NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = K.Hebeler

Found 52 matches.

Back to query form

2024CO02      Phys.Rev. C 109, 024311 (2024)

M.Companys Franzke, A.Tichai, K.Hebeler, A.Schwenk

Eigenvector continuation for the pairing Hamiltonian

doi: 10.1103/PhysRevC.109.024311
Citations: PlumX Metrics

2023HE04      Phys.Rev. C 107, 024310 (2023)

K.Hebeler, V.Durant, J.Hoppe, M.Heinz, A.Schwenk, J.Simonis, A.Tichai

Normal ordering of three-nucleon interactions for ab initio calculations of heavy nuclei

NUCLEAR STRUCTURE 18O, 48Ca, 78Ni, 132Sn, 208Pb; calculated ground-state energies. 132Sn, 208Pb; calculated charge radii. Jacobi normal-ordering (NO) framework to include three-nucleon (3N) interactions in ab initio many-body calculations up to heavy nuclei at the two-body operator level. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.024310
Citations: PlumX Metrics

2023KE02      Phys.Rev.Lett. 130, 072701 (2023)

J.Keller, K.Hebeler, A.Schwenk

Nuclear Equation of State for Arbitrary Proton Fraction and Temperature Based on Chiral Effective Field Theory and a Gaussian Process Emulator

doi: 10.1103/PhysRevLett.130.072701
Citations: PlumX Metrics

2023SE18      Phys.Rev. C 108, 054005 (2023)

R.Seutin, O.J.Hernandez, T.Miyagi, S.Bacca, K.Hebeler, S.Konig, A.Schwenk

Magnetic dipole operator from chiral effective field theory for many-body expansion methods

doi: 10.1103/PhysRevC.108.054005
Citations: PlumX Metrics

2022HO06      Phys.Rev. C 105, 034324 (2022)

J.Hoppe, A.Tichai, M.Heinz, K.Hebeler, A.Schwenk

Importance truncation for the in-medium similarity renormalization group

NUCLEAR STRUCTURE 4He, 40,48,52,60Ca, 56,68,78Ni; calculated ground state energy. Importance truncation (IT) methods in the nonperturbative in-medium similarity renormalization group (IMSRG) approach. Investigated the effect of truncation in different sub-blocks of the two-body Hamiltonian on the solution error.

doi: 10.1103/PhysRevC.105.034324
Citations: PlumX Metrics

2022MA63      Phys.Rev. C 106, 064002 (2022)

P.Maris, R.Roth, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, H.Le, Ulf-G.Meissner, J.A.Melendez, A.Nogga, P.Reinert, R.Skibinski, J.P.Vary, H.Witala, T.Wolfgruber

Nuclear properties with semilocal momentum-space regularized chiral interactions beyond N2LO

NUCLEAR STRUCTURE 14,16,18,20,22,24,26O, 40,48Ca; calculated ground-state energies, point-proton radii. 4,6,8He, 6Li, 10Be, 10,12B, 12C; calculated ground state energies. 10,12B, 12C; calculated low-lying levels, J, π. Chiral EFT calculations with semilocal momentum-space regularized NN potentials up to fourth leading order N4LO.

NUCLEAR REACTIONS 2H(n, X), E=70, 135, 200 MeV; calculated σ(E), σ(θ), vector- and tensor analyzing power. Comparison to experimental data.

doi: 10.1103/PhysRevC.106.064002
Citations: PlumX Metrics

2022MI01      Phys.Rev. C 105, 014302 (2022)

