NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = U.Meissner

Found 328 matches.

    Showing 1 to 100.


Back to query form

2024KO07      Phys.Rev.Lett. 132, 162502 (2024)

K.Konig, J.C.Berengut, A.Borschevsky, A.Brinson, B.A.Brown, A.Dockery, S.Elhatisari, E.Eliav, R.F.G.Ruiz, J.D.Holt, B.-Sh.Hu, J.Karthein, D.Lee, Y.-Zh.Ma, U.-G.Meissner, K.Minamisono, A.V.Oleynichenko, S.V.Pineda, S.D.Prosnyak, M.L.Reitsma, L.V.Skripnikov, A.Vernon, A.Zaitsevskii

Nuclear Charge Radii of Silicon Isotopes

NUCLEAR MOMENTS 28,29,30,32Si; measured frequencies; deduced isotope shifts, nuclear charge radii using collinear laser spectroscopy. Comparison with ab initio nuclear lattice effective field theory, valence-space in-medium similarity renormalization group, and mean field calculations. The BECOLA setup at the Facility for Rare Isotope Beams.

doi: 10.1103/PhysRevLett.132.162502
Citations: PlumX Metrics

2024LE01      Eur.Phys.J. A 60, 3 (2024)

H.Le, J.Haidenbauer, U.-G.Meissner, A.Nogga

Separation energies of light Λ hypernuclei and their theoretical uncertainties

NUCLEAR STRUCTURE 4,5He, 3H; calculated separation energies and uncertainties in Λ hypernuclei using few-body method within the Faddeev-Yakubovsky scheme and the no-core shell model. Comparison with available data.

doi: 10.1140/epja/s10050-023-01219-w
Citations: PlumX Metrics

2024ME01      Phys.Rev.Lett. 132, 062501 (2024)

U.-G.Meissner, Sh.Shen, S.Elhatisari, D.Lee

Ab Initio Calculation of the Alpha-Particle Monopole Transition Form Factor

NUCLEAR STRUCTURE 4He; calculated monopole transition form factor in the framework of nuclear lattice effective field theory, a parameter-free ab initio calculation. Comparison with available data.

doi: 10.1103/PhysRevLett.132.062501
Citations: PlumX Metrics

2024WA07      Phys.Rev. C 109, 015202 (2024)

Y.-F.Wang, U.-G.Meissner, D.Ronchen, Ch.-W.Shen

Examination of the nature of the N* and Δ resonances via coupled-channels dynamics

doi: 10.1103/PhysRevC.109.015202
Citations: PlumX Metrics

2023HA13      Eur.Phys.J. A 59, 63 (2023)

J.Haidenbauer, U.-G.Meissner, A.Nogga, H.Le

Hyperon-nucleon interaction in chiral effective field theory at next-to-next-to-leading order

doi: 10.1140/epja/s10050-023-00960-6
Citations: PlumX Metrics

2023HA24      Eur.Phys.J. A 59, 136 (2023)

J.Haidenbauer, U.-G.Meissner

ΛΛ-bar final-state interaction in the reactions e+e- → φΛΛ-bar and e+e- → ηΛΛ-bar

doi: 10.1140/epja/s10050-023-01017-4
Citations: PlumX Metrics

2023LE03      Phys.Rev. C 107, 024002 (2023)

H.Le, J.Haidenbauer, U.-G.Meissner, A.Nogga

Ab initio calculation of charge-symmetry breaking in A=7 and 8 Λ hypernuclei

NUCLEAR STRUCTURE 4,5H, 5,7He, 7,8Li, 7,8Be; calculated Λ separation energies for the hypernuclei systems, charge-symmetry breaking splittings, contributions to charge-symmetry breaking. Calculations are based on a hyperon-nucleon potential derived from chiral EFT at next-to-leading order. Jacobi no-core shell model. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.024002
Citations: PlumX Metrics

2023LI16      Eur.Phys.J. A 59, 54 (2023)

Y.-H.Lin, H.-W.Hammer, U.-G.Meissner

The electromagnetic Sigma-to-Lambda transition form factors with coupled-channel effects in the space-like region

doi: 10.1140/epja/s10050-023-00973-1
Citations: PlumX Metrics

2023MA55      Eur.Phys.J. A 59, 286 (2023)

M.Mai, J.Hergenrather, M.Doring, T.Mart, U.-G.Meissner, D.Ronchen, R.Workman, Julich–Bonn–Washington Collaboration

Inclusion of KΛ electroproduction data in a coupled channel analysis

doi: 10.1140/epja/s10050-023-01188-0
Citations: PlumX Metrics

2023ME16      Eur.Phys.J. A 59, 223 (2023)

U.-G.Meissner, B.Ch.Metsch, H.Meyer

The electromagnetic fine-structure constant in primordial nucleosynthesis revisited

doi: 10.1140/epja/s10050-023-01131-3
Citations: PlumX Metrics

2023SA53      Phys.Rev.Lett. 131, 242503 (2023)

A.Sarkar, D.Lee, Ulf-G.Meissner

Floating Block Method for Quantum Monte Carlo Simulations

NUCLEAR STRUCTURE 4He, 8Be, 12C, 16O; analyzed available data; deduced the floating block method and nuclear lattice simulations to build eigenvector continuation emulators for energies, the quantum phase transition line from a Bose gas of alpha particles to a nuclear liquid.

doi: 10.1103/PhysRevLett.131.242503
Citations: PlumX Metrics

2022FU04      Eur.Phys.J. A 58, 70 (2022)

H.-L.Fu, H.W.Griesshammer, F.-K.Guo, C.Hanhart, U.-G.Meissner

Update on strong and radiative decays of the D*s0(2317) and Ds1(2460) and their bottom cousins

doi: 10.1140/epja/s10050-022-00724-8
Citations: PlumX Metrics

2022HI08      Eur.Phys.J. A 58, 167 (2022)

F.Hildenbrand, S.Elhatisari, T.A.Lahde, D.Lee, U.-G.Meissner

Lattice Monte Carlo simulations with two impurity worldlines

doi: 10.1140/epja/s10050-022-00821-8
Citations: PlumX Metrics

2022HO01      J.Phys.(London) G49, 010502 (2022)

C.R.Howell, M.W.Ahmed, A.Afanasev, D.Alesini, J.R.M.Annand, A.Aprahamian, D.L.Balabanski, S.V.Benson, A.Bernstein, C.R.Brune, J.Byrd, B.E.Carlsten, A.E.Champagne, S.Chattopadhyay, D.Davis, E.J.Downie, J.M.Durham, G.Feldman, H.Gao, C.G.R.Geddes, H.W.Griesshammer, R.Hajima, H.Hao, D.Hornidge, J.Isaak, R.V.F.Janssens, D.P.Kendellen, M.Kovash, P.P.Martel, U.-G.Meissner, R.Miskimen, B.Pasquini, D.R.Phillips, N.Pietralla, D.Savran, M.R.Schindler, M.H.Sikora, W.M.Snow, R.P.Springer, C.Sun, C.Tang, B.Tiburzi, A.P.Tonchev, W.Tornow, C.A.Ur, D.Wang, H.R.Weller, V.Werner, Y.K.Wu, J.Yan, Z.Zhao, A.Zilges, F.Z.Zomer

