NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = Y.Z.Ma

Found 15 matches.

Back to query form



2024CO01      Phys.Rev. C 109, 014301 (2024)

L.Coraggio, N.Itaco, G.De Gregorio, A.Gargano, Z.H.Cheng, Y.Z.Ma, F.R.Xu, M.Viviani

The renormalization of the shell-model Gamow-Teller operator starting from effective field theory for nuclear systems

doi: 10.1103/PhysRevC.109.014301
Citations: PlumX Metrics


2023ZH48      Phys.Rev. C 108, 064316 (2023)

S.Zhang, F.R.Xu, J.G.Li, B.S.Hu, Z.H.Cheng, N.Michel, Y.Z.Ma, Q.Yuan, Y.H.Zhang

Ab initio descriptions of A=16 mirror nuclei with resonance and continuum coupling

doi: 10.1103/PhysRevC.108.064316
Citations: PlumX Metrics


2022GE09      Phys.Rev. C 106, 024304 (2022)

Y.F.Geng, J.G.Li, Y.Z.Ma, B.S.Hu, Q.Wu, Z.H.Sun, S.Zhang, F.R.Xu

Excitation spectra of the heaviest carbon isotopes investigated within the CD-Bonn Gamow shell model

NUCLEAR STRUCTURE 19,20,21,22C; calculated levels, J, π, ground-state energies using Gamow shell model (GSM) based on a realistic nuclear, with a complex GSM effective interaction derived from many-body perturbation theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.106.024304
Citations: PlumX Metrics


2022LU05      Phys.Rev.Lett. 128, 242501 (2022)

B.-N.Lu, N.Li, S.Elhatisari, Y.-Z.Ma, D.Lee, U.-G.Meissner

Perturbative Quantum Monte Carlo Method for Nuclear Physics

NUCLEAR STRUCTURE 3H, 4He, 8Be, 12C, 16O; calculated binding energies using ptQMC. Comparison with experimental data.

doi: 10.1103/PhysRevLett.128.242501
Citations: PlumX Metrics


2022YU02      Phys.Rev. C 105, L061303 (2022)

Q.Yuan, S.Q.Fan, B.S.Hu, J.G.Li, S.Zhang, S.M.Wang, Z.H.Sun, Y.Z.Ma, F.R.Xu

Deformed in-medium similarity renormalization group

NUCLEAR STRUCTURE 6,8,10,12,14,16Be, 10,12,14,16,18,20,22C, 14,16,18,20,22,24,26,28O, 16,18,20,22,24,26,28,30,32,34Ne, 20,22,24,26,28,30,32,34,36,38,40Mg; calculated ground-state energies, and charge radii using deformed ab initio in-medium similarity renormalization group (deformed IMSRG), Hartree-Fock, and angular momentum projection methods for open-shell nuclei; results benchmarked with the no-core shell model and valence-space IMSRG calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.105.L061303
Citations: PlumX Metrics


2022ZH57      Phys.Lett. B 827, 136958 (2022)

S.Zhang, Y.Z.Ma, J.G.Li, B.S.Hu, Q.Yuan, Z.H.Cheng, F.R.Xu

The roles of three-nucleon force and continuum coupling in mirror symmetry breaking of oxygen mass region

NUCLEAR STRUCTURE 17,18,19,20,21,22,23,24,25,26,27,28O; calculated g.s. energies, energy levels, J, π, using the complex-energy ab initio Gamow shell model with a core. Comparison with available data.

doi: 10.1016/j.physletb.2022.136958
Citations: PlumX Metrics


2021CO14      Phys.Rev. C 104, 054304 (2021)

L.Coraggio, G.De Gregorio, A.Gargano, N.Itaco, T.Fukui, Y.Z.Ma, F.R.Xu

Shell-model study of titanium isotopic chain with chiral two- and three-body forces

NUCLEAR STRUCTURE 42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72Ti; calculated S(2n) and compared with AME2020 values, energies of the first 2+ states and compared with experimental values, effective single-particle energies (ESPEs), neutron-neutron monopole matrix elements. Shell-model calculations with an effective Hamiltonian from many-body perturbation theory using 40Ca as a closed core, and three-body contributions through density-dependent two-body matrix elements (TBME) derived within a microscopic approach from chiral forces.

doi: 10.1103/PhysRevC.104.054304
Citations: PlumX Metrics


2021DA11      Phys.Rev. C 103, 064327 (2021)

B.Dai, B.S.Hu, Y.Z.Ma, J.G.Li, S.M.Wang, C.W.Johnson, F.R.Xu

Tensor force role in β decays analyzed within the Gogny-interaction shell model

NUCLEAR STRUCTURE 10,11,12,13,14,15C; calculated levels, J, π, ground-state energies. 10,11,12,13,14,15N; calculated ground-state energies. Shell-model calculations with the effective interaction derived from D1S Gogny interaction with and without the tensor force. 15,17O; calculated spectra using the Single-particle energies (SPEs) and two-body matrix elements (TBMEs) from the D1S interaction. Comparison with theoretical calculations using WBP interaction, and with experimental data.