T.Miyagi, S.R.Stroberg, P.Navratil, K.Hebeler, J.D.Holt

Converged ab initio calculations of heavy nuclei

NUCLEAR STRUCTURE 132Sn; calculated ground-state energy, rms point-proton and point-neutron radii, and neutron skin thickness using many-body perturbation theory (MBPT(2)), Hartree-Fock based many-body perturbation theory (HF-MBPT(3)) to second and third order, and in-medium similarity renormalization group (IMSRG(2)). 127Cd; calculated excitation spectrum computed in valence-space (VS)IMSRG(2) approximation. 126,128,130,132,134,136Sn; calculated energies of the first 2+ states using (VS)IMSRG(2) approximation, and compared with experimental data. Ab initio calculations of atomic nuclei with a proposed novel storage scheme for three-nucleon (3N) interaction matrix elements for the normal-ordered two-body (NO2B) approximation. Relevance to neutron skin of 208Pb, neutrinoless double-β decays and dark matter searches in germanium, selenium, xenon and tellurium.

doi: 10.1103/PhysRevC.105.014302
Citations: PlumX Metrics

2022MI12      Phys.Rev. C 106, 024001 (2022)

S.B.S.Miller, A.Ekstrom, K.Hebeler

Neutron-deuteron scattering cross sections with chiral NN interactions using wave-packet continuum discretization

NUCLEAR REACTIONS 2H(n, n), E<90 MeV; calculated phase shifts, σ(θ), total σ, neutron analyzing power. Faddeev equations for elastic Nd scattering solved with wavepacket continuum-discretization (WPCD) method. Chiral nucleon-nucleon interactions up to next-to-next-to-leading order. Comparison to experimental data.

doi: 10.1103/PhysRevC.106.024001
Citations: PlumX Metrics

2022TI04      Phys.Rev. C 106, 024320 (2022)

A.Tichai, P.Arthuis, K.Hebeler, M.Heinz, J.Hoppe, A.Schwenk, L.Zurek

Least-square approach for singular value decompositions of scattering problems

doi: 10.1103/PhysRevC.106.024320
Citations: PlumX Metrics

2021FR01      Phys.Rev.Lett. 126, 102501 (2021)

U.Friman-Gayer, C.Romig, T.Huther, K.Albe, S.Bacca, T.Beck, M.Berger, J.Birkhan, K.Hebeler, O.J.Hernandez, J.Isaak, S.Konig, N.Pietralla, P.C.Ries, J.Rohrer, R.Roth, D.Savran, M.Scheck, A.Schwenk, R.Seutin, V.Werner

Role of Chiral Two-Body Currents in 6Li Magnetic Properties in Light of a New Precision Measurement with the Relative Self-Absorption Technique

RADIOACTIVITY 6Li(IT) [from 6Li(γ, γ'), E<7.1 MeV]; measured decay products, Eγ, Iγ; deduced B(M1), decay width. Comparison with ab initio calculations based on chiral effective field theory that take into account contributions to the magnetic dipole operator beyond leading order.

doi: 10.1103/PhysRevLett.126.102501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2021HE01      Phys.Rep. 890, 1 (2021)


Three-nucleon forces: Implementation and applications to atomic nuclei and dense matter

doi: 10.1016/j.physrep.2020.08.009
Citations: PlumX Metrics

2021HE11      Phys.Rev. C 103, 044318 (2021)

M.Heinz, A.Tichai, J.Hoppe, K.Hebeler, A.Schwenk

In-medium similarity renormalization group with three-body operators

NUCLEAR STRUCTURE 4He, 16O; calculated ground-state energies using various truncation schemes. Full and approximate in-medium similarity renormalization group (IMSRG(3)) truncations applied to the closed-shell nuclei using nucleon-nucleon and nucleon-nucleon+3N-chiral Hamiltonians with the Hartree-Fock and natural orbital single-particle bases.

doi: 10.1103/PhysRevC.103.044318
Citations: PlumX Metrics

2021HO03      Phys.Rev. C 103, 014321 (2021)