International workshop on next generation gamma-ray source

doi: 10.1088/1361-6471/ac2827
Citations: PlumX Metrics

2022LU05      Phys.Rev.Lett. 128, 242501 (2022)

B.-N.Lu, N.Li, S.Elhatisari, Y.-Z.Ma, D.Lee, U.-G.Meissner

Perturbative Quantum Monte Carlo Method for Nuclear Physics

NUCLEAR STRUCTURE 3H, 4He, 8Be, 12C, 16O; calculated binding energies using ptQMC. Comparison with experimental data.

doi: 10.1103/PhysRevLett.128.242501
Citations: PlumX Metrics

2022MA35      Phys.Rev. C 106, 015201 (2022)

M.Mai, M.Doring, C.Granados, H.Haberzettl, J.Hergenrather, Ulf-G.Meissner, D.Ronchen, I.Strakovsky, R.Workman, for the Julich-Bonn-Washington Collaboration

Coupled-channels analysis of pion and η electroproduction within the Julich-Bonn-Washington model

NUCLEAR REACTIONS 1H(γ, π0p), (γ, π+n), (γ, ηp), E=1.13-1.6 GeV; analyzed jointly pion and η electroproduction differential σ experimental data from CLAS, Jefferson Lab, OOPS-MIT, MAMI-AI, DESI, ELSA and other collaborations during 1971-2007 using dynamical coupled-channels model, based on the Julich-Bonn-Washington analysis of pion electroproduction data; deduced fitted results, and η multipoles for higher fixed values of Q2.

doi: 10.1103/PhysRevC.106.015201
Citations: PlumX Metrics

2022MA63      Phys.Rev. C 106, 064002 (2022)

P.Maris, R.Roth, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, H.Le, Ulf-G.Meissner, J.A.Melendez, A.Nogga, P.Reinert, R.Skibinski, J.P.Vary, H.Witala, T.Wolfgruber

Nuclear properties with semilocal momentum-space regularized chiral interactions beyond N2LO

NUCLEAR STRUCTURE 14,16,18,20,22,24,26O, 40,48Ca; calculated ground-state energies, point-proton radii. 4,6,8He, 6Li, 10Be, 10,12B, 12C; calculated ground state energies. 10,12B, 12C; calculated low-lying levels, J, π. Chiral EFT calculations with semilocal momentum-space regularized NN potentials up to fourth leading order N4LO.

NUCLEAR REACTIONS 2H(n, X), E=70, 135, 200 MeV; calculated σ(E), σ(θ), vector- and tensor analyzing power. Comparison to experimental data.

doi: 10.1103/PhysRevC.106.064002
Citations: PlumX Metrics

2022ME10      Eur.Phys.J. A 58, 212 (2022)

Ulf.G.Meissner, B.C.Metsch

Probing nuclear observables via primordial nucleosynthesis

ATOMIC MASSES 2,3H, 3,4He, 6,7Li, 7Be; analyzed available data; deduced primordial or Big Bang nucleosynthesis (BBN) abundances.

doi: 10.1140/epja/s10050-022-00869-6
Citations: PlumX Metrics

2022RO20      Eur.Phys.J. A 58, 229 (2022)

D.Ronchen, M.Doring, U.-G.Meissner, C.-W.Shen

Light baryon resonances from a coupled-channel study including KΣ photoproduction

doi: 10.1140/epja/s10050-022-00852-1
Citations: PlumX Metrics

2022ST06      Eur.Phys.J. A 58, 208 (2022)

G.Stellin, K.-H.Speidel, U.-G.Meissner

Magnetic dipole moments as a strong signature for α-clustering in even-even self-conjugate nuclei

NUCLEAR STRUCTURE 8,9Be, 12,13C, 16,17O, 20,21Ne, 24,25Mg, 28,29Si, 32,33S, 36,37Ar, 40,41Ca, 44,45Ti, 48,49Cr; calculated nuclear g-factors for excited and ground states of the lightest α-conjugate nuclei, magnetic dipole moments. Comparison with available data.

doi: 10.1140/epja/s10050-022-00850-3
Citations: PlumX Metrics

2022WO03      Prog.Theor.Exp.Phys. 2022, 083C01 (2022)

R.L.Workman, V.D.Burkert, V.Crede, E.Klempt, U.Thoma, L.Tiator, K.Agashe, G.Aielli, B.C.Allanach, C.Amsler, M.Antonelli, E.C.Aschenauer, D.M.Asner, H.Baer, Sw.Banerjee, R.M.Barnett, L.Baudis, C.W.Bauer, J.J.Beatty, V.I.Belousov, J.Beringer, A.Bettini, O.Biebel, K.M.Black, E.Blucher, R.Bonventre, V.V.Bryzgalov, O.Buchmuller, M.A.Bychkov, R.N.Cahn, M.Carena, A.Ceccucci, A.Cerri, R.S.Chivukula, G.Cowan, K.Cranmer, O.Cremonesi, G.D'Ambrosio, T.Damour, D.de Florian, A.de Gouvea, T.DeGrand, P.de Jong, S.Demers, B.A.Dobrescu, M.D'Onofrio, M.Doser, H.K.Dreiner, P.Eerola, U.Egede, S.Eidelman, A.X.El-Khadra, J.Ellis, S.C.Eno, J.Erler, V.V.Ezhela, W.Fetscher, B.D.Fields, A.Freitas, H.Gallagher, Y.Gershtein, T.Gherghetta, M.C.Gonzalez-Garcia, M.Goodman, C.Grab, A.V.Gritsan, C.Grojean, D.E.Groom, M.Grunewald, A.Gurtu, T.Gutsche, H.E.Haber, M.Hamel, C.Hanhart, S.Hashimoto, Y.Hayato, A.Hebecker, S.Heinemeyer, J.J.Hernandez-Rey, K.Hikasa, J.Hisano, A.Hocker, J.Holder, L.Hsu, J.Huston, T.Hyodo, A.Ianni, M.Kado, M.Karliner, U.F.Katz, M.Kenzie, V.A.Khoze, S.R.Klein, F.Krauss, M.Kreps, P.Krizan, B.Krusche, Y.Kwon, O.Lahav, J.Laiho, L.P.Lellouch, J.Lesgourgues, A.R.Liddle, Z.Ligeti, C.-J.Lin, C.Lippmann, T.M.Liss, L.Littenberg, C.Lourenco, K.S.Lugovsky, S.B.Lugovsky, A.Lusiani, Y.Makida, F.Maltoni, T.Mannel, A.V.Manohar, W.J.Marciano, A.Masoni, J.Matthews, U.-G.Meissner, I.-A.Melzer-Pellmann, M.Mikhasenko, D.J.Miller, D.Milstead, R.E.Mitchell, K.Monig, P.Molaro, F.Moortgat, M.Moskovic, K.Nakamura, M.Narain, P.Nason, S.Navas, A.Nelles, M.Neubert, P.Nevski, Y.Nir, K.A.Olive, C.Patrignani, J.A.Peacock, V.A.Petrov, E.Pianori, A.Pich, A.Piepke, F.Pietropaolo, A.Pomarol, S.Pordes, S.Profumo, A.Quadt, K.Rabbertz, J.Rademacker, G.Raffelt, M.Ramsey-Musolf, B.N.Ratcliff, P.Richardson, A.Ringwald, D.J.Robinson, S.Roesler, S.Rolli, A.Romaniouk, L.J.Rosenberg, J.L.Rosner, G.Rybka, M.G.Ryskin, R.A.Ryutin, Y.Sakai, S.Sarkar, F.Sauli, O.Schneider, S.Schonert, K.Scholberg, A.J.Schwartz, J.Schwiening, D.Scott, F.Sefkow, U.Seljak, V.Sharma, S.R.Sharpe, V.Shiltsev, G.Signorelli, M.Silari, F.Simon, T.Sjostrand, P.Skands, T.Skwarnicki, G.F.Smoot, A.Soffer, M.S.Sozzi, S.Spanier, C.Spiering, A.Stahl, S.L.Stone, Y.Sumino, M.J.Syphers, F.Takahashi, M.Tanabashi, J.Tanaka, M.Tasevsky, K.Terao, K.Terashi, J.Terning, R.S.Thorne, M.Titov, N.P.Tkachenko, D.R.Tovey, K.Trabelsi, P.Urquijo, G.Valencia, R.Van de Water, N.Varelas, G.Venanzoni, L.Verde, I.Vivarelli, P.Vogel, W.Vogelsang, V.Vorobyev, S.P.Wakely, W.Walkowiak, C.W.Walter, D.Wands, D.H.Weinberg, E.J.Weinberg, N.Wermes, M.White, L.R.Wiencke, S.Willocq, C.G.Wohl, C.L.Woody, W.-M.Yao, M.Yokoyama, R.Yoshida, G.Zanderighi, G.P.Zeller, O.V.Zenin, R.-Y.Zhu, Sh.-L.Zhu, F.Zimmermann, P.A.Zyla, for the PDG collaboration

