S.Kuo, S.K.Bogner

Low Momentum Nucleon-Nucleon Interaction and Halo Nuclei

NUCLEAR STRUCTURE 6He; calculated energy levels. Low momentum nucleon-nucleon interaction, comparison with data.

doi: 10.1143/PTPS.146.159
Citations: PlumX Metrics

Back to query form