J.Hoppe, A.Tichai, M.Heinz, K.Hebeler, A.Schwenk

Natural orbitals for many-body expansion methods

NUCLEAR STRUCTURE 16,22O, 40Ca, 78Ni; calculated one-body proton density matrix, occupation numbers of the single-particle proton orbitals, and absolute value of the radial wave function for 16O, negative occupations of the p orbitals for 16O and 22O, ground-state energies and charge radii of 16O, 40Ca and 78Ni. Nonperturbative many-body calculations using the in-medium similarity renormalization group (IMSRG) approach, with large single-particle basis. Comparison with experimental data for 78Ni.

doi: 10.1103/PhysRevC.103.014321
Citations: PlumX Metrics

2021KE06      Phys.Rev. C 103, 055806 (2021)

J.Keller, C.Wellenhofer, K.Hebeler, A.Schwenk

Neutron matter at finite temperature based on chiral effective field theory interactions

doi: 10.1103/PhysRevC.103.055806
Citations: PlumX Metrics

2021MA32      Phys.Rev. C 103, 054001 (2021)

P.Maris, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, Ulf-G.Meissner, J.A.Melendez, A.Nogga, P.Reinert, R.Roth, R.Skibinski, V.Soloviov, K.Topolnicki, J.P.Vary, Yu.Volkotrub, H.Witala, T.Wolfgruber, for the LENPIC Collaboration

Light nuclei with semilocal momentum-space regularized chiral interactions up to third order

NUCLEAR STRUCTURE 3H, 3,4,6,8He, 6,7,8,9Li, 8,10Be, 10,11,12,13B, 12,13,14C, 14,15N, 16O; calculated energies of ground and excited states, S(2n) for 6He and 6Li, α+d breakup up for 6Li, and 3α breakup for 12C, energies, wave functions and radii for 3H, 3,4He. Semilocal momentum-space (SMS) regularized two- and three-nucleon forces up to third chiral order (N2LO), with the two low-energy constants entering the three-body force determined from the triton binding energy and the differential cross-section minimum in elastic nucleon-deuteron scattering. Comparison with experimental data.

NUCLEAR REACTIONS 1H(polarized d, d), E=70, 140, 200, 270 MeV; 2H(p, d), (polarized p, d), E=65 MeV; calculated analyzing powers Ay(θ) and differential cross sections for elastic scattering using semilocal momentum-space (SMS) regularized two- and three-nucleon forces up to third chiral order (N2LO) three-nucleon force (3NF). Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054001
Citations: PlumX Metrics

2020DE11      Phys.Rev. C 101, 041302 (2020)

P.Demol, T.Duguet, A.Ekstrom, M.Frosini, K.Hebeler, S.Konig, D.Lee, A.Schwenk, V.Soma, A.Tichai

Improved many-body expansions from eigenvector continuation

NUCLEAR STRUCTURE 3H, 18O; calculated ground state energies using many-body perturbation theory (MBPT)-based eigenvector continuation (EC) resummation method for 3He, and Bogoliubov many-body perturbation theory (BMBPT)-based EC resummation method for 16O, using realistic nuclear two-body interaction derived from chiral effective field theory. Comparison with MBPT, BMBPT, and MBPT-based Pade approximation calculations.

doi: 10.1103/PhysRevC.101.041302
Citations: PlumX Metrics

2020EP01      Eur.Phys.J. A 56, 92 (2020)

E.Epelbaum, J.Golak, K.Hebeler, H.Kamada, H.Krebs, U.-G.Meissner, A.Nogga, P.Reinert, R.Skibinski, K.Topolnicki, Yu.Volkotrub, H.Witala

Towards high-order calculations of three-nucleon scattering in chiral effective field theory

doi: 10.1140/epja/s10050-020-00102-2
Citations: PlumX Metrics

2020LE14      Phys.Rev.Lett. 125, 142502 (2020)

M.Leonhardt, M.Pospiech, B.Schallmo, J.Braun, C.Drischler, K.Hebeler, A.Schwenk

Symmetric Nuclear Matter from the Strong Interaction

doi: 10.1103/PhysRevLett.125.142502
Citations: PlumX Metrics

2019DR01      Phys.Rev.Lett. 122, 042501 (2019)