Review of Particle Physics

doi: 10.1093/ptep/ptac097
Citations: PlumX Metrics

2022ZH12      Eur.Phys.J. A 58, 20 (2022)

X.Zhang, C.Hanhart, U.-G.Meissner, J.-J.Xie

Remarks on non-perturbative three-body dynamics and its application to the KKK-bar system

doi: 10.1140/epja/s10050-021-00661-y
Citations: PlumX Metrics

2021BR08      Eur.Phys.J. A 57, 161 (2021)

C.Broocks, Q.B.Chen, N.Kaiser, Ulf-G.Meissner

g-Factor and static quadrupole moment of 135Pr, 105Pd, and 187Au in wobbling motion

NUCLEAR STRUCTURE 135Pr, 105Pd, 187Au; analyzed available data; deduced g-factor and static quadrupole moment using the particle-rotor model as functions of the total spin I.

doi: 10.1140/epja/s10050-021-00482-z
Citations: PlumX Metrics

2021HA46      Few-Body Systems 62, 105 (2021)

J.Haidenbauer, U.-G.Meissner, A.Nogga

Constraints on the Λ-Neutron Interaction from Charge Symmetry Breaking in the 4ΛHe - 4ΛH Hypernuclei

NUCLEAR STRUCTURE 4H, 4He; analyzed available data on separation energies of the mirror hypernuclei; deduced constrain on the Λ-neutron interaction, description of all low energy hyperon-nucleon scattering data, scattering lengths.

doi: 10.1007/s00601-021-01684-3
Citations: PlumX Metrics

2021LE13      Phys.Rev.Lett. 127, 062501 (2021)

D.Lee, S.Bogner, B.A.Brown, S.Elhatisari, E.Epelbaum, H.Hergert, M.Hjorth-Jensen, H.Krebs, N.Li, B.-N.Lu, U.-G.Meissner

Hidden Spin-Isospin Exchange Symmetry

doi: 10.1103/PhysRevLett.127.062501
Citations: PlumX Metrics

2021LE14      Eur.Phys.J. A 57, 217 (2021)

H.Le, J.Haidenbauer, U.-G.Meissner, A.Nogga

S-shell ΛΛ hypernuclei based on chiral interactions

NUCLEAR STRUCTURE 5,6He, 4H; calculated hypernuclei ground state wave functions, binding and separation energies using the Jacobi no-core shell model (J-NCSM) to study double-strangeness.

doi: 10.1140/epja/s10050-021-00522-8
Citations: PlumX Metrics

2021LE27      Eur.Phys.J. A 57, 339 (2021)

H.Le, J.Haidenbauer, U.-G.Meissner, A.Nogga

A=4-7 Ξ hypernuclei based on interactions from chiral effective field theory

NUCLEAR STRUCTURE A=4-7; analyzed available data. 4NN, 4,5,7H; deduced hypernuclei bound states, separation energies, phase shifts.

doi: 10.1140/epja/s10050-021-00653-y
Citations: PlumX Metrics

2021LI52      Eur.Phys.J. A 57, 255 (2021)

Y.-H.Lin, H.-W.Hammer, U.-G.Meissner

Dispersion-theoretical analysis of the electromagnetic form factors of the nucleon: Past, present and future

doi: 10.1140/epja/s10050-021-00562-0
Citations: PlumX Metrics

2021MA32      Phys.Rev. C 103, 054001 (2021)

P.Maris, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, Ulf-G.Meissner, J.A.Melendez, A.Nogga, P.Reinert, R.Roth, R.Skibinski, V.Soloviov, K.Topolnicki, J.P.Vary, Yu.Volkotrub, H.Witala, T.Wolfgruber, for the LENPIC Collaboration

Light nuclei with semilocal momentum-space regularized chiral interactions up to third order

NUCLEAR STRUCTURE 3H, 3,4,6,8He, 6,7,8,9Li, 8,10Be, 10,11,12,13B, 12,13,14C, 14,15N, 16O; calculated energies of ground and excited states, S(2n) for 6He and 6Li, α+d breakup up for 6Li, and 3α breakup for 12C, energies, wave functions and radii for 3H, 3,4He. Semilocal momentum-space (SMS) regularized two- and three-nucleon forces up to third chiral order (N2LO), with the two low-energy constants entering the three-body force determined from the triton binding energy and the differential cross-section minimum in elastic nucleon-deuteron scattering. Comparison with experimental data.

NUCLEAR REACTIONS 1H(polarized d, d), E=70, 140, 200, 270 MeV; 2H(p, d), (polarized p, d), E=65 MeV; calculated analyzing powers Ay(θ) and differential cross sections for elastic scattering using semilocal momentum-space (SMS) regularized two- and three-nucleon forces up to third chiral order (N2LO) three-nucleon force (3NF). Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054001
Citations: PlumX Metrics

2021MA40      Phys.Rev. C 103, 065204 (2021)

M.Mai, M.Doring, C.Granados, H.Haberzettl, Ulf-G.Meissner, D.Ronchen, I.Strakovsky, R.Workman

Julich-Bonn-Washington model for pion electroproduction multipoles

NUCLEAR REACTIONS 1H(polarized e, e'π0)p, (polarized e, e'π+)n, E=1.13-1.6 GeV; analyzed a large number of data points for cross sections and angular distributions in SAID database from experiments at different laboratories such as CEBAF Jefferson laboratory, BATES-MIT, Mainz using Julich-Bonn-Washington model and MAID2007, ETA-MAID and KAON-MAID models for photo- and electroproduction of pions, etas, and kaons; deduced phenomenological parametrization of multipoles for the meson electroproduction multipoles associated with Δ(1232), N(1440), N(1520), and N(1535) resonances; assessed systematic uncertainties.

doi: 10.1103/PhysRevC.103.065204
Citations: PlumX Metrics

2021SH37      Eur.Phys.J. A 57, 276 (2021)

S.Shen, T.A.Lahde, D.Lee, U.-G.Meissner

Wigner SU(4) symmetry, clustering, and the spectrum of 12C

NUCLEAR STRUCTURE 12C; calculated transient energies of 0+, 2+, 3- states, J, π by NLEFT using an SU(4) symmetric NN interaction.

doi: 10.1140/epja/s10050-021-00586-6
Citations: PlumX Metrics

2021ST07      Eur.Phys.J. A 57, 26 (2021)

G.Stellin, U.G.Meissner

P-wave two-particle bound and scattering states in a finite volume including QED

doi: 10.1140/epja/s10050-020-00319-1
Citations: PlumX Metrics

2020CH27      Phys.Lett. B 807, 135596 (2020)

Q.B.Chen, S.Frauendorf, N.Kaiser, U.-G.Meissner, J.Meng

g-factor and static quadrupole moment for the wobbling mode in 133La

NUCLEAR MOMENTS 133La; calculated g-factor and static quadrupole moment for the wobbling mode, angular momentum, probability distributions for the rotor angular momentum.

doi: 10.1016/j.physletb.2020.135596
Citations: PlumX Metrics

2020EP01      Eur.Phys.J. A 56, 92 (2020)

E.Epelbaum, J.Golak, K.Hebeler, H.Kamada, H.Krebs, U.-G.Meissner, A.Nogga, P.Reinert, R.Skibinski, K.Topolnicki, Yu.Volkotrub, H.Witala

Towards high-order calculations of three-nucleon scattering in chiral effective field theory

doi: 10.1140/epja/s10050-020-00102-2
Citations: PlumX Metrics

2020EP02      Eur.Phys.J. A 56, 152 (2020)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, Ulf-G.Meissner, X.-L.Ren

How to renormalize integral equations with singular potentials in effective field theory

doi: 10.1140/epja/s10050-020-00162-4
Citations: PlumX Metrics

2020FR13      Eur.Phys.J. A 56, 248 (2020)

D.Frame, T.A.Lahde, D.Lee, U-G.Meissner

Impurity lattice Monte Carlo for hypernuclei

doi: 10.1140/epja/s10050-020-00257-y
Citations: PlumX Metrics

2020HA07      Chin.Phys.C 44, 033101 (2020)

J.Haidenbauer, U.-G.Meissner

Neutron-antineutron oscillations in the deuteron studied with NN and N-barN interactions based on chiral effective field theory

RADIOACTIVITY 2H(n); analyzed available data; calculated deuteron lifetime is calculated in terms of the neutron antineutron oscillation time.

doi: 10.1088/1674-1137/44/3/033101
Citations: PlumX Metrics

2020HA12      Eur.Phys.J. A 56, 91 (2020)

J.Haidenbauer, U.-G.Meissner, A.Nogga

Hyperon-nucleon interaction within chiral effective field theory revisited

doi: 10.1140/epja/s10050-020-00100-4
Citations: PlumX Metrics

2020KR04      Phys.Rev. C 101, 055502 (2020)

H.Krebs, E.Epelbaum, U.-G.Meissner

Box diagram contribution to the axial two-nucleon current

doi: 10.1103/PhysRevC.101.055502
Citations: PlumX Metrics

2020KR10      Eur.Phys.J. A 56, 240 (2020)

H.Krebs, E.Epelbaum, U.-G.Meissner

Subleading contributions to the nuclear scalar isoscalar current

doi: 10.1140/epja/s10050-020-00249-y
Citations: PlumX Metrics

2020LA07      Eur.Phys.J. A 56, 89 (2020)

T.A.Lahde, U.G.Meissner, E.Epelbaum

An update on fine-tunings in the triple-alpha process

doi: 10.1140/epja/s10050-020-00093-0
Citations: PlumX Metrics

2020LE01      Phys.Lett. B 801, 135189 (2020)

H.Le, J.Haidenbauer, U.-G.Meissner, A.Nogga

Implications of an increased Λ-separation energy of the hypertriton

NUCLEAR STRUCTURE 3H, 4,5He, 7Li; calculated hypernuclei energy spectra, separation and binding energies.

doi: 10.1016/j.physletb.2019.135189
Citations: PlumX Metrics

2020LE18      Eur.Phys.J. A 56, 301 (2020)

H.Le, J.Haidenbauer, U.-G.Meissner, A.Nogga

Jacobi no-core shell model for p-shell hypernuclei

NUCLEAR STRUCTURE 4H, 4,5,6He, 6,7Li; calculated hypernuclei ground states, the similarity renormalization group (SRG) to soften the nucleon-nucleon and hyperon-nucleon interactions; deduced basis states and the transition coefficients.

doi: 10.1140/epja/s10050-020-00314-6
Citations: PlumX Metrics

2020LU12      Phys.Rev.Lett. 125, 192502 (2020)

B.-N.Lu, N.Li, S.Elhatisari, D.Lee, J.E.Drut, T.A.Lahde, E.Epelbaum, U.G.Meissner

Ab Initio Nuclear Thermodynamics

doi: 10.1103/PhysRevLett.125.192502
Citations: PlumX Metrics

2020XI01      Eur.Phys.J. A 56, 23 (2020)

C.W.Xiao, U.-G.Meissner, J.A.Oller

Investigation of J/ψ → γ π0η(nullp+π-, π0π0) radiative decays including final-state interactions

doi: 10.1140/epja/s10050-020-00025-y
Citations: PlumX Metrics

2019CH30      Phys.Rev. C 99, 064326 (2019)

Q.B.Chen, N.Kaiser, Ulf-G.Meissner, J.Meng

Behavior of the collective rotor in nuclear chiral motion

doi: 10.1103/PhysRevC.99.064326
Citations: PlumX Metrics

2019DE30      Eur.Phys.J. A 55, 192 (2019)

W.Detmold, A.Kronfeld, U.-G.Meissner

Topical Issue on Opportunities for Lattice Gauge Theory in the Era of Exascale Computing

doi: 10.1140/epja/i2019-12942-8
Citations: PlumX Metrics

2019EP01      Phys.Rev. C 99, 024313 (2019)

E.Epelbaum, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, P.Maris, Ulf-G.Meissner, A.Nogga, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, K.Vobig, H.Witala, for the LENPIC Collaboration

Few- and many-nucleon systems with semilocal coordinate-space regularized chiral two- and three-body forces

NUCLEAR REACTIONS 2H(n, n), E=14.1, 70, 108, 135, 250 MeV; analyzed differential σ(θ); deduced low energy coefficients; calculated differential σ(θ), neutron analyzing powers Ay(θ), and deuteron vector and tensor analyzing powers using chiral effective field theory with semilocal coordinate-space regularized two- and three-nucleon forces. Comparison with experimental data.