C.Drischler, K.Hebeler, A.Schwenk

Chiral Interactions up to Next-to-Next-to-Next-to-Leading Order and Nuclear Saturation

doi: 10.1103/PhysRevLett.122.042501
Citations: PlumX Metrics

2019EP01      Phys.Rev. C 99, 024313 (2019)

E.Epelbaum, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, P.Maris, Ulf-G.Meissner, A.Nogga, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, K.Vobig, H.Witala, for the LENPIC Collaboration

Few- and many-nucleon systems with semilocal coordinate-space regularized chiral two- and three-body forces

NUCLEAR REACTIONS 2H(n, n), E=14.1, 70, 108, 135, 250 MeV; analyzed differential σ(θ); deduced low energy coefficients; calculated differential σ(θ), neutron analyzing powers Ay(θ), and deuteron vector and tensor analyzing powers using chiral effective field theory with semilocal coordinate-space regularized two- and three-nucleon forces. Comparison with experimental data.

NUCLEAR STRUCTURE 4,6,8He, 6,7,8,9Li, 8,9,10Be, 10,11,12B, 12C, 16O; calculated ground state binding energies, and excitation energies using chiral N2LO interactions.

doi: 10.1103/PhysRevC.99.024313
Citations: PlumX Metrics

2019HO09      Phys.Rev. C 100, 024318 (2019)

J.Hoppe, C.Drischler, K.Hebeler, A.Schwenk, J.Simonis

Probing chiral interactions up to next-to-next-to-next-to-leading order in medium-mass nuclei

NUCLEAR STRUCTURE 3H, 16,24O, 40,48,52,60Ca, 56,68Ni; calculated binding energies, charge radii, and ground-state energies per nucleon. Ab initio calculations using in-medium similarity renormalization group (IM-SRG) based on chiral interactions at next-to-leading order (NLO), N2LO, and N3LO. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.024318
Citations: PlumX Metrics

2018BI08      Phys.Rev. C 98, 014002 (2018)

S.Binder, A.Calci, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, P.Maris, Ulf-G.Meissner, A.Nogga, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, K.Vobig, H.Witala, at the LENPIC Collaboration

Few-nucleon and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces

NUCLEAR REACTIONS 2H(n, n), E=5, 10, 14.1 MeV; 2H(n, 2np), E=13, 65 MeV; calculated differential σ(θ), Ay analyzing powers, nucleon and deuteron vector analyzing powers, phase shifts, polarization-transfer coefficient, breakup cross sections, and pd analyzing powers.

NUCLEAR STRUCTURE 3H, 3,4He, 6Li; calculated binding energies, ground-state energies of 4He and 6Li, proton rms radii. 3H, 4,6,8He, 6,7,8,9Li, 8,9Be, 10B, 16,24O, 40,48Ca; calculated ground state energies. 3H, 3He, 6,7,8,9Li, 7,9Be, 8,9,10B, 9C; calculated magnetic dipole moments. 16,24O, 40,48Ca; calculated charge radii. Faddeev-Yakubovsky equations, with no-core configuration interaction approach, coupled-cluster (CC) theory, and in-medium similarity renormalization group (IM-SRG)methods with SCS chiral nucleon-nucleon (NN) potentials. Comparison with experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.98.014002
Citations: PlumX Metrics

2017DR02      Phys.Rev. C 95, 024302 (2017)

C.Drischler, T.Kruger, K.Hebeler, A.Schwenk

Pairing in neutron matter: New uncertainty estimates and three-body forces

doi: 10.1103/PhysRevC.95.024302
Citations: PlumX Metrics

2017HO24      Phys.Rev. C 96, 054002 (2017)

J.Hoppe, C.Drischler, R.J.Furnstahl, K.Hebeler, A.Schwenk

Weinberg eigenvalues for chiral nucleon-nucleon interactions

doi: 10.1103/PhysRevC.96.054002
Citations: PlumX Metrics

2017KL03      Eur.Phys.J. A 53, 168 (2017); Erratum Eur.Phys.J. A 54, 76 (2018)

P.Klos, A.Carbone, K.Hebeler, J.Menendez, A.Schwenk

Uncertainties in constraining low-energy constants from 3H β decay

RADIOACTIVITY 3H(β-); calculated low-energy constants of chiral effective field theory from T1/2; deduced uncertainty.

doi: 10.1140/epja/i2017-12357-7
Citations: PlumX Metrics

2017SI17      Phys.Rev. C 96, 014303 (2017)

J.Simonis, S.R.Stroberg, K.Hebeler, J.D.Holt, A.Schwenk

Saturation with chiral interactions and consequences for finite nuclei

NUCLEAR STRUCTURE 40,54Ca, 56,78Ni; calculated ground-state energies and charge radii using the closed-shell IM-SRG, and compared with evaluated experimental data. 4He, 16,22,24O, 36,40,48,52,54,60Ca, 48,56,68,78Ni; calculated binding energies and charge radii using the IM-SRG for the four Hamiltonians, and compared with evaluated data. 19,20,21,22,23,24,25,26,27,28,29,30,31,32Na, 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45S, 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54Ca, 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64Mn, 53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72Ni; calculated ground-state energies and S(2n), charge radii of Mn isotopes, first excited 2+ states of Ca, S and Ni isotopes using the VS-IM-SRG, and compared with experimental data. Calculations used ab initio in-medium similarity renormalization group (IM-SRG) method, and valence-space (VS) IM-SRG for charge radii.

doi: 10.1103/PhysRevC.96.014303
Citations: PlumX Metrics

2016BI06      Phys.Rev. C 93, 044002 (2016)

S.Binder, A.Calci, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, H.Kamada, H.Krebs, J.Langhammer, S.Liebig, P.Maris, Ulf-G.Meissner, D.Minossi, A.Nogga, H.Potter, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, H.Witala, for the LENPIC Collaboration

Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces

NUCLEAR STRUCTURE 3H, 4He, 6Li; calculated energies of ground-state and lowest two states, point-proton radius using improved NN chiral potentials LO, NLO, N2LO, N3LO and N4LO. Comparison with experimental data.

NUCLEAR REACTIONS 3H, 4He, 6Li(d, X), (polarized d, d), E=10, 70, 135, 200 MeV; total σ(E), differential cross section and tensor analyzing powers for elastic scattering based on NN chiral potentials LO, NLO, N2LO, N3LO and N4LO. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.044002
Citations: PlumX Metrics

2016DR06      Phys.Rev. C 93, 054314 (2016)

C.Drischler, K.Hebeler, A.Schwenk

Asymmetric nuclear matter based on chiral two- and three-nucleon interactions

doi: 10.1103/PhysRevC.93.054314
Citations: PlumX Metrics

2016DR13      Phys.Rev. C 94, 054307 (2016)

C.Drischler, A.Carbone, K.Hebeler, A.Schwenk

Neutron matter from chiral two- and three-nucleon calculations up to N3 LO

doi: 10.1103/PhysRevC.94.054307
Citations: PlumX Metrics

2016DY01      Phys.Rev. C 94, 034001 (2016)

A.Dyhdalo, R.J.Furnstahl, K.Hebeler, I.Tews

Regulator artifacts in uniform matter for chiral interactions

doi: 10.1103/PhysRevC.94.034001
Citations: PlumX Metrics

2016GA34      Nat.Phys. 12, 594 (2016)