NUCLEAR STRUCTURE 4,6,8He, 6,7,8,9Li, 8,9,10Be, 10,11,12B, 12C, 16O; calculated ground state binding energies, and excitation energies using chiral N2LO interactions.

doi: 10.1103/PhysRevC.99.024313
Citations: PlumX Metrics

2019EP02      Eur.Phys.J. A 55, 56 (2019)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, Ulf-G.Meissner

Reply to the Comment by Manuel Pavon Valderrama on "How (not) to renormalize integral equations with singular potentials in effective field theory"

doi: 10.1140/epja/i2019-12751-1
Citations: PlumX Metrics

2019HA11      Eur.Phys.J. A 55, 23 (2019)

J.Haidenbauer, U.-G.Meissner

In-medium properties of a Ξ N interaction derived from chiral effective field theory

doi: 10.1140/epja/i2019-12689-2
Citations: PlumX Metrics

2019HA18      Eur.Phys.J. A 55, 70 (2019)

J.Haidenbauer, Ulf -G.Meissner

Phenomenological view on baryon-baryon potentials from lattice QCD simulations

doi: 10.1140/epja/i2019-12736-0
Citations: PlumX Metrics

2019LI31      Phys.Rev. C 99, 064001 (2019)

N.Li, S.Elhatisari, E.Epelbaum, D.Lee, B.Lu, U.-G.Meissner

Galilean invariance restoration on the lattice

NUCLEAR REACTIONS 1H(n, n), at relative momentum of 0-140 MeV/c; calculated dispersion relation, S-, P-, and D-wave neutron-proton scattering phase shifts, mixing angles as a function of relative momenta using chiral effective field theory with and without Galilean invariance restoration operators.

doi: 10.1103/PhysRevC.99.064001
Citations: PlumX Metrics

2018BI08      Phys.Rev. C 98, 014002 (2018)

S.Binder, A.Calci, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, T.Huther, H.Kamada, H.Krebs, P.Maris, Ulf-G.Meissner, A.Nogga, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, K.Vobig, H.Witala, at the LENPIC Collaboration

Few-nucleon and many-nucleon systems with semilocal coordinate-space regularized chiral nucleon-nucleon forces

NUCLEAR REACTIONS 2H(n, n), E=5, 10, 14.1 MeV; 2H(n, 2np), E=13, 65 MeV; calculated differential σ(θ), Ay analyzing powers, nucleon and deuteron vector analyzing powers, phase shifts, polarization-transfer coefficient, breakup cross sections, and pd analyzing powers.

NUCLEAR STRUCTURE 3H, 3,4He, 6Li; calculated binding energies, ground-state energies of 4He and 6Li, proton rms radii. 3H, 4,6,8He, 6,7,8,9Li, 8,9Be, 10B, 16,24O, 40,48Ca; calculated ground state energies. 3H, 3He, 6,7,8,9Li, 7,9Be, 8,9,10B, 9C; calculated magnetic dipole moments. 16,24O, 40,48Ca; calculated charge radii. Faddeev-Yakubovsky equations, with no-core configuration interaction approach, coupled-cluster (CC) theory, and in-medium similarity renormalization group (IM-SRG)methods with SCS chiral nucleon-nucleon (NN) potentials. Comparison with experimental values, and with other theoretical predictions.

doi: 10.1103/PhysRevC.98.014002
Citations: PlumX Metrics

2018CH32      Phys.Rev. C 97, 064320 (2018)

Q.B.Chen, N.Kaiser, Ulf-G.Meissner, J.Meng

Effective field theory for collective rotations and vibrations of triaxially deformed nuclei

NUCLEAR STRUCTURE 108,110,112Ru; calculated levels, J, π for ground band, γ band, and K=4 bands, potential energy surfaces in (β2, γ2) plane, and mass parameters Bββ, Bβγ and Bγγ as function of γ2 parameter. Effective field theory (EFT) for triaxially deformed even-even nuclei with Hamiltonian constructed up to next-to-leading order (NLO). Comparison with experimental data.

doi: 10.1103/PhysRevC.97.064320
Citations: PlumX Metrics

2018EP01      Eur.Phys.J. A 54, 186 (2018)

E.Epelbaum, A.M.Gasparyan, J.Gegelia, Ulf-G.Meissner

How (not) to renormalize integral equations with singular potentials in effective field theory

doi: 10.1140/epja/i2018-12632-1
Citations: PlumX Metrics

2018KL02      Eur.Phys.J. A 54, 121 (2018)

N.Klein, S.Elhatisari, T.A.Lahde, D.Lee, U.-G.Meissner

The Tjon band in Nuclear Lattice Effective Field Theory

NUCLEAR REACTIONS 1H(n, n'), (p, p'), E(cm) at 0-200 MeV/c; calculated phase shifts vs p(cm), mixing angles using NLEFT (Nuclear Lattice Effective Field Theory) within LO and NNLO; compared to NPWA (Nijmegen partial wave analysis).

NUCLEAR STRUCTURE 7Be[considered as3He+4He]; calculated binding energy, Q for various lattice spacings; deduced Tjon band to be reached by decreasing lattice spacing; deduced four-body force not necessary to describe light nuclei.

doi: 10.1140/epja/i2018-12553-y
Citations: PlumX Metrics

2018KL04      Eur.Phys.J. A 54, 233 (2018)

N.Klein, D.Lee, Ulf -G.Meissner

Lattice improvement in lattice effective field theory

doi: 10.1140/epja/i2018-12676-1
Citations: PlumX Metrics

2018LI53      Phys.Rev. C 98, 044002 (2018)

N.Li, S.Elhatisari, E.Epelbaum, D.Lee, B.-N.Lu, U.-G.Meissner

Neutron-proton scattering with lattice chiral effective field theory at next-to-next-to-next-to-leading order

NUCLEAR STRUCTURE 2H; calculated neutron-proton scattering phase shifts and mixing angles versus relative momenta for different lattice spacings, properties of deuteron wave function and the s-wave effective range parameters, low-energy constants using ab initio lattice formulation of the chiral effective field theory for LO, NLO, N2LO and N3LO NN interactions. Comparison with empirical values.

doi: 10.1103/PhysRevC.98.044002
Citations: PlumX Metrics

2018RO17      Eur.Phys.J. A 54, 110 (2018)

D.Ronchen, M.Doring, U.-G.Meissner

The impact of K+ Λ photoproduction on the resonance spectrum

NUCLEAR REACTIONS 1H(γ, K+)Λ, E(cm)=1721-2180 MeV; calculated σ(θ). 1H(γ, K+)Λ, E(cm)=1700-2300 MeV; calculated beam and target asymmetries vs θ. 1H(γ, K+)Λ, E(cm)=1625-2345 MeV; calculated recoil polarization. Calculations compared to data.