R.F.Garcia Ruiz, M.L.Bissell, K.Blaum, A.Ekstrom, N.Frommgen, G.Hagen, M.Hammen, K.Hebeler, J.D.Holt, G.R.Jansen, M.Kowalska, K.Kreim, W.Nazarewicz, R.Neugart, G.Neyens, W.Nortershauser, T.Papenbrock, J.Papuga, A.Schwenk, J.Simonis, K.A.Wendt, D.T.Yordanov

Unexpectedly large charge radii of neutron-rich calcium isotopes

NUCLEAR REACTIONS U(p, X)43Ca/44Ca/45Ca/46Ca/47Ca/48Ca/49Ca/50Ca/51Ca/52Ca, E=1.4GeV; measured hyperfine structure spectra; deduced charge radii. Comparison with available data.

doi: 10.1038/nphys3645
Citations: PlumX Metrics

2016HA27      Nat.Phys. 12, 186 (2016)

G.Hagen, A.Ekstrom, C.Forssen, G.R.Jansen, W.Nazarewicz, T.Papenbrock, K.A.Wendt, S.Bacca, N.Barnea, B.Carlsson, C.Drischler, K.Hebeler, M.Hjorth-Jensen, M.Miorelli, G.Orlandini, A.Schwenk, J.Simonis

Neutron and weak-charge distributions of the 48Ca nucleus

NUCLEAR STRUCTURE 48Ca; calculated neutron skin parameters, radii. Ab initio calculations.

doi: 10.1038/nphys3529
Citations: PlumX Metrics

2016SI02      Phys.Rev. C 93, 011302 (2016)

J.Simonis, K.Hebeler, J.D.Holt, J.Menendez, A.Schwenk

Exploring sd-shell nuclei from two- and three-nucleon interactions with realistic saturation properties

NUCLEAR STRUCTURE 18,19,20,21,22,23,24,25,26,27,28O, 19,20,21,22,23,24,25,26,27,28,29F, 20,21,22,23,24,25,26,27,28,29,30Ne, 21,22,23,24,25,26,27,28,29,30,31Na, 22,23,24,25,26,27,28,29,30,31,32Mg, 23,24,25,26,27,28,29,30,31,32,33Al, 24,25,26,27,28,29,30,31,32,33,34Si, 25,26,27,28,29,30,31,32,33,34,35P, 26,27,28,29,30,31,32,33,34,35,36S, 27,28,29,30,31,32,33,34,35,36,37Cl, 28,29,30,31,32,33,34,35,36,37,38Ar, 29,30,31,32,33,34,35,36,37,38,39K, 30,31,32,33,34,35,36,37,38,39,40Ca; calculated S(2n), S(2p), energies of first 2+ states in even-even nuclei, and theoretical uncertainty estimates from variation of the resolution scale, the low-energy couplings, and from the many-body method. 22,23,24,25,26,27,28,29,30,31,32Mg, 27,28,29,30,31,32,33,34,35,36,37Cl; calculated ground-state energies relative to that of 16O, and theoretical uncertainties. Comparison to AME-12 data.

doi: 10.1103/PhysRevC.93.011302
Citations: PlumX Metrics

2016WI09      Few-Body Systems 57, 1213 (2016)

H.Witala, J.Golak, R.Skibinski, K.Topolnicki, E.Epelbaum, K.Hebeler, H.Kamada, H.Krebs, U.-G.Meissner, A.Nogga

Role of the Total Isospin 3/2 Component in Three-Nucleon Reactions

NUCLEAR REACTIONS 2H(n, n), E=13, 250 MeV; calculated σ(θ), σ(θ, E). Comparison with available data.

doi: 10.1007/s00601-016-1156-3
Citations: PlumX Metrics

2015HE11      Phys.Rev. C 91, 044001 (2015)

K.Hebeler, H.Krebs, E.Epelbaum, J.Golak, R.Skibinski

Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies

NUCLEAR STRUCTURE 3H; calculated matrix elements of chiral three-nucleon forces at next-to-next-to-leading-order and next-to-next-to-next-to-leading-order in large basis spaces, partial-wave contributions to the energy per particle to neutron matter, and contributions of the individual topologies to the triton energy for three different NN interactions. Relevance to ab initio studies of few-nucleon scattering processes, nuclei, and nuclear matter based on higher-order chiral three-nucleon forces.