doi: 10.1140/epja/i2018-12541-3
Citations: PlumX Metrics

2018RU01      J.Phys.(London) G45, 024001 (2018)

J.Ruiz de Elvira, M.Hoferichter, B.Kubis, U.-G.Meissner

Extracting the σ-term from low-energy pion-nucleon scattering

NUCLEAR REACTIONS 1H(π+, π+), E not given; analyzed available data on σ(θ); deduced pion-nucleon scattering lengths from low-energy scattering.

doi: 10.1088/1361-6471/aa9422
Citations: PlumX Metrics

2018ST15      Phys.Rev. C 98, 044314 (2018)

E.Streck, Q.B.Chen, N.Kaiser, Ulf-G.Meissner

Behavior of the collective rotor in wobbling motion

NUCLEAR STRUCTURE 135Pr; calculated level energies and wobbling frequency, energy of the collective rotor and single-proton energy expectation values, distributions of the orientation of the angular momentum of the yrast (zero phonon) and wobbling (one phonon) bands, probability distribution of the rotor angular momentum with its projection onto each principal axis, proton angular momentum with and without pairing correlations; analyzed separate contributions from the rotor and the single-particle Hamiltonian to the wobbling frequencies. Particle-rotor model (PRM) calculations. Comparison with experimental values.

doi: 10.1103/PhysRevC.98.044314
Citations: PlumX Metrics

2018ST19      Eur.Phys.J. A 54, 232 (2018)

G.Stellin, S.Elhatisari, Ulf-G.Meissner

Breaking and restoration of rotational symmetry in the low energy spectrum of light α-conjugate nuclei on the lattice I: 8Be and 12C

NUCLEAR STRUCTURE 8Be[and other α-conjugate nuclei]; calculated possible breaking of rotational symmetry on the lattice for bound eigenstates of two lightest α-conjugate nuclei using macroscopic α-cluster model; calculated spectrum of the 8Be lattice Hamiltonian, lattice binding energy, mass excess of 8Be as a function of the box size

doi: 10.1140/epja/i2018-12671-6
Citations: PlumX Metrics

2017AL18      Eur.Phys.J. A 53, 83 (2017)

J.M.Alarcon, D.Du, N.Klein, T.A.Lahde, D.Lee, N.Li, B.-N.Lu, T.Luu, Ulf-G.Meissner

Neutron-proton scattering at next-to-next-to-leading order in Nuclear Lattice Effective Field Theory

NUCLEAR STRUCTURE 4He, 8Be, 12C, 16O, 20Ne, 24Mg, 28Si;calculated binding energy, mass excess using 2N forces up to NNLO in the NLEFT (Nuclear Lattice Effective Field Theory);deduced parameters using available data.

doi: 10.1140/epja/i2017-12273-x
Citations: PlumX Metrics

2017CH52      Eur.Phys.J. A 53, 204 (2017)

Q.B.Chen, N.Kaiser, Ulf-G.Meissner, J.Meng

Effective field theory for triaxially deformed nuclei

NUCLEAR STRUCTURE 102,104,106,108,110,112Ru; calculated alignment, rotational γ bands energy vs spin, energy surface, deformations using effective field theory triaxial rotor model (LO and NLO) and 5DCH (5-Dimensional Collective Hamiltonian); deduced models of inertia, other model parameters using the fit to data.

doi: 10.1140/epja/i2017-12404-5
Citations: PlumX Metrics

2017EL05      Phys.Rev.Lett. 119, 222505 (2017)

S.Elhatisari, E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, N.Li, B.-n.Lu, U.-G.Meissner, G.Rupak

Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering

NUCLEAR STRUCTURE 12,14,16C; calculated proton and neutron densities for the ground states, spin-up proton probability distributions.

doi: 10.1103/PhysRevLett.119.222505
Citations: PlumX Metrics

2017EP01      Eur.Phys.J. A 53, 98 (2017)

E.Epelbaum, J.Gegelia, U.-G.Meissner, D.-L.Yao

Renormalization of the three-boson system with short-range interactions revisited

doi: 10.1140/epja/i2017-12288-3
Citations: PlumX Metrics

2017HA19      Eur.Phys.J. A 53, 121 (2017)

J.Haidenbauer, U.-G.Meissner, N.Kaiser, W.Weise

Lambda-nuclear interactions and hyperon puzzle in neutron stars

doi: 10.1140/epja/i2017-12316-4
Citations: PlumX Metrics

2017HU11      Phys.Rev. C 96, 034307 (2017)

J.Hu, Y.Zhang, E.Epelbaum, U.-G.Meissner, J.Meng

Nuclear matter properties with nucleon-nucleon forces up to fifth order in the chiral expansion

doi: 10.1103/PhysRevC.96.034307
Citations: PlumX Metrics

2017PE02      Nucl.Phys. A957, 347 (2017)

S.Petschauer, J.Haidenbauer, N.Kaiser, Ulf-G.Meissner, W.Weise

Density-dependent effective baryon-baryon interaction from chiral three-baryon forces

doi: 10.1016/j.nuclphysa.2016.09.010
Citations: PlumX Metrics

2017SI25      Phys.Rev. C 96, 055205 (2017)

D.Siemens, V.Bernard, E.Epelbaum, A.M.Gasparyan, H.Krebs, Ulf-G.Meissner

Elastic and inelastic pion-nucleon scattering to fourth order in chiral perturbation theory

NUCLEAR REACTIONS 1H(π-, π0π0), (π-, π+π-), (π-, π0π-), (π+, π+π+), (π-, π+π0), Tπ<0.4 GeV; calculated pion-nucleon total cross sections, σ(θ, E), low-energy constants (LECs); deduced contributions of the Δ(1232) resonance. Chiral perturbation theory using heavy-baryon approach and covariant formulation, with extended on-mass-shell (EOMS) scheme. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.055205
Citations: PlumX Metrics

2016AN18      Eur.Phys.J. A 52, 284 (2016)

A.V.Anisovich, R.Beck, M.Doring, M.Gottschall, J.Hartmann, V.Kashevarov, E.Klempt, Ulf-G.Meissner, V.Nikonov, M.Ostrick, D.Ronchen, A.Sarantsev, I.Strakovsky, A.Thiel, L.Tiator, U.Thoma, R.Workman, Y.Wunderlich

The impact of new polarization data from Bonn, Mainz and Jefferson Laboratory on γp → πN multipoles

NUCLEAR REACTIONS 1H(γ, π0), (γ, π+), E=147-219, 650-2200 MeV; analyzed published σ(θ), beam asymmetry, double polarization data; calculated σ(θ), beam asymmetry, double polarization using PWA (Partial-Wave Analysis) BnGa code, Juelich-Bonn DCC (Dynamical CC) model, MAID and SAID models; deduced photoproduction multipoles, partial waves real, imaginary parts, parameters.

doi: 10.1140/epja/i2016-16284-9
Citations: PlumX Metrics

2016BE30      Eur.Phys.J. A 52, 296 (2016)

J.Behrendt, E.Epelbaum, J.Gegelia, Ulf-G.Meissner, A.Nogga

Two-nucleon scattering in a modified Weinberg approach with a symmetry-preserving regularization

doi: 10.1140/epja/i2016-16296-5
Citations: PlumX Metrics

2016BI06      Phys.Rev. C 93, 044002 (2016)

S.Binder, A.Calci, E.Epelbaum, R.J.Furnstahl, J.Golak, K.Hebeler, H.Kamada, H.Krebs, J.Langhammer, S.Liebig, P.Maris, Ulf-G.Meissner, D.Minossi, A.Nogga, H.Potter, R.Roth, R.Skibinski, K.Topolnicki, J.P.Vary, H.Witala, for the LENPIC Collaboration

Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces

NUCLEAR STRUCTURE 3H, 4He, 6Li; calculated energies of ground-state and lowest two states, point-proton radius using improved NN chiral potentials LO, NLO, N2LO, N3LO and N4LO. Comparison with experimental data.