doi: 10.1103/PhysRevC.91.044001
Citations: PlumX Metrics

2015MO26      Phys.Rev. C 92, 064002 (2015)

S.N.More, S.Konig, R.J.Furnstahl, K.Hebeler

Deuteron electrodisintegration with unitarily evolved potentials

NUCLEAR REACTIONS 2H(e, X), E not given; calculated momentum distributions for various potentials. Electrodisintegration of deuteron. Similarity renormalization-group (SRG) method for investigation of RG evolution of structure and reaction components. Unitary transformation matrices.

doi: 10.1103/PhysRevC.92.064002
Citations: PlumX Metrics

2014FO09      Phys.Rev. C 89, 041301 (2014)

M.M.Forbes, A.Gezerlis, K.Hebeler, T.Lesinski, A.Schwenk

Neutron polaron as a constraint on nuclear density functionals

doi: 10.1103/PhysRevC.89.041301
Citations: PlumX Metrics

2014GE06      Phys.Rev. C 90, 054323 (2014)

A.Gezerlis, I.Tews, E.Epelbaum, M.Freunek, S.Gandolfi, K.Hebeler, A.Nogga, A.Schwenk

Local chiral effective field theory interactions and quantum Monte Carlo applications

NUCLEAR STRUCTURE 2H; calculated binding energy, quadrupole moment, magnetic moment, asymptotic D/S ratio, rms radius, asymptotic s-wave factor, and the d-state probability using the local chiral potentials. Calculated ground-state energy for a 66-neutron matter system. Local chiral effective field theory interactions to next-to-next-to-leading order and Monte Carlo calculations for neutron matter.

doi: 10.1103/PhysRevC.90.054323
Citations: PlumX Metrics

2014GO30      Eur.Phys.J. A 50, 177 (2014)

J.Golak, R.Skibinski, K.Topolnicki, H.Witala, E.Epelbaum, H.Krebs, H.Kamada, Ulf-G.Meissner, V.Bernard, P.Maris, J.Vary, S.Binder, A.Calci, K.Hebeler, J.Langhammer, R.Roth, A.Nogga, S.Liebig, D.Minossi

Low-energy neutron-deuteron reactions with N3LO chiral forces

NUCLEAR REACTIONS 2H(n, n), E=6.5, 10 MeV; calculated analyzing power. 2H(n, x), E=13.0 MeV; calculated σ(θ). Three-nucleon Faddeev equations with different N3LO chiral forces. Compared to data.

doi: 10.1140/epja/i2014-14177-7
Citations: PlumX Metrics

2014HE03      Eur.Phys.J. A 50, 11 (2014)

K.Hebeler, A.Schwenk

Symmetry energy, neutron skin, and neutron star radius from chiral effective field theory interactions

doi: 10.1140/epja/i2014-14011-4
Citations: PlumX Metrics

2013GE03      Phys.Rev.Lett. 111, 032501 (2013)

A.Gezerlis, I.Tews, E.Epelbaum, S.Gandolfi, K.Hebeler, A.Nogga, A.Schwenk

Quantum Monte Carlo Calculations with Chiral Effective Field Theory Interactions

doi: 10.1103/PhysRevLett.111.032501
Citations: PlumX Metrics

2013HE06      Phys.Rev. C 87, 031302 (2013)

K.Hebeler, R.J.Furnstahl

Neutron matter based on consistently evolved chiral three-nucleon interactions

doi: 10.1103/PhysRevC.87.031302
Citations: PlumX Metrics

2013KR10      Phys.Rev. C 88, 025802 (2013)

T.Kruger, I.Tews, K.Hebeler, A.Schwenk

Neutron matter from chiral effective field theory interactions

doi: 10.1103/PhysRevC.88.025802
Citations: PlumX Metrics

2013TE01      Phys.Rev.Lett. 110, 032504 (2013)

I.Tews, T.Kruger, K.Hebeler, A.Schwenk

Neutron Matter at Next-to-Next-to-Next-to-Leading Order in Chiral Effective Field Theory

NUCLEAR STRUCTURE 208Pb; calculated neutron matter energy, energy per particle vs. density using N3LO potentials. Comparison with available data.

doi: 10.1103/PhysRevLett.110.032504
Citations: PlumX Metrics

2012HE04      Phys.Rev. C 85, 021002 (2012)


Momentum-space evolution of chiral three-nucleon forces

NUCLEAR STRUCTURE 3H; calculated ground state energy as function of flow parameter for different next to-next to leading order (N2LO) interactions and similarity renormalization group (SRG) model sizes, contour plots of the evolved 3N potential, matrix elements of the initial 3N forces. Chiral 3N forces.

doi: 10.1103/PhysRevC.85.021002
Citations: PlumX Metrics

2012LE01      J.Phys.(London) G39, 015108 (2012)

T.Lesinski, K.Hebeler, T.Duguet, A.Schwenk

Chiral three-nucleon forces and pairing in nuclei

doi: 10.1088/0954-3899/39/1/015108
Citations: PlumX Metrics

2012TS04      Phys.Rev. C 86, 015803 (2012)

M.B.Tsang, J.R.Stone, F.Camera, P.Danielewicz, S.Gandolfi, K.Hebeler, C.J.Horowitz, J.Lee, W.G.Lynch, Z.Kohley, R.Lemmon, P.Moller, T.Murakami, S.Riordan, X.Roca-Maza, F.Sammarruca, A.W.Steiner, I.Vidana, S.J.Yennello

Constraints on the symmetry energy and neutron skins from experiments and theory

NUCLEAR STRUCTURE 208Pb; analyzed neutron-skin thickness, symmetry energy constraints. Contributions of three-body forces in neutron matter models.

doi: 10.1103/PhysRevC.86.015803
Citations: PlumX Metrics

2011HE06      Phys.Rev. C 83, 031301 (2011)

K.Hebeler, S.K.Bogner, R.J.Furnstahl, A.Nogga, A.Schwenk

Improved nuclear matter calculations from chiral low-momentum interactions

doi: 10.1103/PhysRevC.83.031301
Citations: PlumX Metrics

2010HE07      Phys.Rev. C 82, 014314 (2010)

K.Hebeler, A.Schwenk

Chiral three-nucleon forces and neutron matter

doi: 10.1103/PhysRevC.82.014314
Citations: PlumX Metrics

2009DU13      Int.J.Mod.Phys. E18, 2007 (2009)

T.Duguet, T.Lesinski, K.Hebeler, K.Bennaceur, A.Schwenk, J.Meyer

Non-empirical energy density functional for nuclei: The pairing part

doi: 10.1142/S0218301309014172
Citations: PlumX Metrics

2009HE17      Phys.Rev. C 80, 044321 (2009)

K.Hebeler, T.Duguet, T.Lesinski, A.Schwenk

Non-empirical pairing energy functional in nuclear matter and finite nuclei

NUCLEAR STRUCTURE N=16-184, Z=20, 28, 50, 82; Z=18-94, N=28, 50, 82, 126; calculated neutron and proton lowest canonical state (LCS) pairing gaps in semi-magic nuclei using refitted Skyrme EDF. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.044321
Citations: PlumX Metrics

2007HE18      Phys.Lett. B 648, 176 (2007)

K.Hebeler, A.Schwenk, B.Friman

Dependence of the BCS 1S0 superfluid pairing gap on nuclear interactions

doi: 10.1016/j.physletb.2007.03.022
Citations: PlumX Metrics

Back to query form