NUCLEAR REACTIONS 3H, 4He, 6Li(d, X), (polarized d, d), E=10, 70, 135, 200 MeV; total σ(E), differential cross section and tensor analyzing powers for elastic scattering based on NN chiral potentials LO, NLO, N2LO, N3LO and N4LO. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.044002
Citations: PlumX Metrics

2016CI03      Nucl.Phys. A954, 17 (2016)

A.Cieply, M.Mai, Ulf-G.Meissner, J.Smejkal

On the pole content of coupled channels chiral approaches used for the K(bar)N system

doi: 10.1016/j.nuclphysa.2016.04.031
Citations: PlumX Metrics

2016EL02      Eur.Phys.J. A 52, 174 (2016)

S.Elhatisari, D.Lee, U.-G.Meissner, G.Rupak

Nucleon-deuteron scattering using the adiabatic projection method

doi: 10.1140/epja/i2016-16174-2
Citations: PlumX Metrics

2016EL03      Phys.Rev.Lett. 117, 132501 (2016)

S.Elhatisari, N.Li, A.Rokash, J.M.Alarcon, D.Du, N.Klein, B.-n.Lu, U.-G.Meissner, E.Epelbaum, H.Krebs, Ti.A.Lahde, De.Lee, G.Rupak

Nuclear Binding Near a Quantum Phase Transition

NUCLEAR STRUCTURE 3H, 3,4He, 8Be, 12C, 16O, 20Ne; calculated ground state energies; deduced a first-order transition at zero temperature from a Bose-condensed gas of alpha particles to a nuclear liquid. Leading order (LO) nuclear interactions.

doi: 10.1103/PhysRevLett.117.132501
Citations: PlumX Metrics

2016GU19      Eur.Phys.J. A 52, 318 (2016)

F.-K.Guo, U.-G.Meissner, J.Nieves, Z.Yang

Remarks on the Pc structures and triangle singularities

doi: 10.1140/epja/i2016-16318-4
Citations: PlumX Metrics

2016HA20      Nucl.Phys. A954, 273 (2016)

J.Haidenbauer, Ulf-G.Meissner, S.Petschauer

Strangeness S = - 2 baryon-baryon interaction at next-to-leading order in chiral effective field theory

doi: 10.1016/j.nuclphysa.2016.01.006
Citations: PlumX Metrics

2016HO21      Eur.Phys.J. A 52, 331 (2016)

M.Hoferichter, B.Kubis, J.Ruiz de Elvira, H.-W.Hammer, U.-G.Meissner

On the ππ continuum in the nucleon form factors and the proton radius puzzle

NUCLEAR STRUCTURE 1n, 1H; calculated nucleon electromagnetic form factors using ππ continuum contribution to isovector spectral functions with up-to-date results for ππ partial waves extracted from Roy-Steiner equations with most recent data on pion vector form factor; deduced contribution to nucleon isovector electric and magnetic radii using sum rules.

doi: 10.1140/epja/i2016-16331-7
Citations: PlumX Metrics

2016LI23      Eur.Phys.J. A 52, 103 (2016)

S.Liebig, U.-G.Meissner, A.Nogga

Jacobi no-core shell model for p-shell nuclei

NUCLEAR STRUCTURE 3H, 4,6He, 6,7Li; calculated mass excess, gs energy, excitation energy using fully antisymmetrized basis and two- and three-nucleon operators, dependence on the harmonic oscillator frequency. Compared to data.

doi: 10.1140/epja/i2016-16103-5
Citations: PlumX Metrics

2016ME03      Phys.Scr. 91, 033005 (2016)


The long and winding road from chiral effective Lagrangians to nuclear structure

NUCLEAR STRUCTURE 4He, 8Be, 12C, 16O; calculated binding energies, parameter for triple-alpha process.

doi: 10.1088/0031-8949/91/3/033005
Citations: PlumX Metrics

2016PE02      Phys.Rev. C 93, 014001 (2016)

S.Petschauer, N.Kaiser, J.Haidenbauer, U.-G.Meissner, W.Weise

Leading three-baryon forces from SU(3) chiral effective field theory

doi: 10.1103/PhysRevC.93.014001
Citations: PlumX Metrics

2016PE03      Eur.Phys.J. A 52, 15 (2016)

S.Petschauer, J.Haidenbauer, N.Kaiser, Ulf-G.Meissner, W.Weise

Hyperons in nuclear matter from SU(3) chiral effective field theory

doi: 10.1140/epja/i2016-16015-4
Citations: PlumX Metrics

2016SI17      Phys.Rev. C 94, 014620 (2016)

D.Siemens, V.Bernard, E.Epelbaum, A.Gasparyan, H.Krebs, Ulf-G.Meissner

Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

NUCLEAR REACTIONS 1H(π+, π+), E=50-150 MeV; analyzed σ(θ) data from GWU-SAID database using chiral perturbation theory up to fourth order within the heavy-baryon (HB) expansion and a covariant approach based on an extended on-mass-shell (EOMS) renormalization scheme; deduced phase shifts and compared with predictions from Roy-Steiner-equation analysis.

doi: 10.1103/PhysRevC.94.014620
Citations: PlumX Metrics

2016SK02      Phys.Rev. C 93, 064002 (2016)

R.Skibinski, J.Golak, K.Topolnicki, H.Witala, E.Epelbaum, H.Krebs, H.Kamada, Ulf-G.Meissner, A.Nogga

Testing semilocal chiral two-nucleon interaction in selected electroweak processes

NUCLEAR REACTIONS 2H(γ, np), E<80 MeV; calculated total σ(E). 2H(γ, np), E<150 MeV; calculated deuteron analyzing powers. 2H(γ, np), E=30, 100 MeV; calculated differential σ(qp) for LO, NLO, N2LO, N3LO, and N4LO chiral interactions. 2H(γ, np), E=2-4 MeV; calculated photon asymmetry as function of proton center-of-mass scattering angle. 2H(γ, np), E=19.8, 60.8 MeV; calculated photon asymmetry as function of neutron center-of-mass scattering angle. 2H(n, 3H), E=9.0 MeV; 2H(p, 3He), E=17.5, 29, 95 MEV; calculated differential σ(θ), deuteron analyzing power Ay(d). 3He(γ, p), E=40, 120 MeV; calculated differential σ(Ep, θ), three-body 3He photodisintegration rates. 2H(μ-, 2nν); 3He(μ-,3Hν); 3He(μ-, ndν); 3He(μ-, 2npν); calculated differential capture rates for two- and three-nucleon breakup channels, doublet and total capture rates. Single nucleon current (SNC+Siegert), and SNC+meson exchange currents (MEC) models using 3N Lippmann-Schwinger and Faddeev equations, Argonne V18 potential and improved chiral NN forces. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.064002
Citations: PlumX Metrics

2016WI09      Few-Body Systems 57, 1213 (2016)

H.Witala, J.Golak, R.Skibinski, K.Topolnicki, E.Epelbaum, K.Hebeler, H.Kamada, H.Krebs, U.-G.Meissner, A.Nogga

Role of the Total Isospin 3/2 Component in Three-Nucleon Reactions

NUCLEAR REACTIONS 2H(n, n), E=13, 250 MeV; calculated σ(θ), σ(θ, E). Comparison with available data.

doi: 10.1007/s00601-016-1156-3
Citations: PlumX Metrics

2015DJ03      Eur.Phys.J. A 51, 101 (2015)

D.Djukanovic, E.Epelbaum, J.Gegelia, H.Krebs, U.-G.Meissner

Complex-mass renormalization in hadronic EFT: Applicability at two-loop order

doi: 10.1140/epja/i2015-15101-5
Citations: PlumX Metrics

2015EL07      Nature(London) 528, 111 (2015)

S.Elhatisari, D.Lee, G.Rupak, E.Epelbaum, H.Krebs, T.A.Lahde, T.Luu, Ulf-G.Meissner

Ab initio alpha-alpha scattering

NUCLEAR REACTIONS 4He(α, α), (α, X), E<12 MeV; calculated phase shifts, wave functions. Comparison with experimental data, lattice Monte Carlo simulations.

doi: 10.1038/nature16067
Citations: PlumX Metrics

2015EP02      Eur.Phys.J. A 51, 53 (2015)

E.Epelbaum, H.Krebs, U.-G.Meissner

Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order

NUCLEAR STRUCTURE 2H; calculated D-to-S ratio, radius, quadrupole moment, D-state probability using various N3LO potentials and improved chiral potentials. Compared with other calculations and with data.

NUCLEAR REACTIONS 1H(n, n), E=50, 96, 143, 200 MeV; calculated total σ, σ(θ), polarization transfer coefficient, analyzing power, spin correlation parameter using LO, NLO, N2LO, N3LO with different cut-off. Compared to data.

doi: 10.1140/epja/i2015-15053-8
Citations: PlumX Metrics

2015EP04      Phys.Rev.Lett. 115, 122301 (2015)

E.Epelbaum, H.Krebs, U.-G.Meissner

Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion

doi: 10.1103/PhysRevLett.115.122301
Citations: PlumX Metrics

2015HA08      Eur.Phys.J. A 51, 17 (2015)

J.Haidenbauer, Ulf-G.Meissner, S.Petschauer

Do ΞΞ bound states exist?

doi: 10.1140/epja/i2015-15017-0
Citations: PlumX Metrics

2015HA10      Nucl.Phys. A936, 29 (2015)

J.Haidenbauer, Ulf-G.Meissner

A study of hyperons in nuclear matter based on chiral effective field theory

doi: 10.1016/j.nuclphysa.2015.01.005
Citations: PlumX Metrics

2015HO10      Phys.Rev.Lett. 15, 092301 (2015)

M.Hoferichter, J.Ruiz de Elvira, B.Kubis, U.-G.Meissner

High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations

ATOMIC PHYSICS 1,2H; analyzed available data on pionic atoms and πN scattering; deduced pion-nucleon (πN) σ term, scattering lengths.

doi: 10.1103/PhysRevLett.115.092301
Citations: PlumX Metrics

2015HO12      Phys.Rev.Lett. 115, 192301 (2015)

M.Hoferichter, J.Ruiz de Elvira, B.Kubis, Ulf-G.Meissner

Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory

doi: 10.1103/PhysRevLett.115.192301
Citations: PlumX Metrics

2015LA16      Eur.Phys.J. A 51, 92 (2015)

T.A.Lahde, T.Luu, D.Lee, U.-G.Meissner, E.Epelbaum, H.Krebs, G.Rupak

Nuclear lattice simulations using symmetry-sign extrapolation

NUCLEAR STRUCTURE 6He, 6Be, 12C; calculated two-nucleon, three-nucleon forces shift for low energy levels using PMC (Projection Monte Carlo) with LO, NLO, EMIB and 3NF.

doi: 10.1140/epja/i2015-15092-1
Citations: PlumX Metrics

2015MA21      Eur.Phys.J. A 51, 30 (2015)

M.Mai, Ulf-G.Meissner

Constraints on the chiral unitary K(bar)N amplitude from πΣK+ photoproduction data

NUCLEAR REACTIONS 1H(K-, K-), (K-, K0), (K-, π0), (K-, π-), (K-, π+), E=50-240 MeV; calculated σ, πΣ mass distribution using chiral unitarity approach; deduced parameters using CLAS Collaboration data.

doi: 10.1140/epja/i2015-15030-3
Citations: PlumX Metrics

2015RO14      Eur.Phys.J. A 51, 70 (2015)

D.Ronchen, M.Doring, H.Haberzettl, J.Haidenbauer, U.-G.Meissner, K.Nakayama

Eta photoproduction in a combined analysis of pion- and photon-induced reactions

doi: 10.1140/epja/i2015-15070-7
Citations: PlumX Metrics

2014CL02      Eur.Phys.J. A 50, 149 (2014)

M.Cleven, H.W.Griesshammer, F.-K.Guo, C.Hanhart, Ulf-G.Meissner

Strong and radiative decays of the D*s0(2317) and Ds1(2460)

doi: 10.1140/epja/i2014-14149-y
Citations: PlumX Metrics

2014DE20      Eur.Phys.J. A 50, 108 (2014)

J.de Vries, N.Li, Ulf-G.Meissner, N.Kaiser, X.-H.Liu, S.-L.Zhu

A study of the parity-odd nucleon-nucleon potential

doi: 10.1140/epja/i2014-14108-8
Citations: PlumX Metrics

2014EP01      Phys.Rev.Lett. 112, 102501 (2014)

E.Epelbaum, H.Krebs, T.A.Lahde, D.Lee, Ulf-G.Meissner, G.Rupak

Ab Initio Calculation of the Spectrum and Structure of 16O

NUCLEAR STRUCTURE 16O; calculated lowest energy even-parity states, J, π, charge radius, quadrupole moments, B(E2), M(E0). Comparison with experimental data.

doi: 10.1103/PhysRevLett.112.102501
Citations: PlumX Metrics

Back to query form    [Next]

Note: The following list of authors and aliases matches the search parameter U.Meissner: , U.G.MEISSNER