RADIOACTIVITY 10,11C, 12,13N(β+); 14,15C(β-); calculated β spectra, B(GT) using shell model within the p-sd space and the D1S Gogny interaction with different components of tensor force. Comparison with theoretical calculations using WBP interaction, and with experimental data. Relevance to anomalously long half-life of 14C decay, and role of tensor force, cross-shell mixing, and three-body forces in β decay.

doi: 10.1103/PhysRevC.103.064327
Citations: PlumX Metrics


2020CO10      Phys.Rev. C 102, 054326 (2020)

L.Coraggio, G.De Gregorio, A.Gargano, N.Itaco, T.Fukui, Y.Z.Ma, F.R.Xu

Shell-model study of calcium isotopes toward their drip line

NUCLEAR STRUCTURE 50Ca; calculated low-lying levels, J, π. 42,44,46,48,50,52,54,56,58,60,62,64,66,68,70Ca; calculated S(2n), energies of first 2+ states. 49Ca; calculated negative-parity, low-spin energy levels. Shell model calculations with two- and three-nucleon potentials derived within the chiral perturbation theory. Calculated two-body matrix elements given in Supplemental material. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.054326
Citations: PlumX Metrics


2020HU07      Phys.Rev. C 101, 044309 (2020)

B.S.Hu, Q.Wu, Q.Yuan, Y.Z.Ma, X.Q.Yan, F.R.Xu

Nuclear multipole responses from chiral effective field theory interactions

NUCLEAR STRUCTURE 56,68,78Ni; calculated isoscalar monopole (ISGMR), isoscalar quadrupole (ISGQR), isoscalar dipole (ISGDR), and isovector dipole (IVGDR) strength distributions and ground-state energies, excitation energies of isovector pygmy dipole resonances (PDR) and giant dipole resonances (GDR). 4He, 16O, 40,48Ca; calculated isovector dipole (1-) strength distributions and isovector dipole polarizabilities. Hartree-Fock random-phase approximation (HF-RPA), and chiral effective field theory with three-nucleon chiral force. Comparison with experimental values.

doi: 10.1103/PhysRevC.101.044309
Citations: PlumX Metrics


2020MA33      Phys.Lett. B 808, 135673 (2020)

Y.Z.Ma, F.R.Xu, N.Michel, S.Zhang, J.G.Li, B.S.Hu, L.Coraggio, N.Itaco, A.Gargano

Continuum and three-nucleon force in Borromean system: The 17Ne case

NUCLEAR STRUCTURE 17Ne; analyzed available data; calculated energy levels, J, π, proton-proton and proton-neutron correlation densities.

doi: 10.1016/j.physletb.2020.135673
Citations: PlumX Metrics


2019MA65      Phys.Rev. C 100, 034324 (2019)

Y.Z.Ma, L.Coraggio, L.De Angelis, T.Fukui, A.Gargano, N.Itaco, F.R.Xu

Contribution of chiral three-body forces to the monopole component of the effective shell-model Hamiltonian

NUCLEAR STRUCTURE 41,42Ca, 41Sc; calculated low-lying levels, J, π, single-particle spectra for 41Ca and 41Sc. 40,42,44,46,48,50,52,54,56,58,60Ca, 48,50,52,54,56,58,60,62,64,66,68Ni; calculated neutron and proton effective single-particle energies (ESPEs), energies of 2+ levels, S(2n). 42,44,46,48,50,52,54,56,58,60,62Ti, 44,46,48,50,52,54,56,58,60,62,64Cr, 46,48,50,52,54,56,58,60,62,64,66Fe; calculated energies of 2+ levels, S(2n). 46Ar, 48Ca, 50Ti, 52Cr, 54Fe, 56Ni; calculated energies of 2+ levels, B(E2) for the first 2+ levels. Realistic shell-model calculations for fp-shell even-even nuclei (Z=20-28, N=20-40) starting from chiral two-nucleon (2NF) and three-nucleon (3NF) forces, within the many-body perturbation theory. Comparison with experimental data. Discussed the role of the monopole component of the effective shell-model Hamiltonian.

doi: 10.1103/PhysRevC.100.034324
Citations: PlumX Metrics


2018FU14      Phys.Rev. C 98, 044305 (2018)

T.Fukui, L.De Angelis, Y.Z.Ma, L.Coraggio, A.Gargano, N.Itaco, F.R.Xu

Realistic shell-model calculations for p-shell nuclei including contributions of a chiral three-body force

NUCLEAR STRUCTURE 6,8Li, 8Be, 8,10,11B, 12,13C, 16O, 20Ne, 24Mg; calculated levels, g.s. energies, proton and neutron effective single-particle energies of N=Z nuclei with and without next-to-next-to leading order three-body potential using chiral perturbation theory and realistic shell-model (RCM) Hamiltonian. Comparison with experimental values, and with no-core shell-model calculations.

doi: 10.1103/PhysRevC.98.044305
Citations: PlumX Metrics


2018WU03      Phys.Rev. C 97, 054306 (2018)

Q.Wu, B.S.Hu, F.R.Xu, Y.Z.Ma, S.J.Dai, Z.H.Sun, G.R.Jansen

Chiral NNLOsat descriptions of nuclear multipole resonances within the random-phase approximation

NUCLEAR STRUCTURE 4He, 16,22,24O, 40,48Ca; calculated charge radii, strength distributions and centroids of isoscalar monopole, isovector dipole and isoscalar quadrupole resonances, transition densities of protons and neutrons using random-phase approximation (RPA) framework with realistic nuclear forces and chiral potential NNLOsat. 22,24O; deduced low-lying strengths. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.054306
Citations: PlumX Metrics


2017HU04      Phys.Rev. C 95, 034321 (2017)

B.S.Hu, F.R.Xu, Q.Wu, Y.Z.Ma, Z.H.Sun

Brueckner-Hartree-Fock calculations for finite nuclei with renormalized realistic forces

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated ground-state energies, point-nucleon rms radii, single-particle energies, single-proton energies and occupation probabilities. Renormalized Brueckner-Hartree-Fock (RBHF) and BHF calculations with two-step G-matrix approximations. Comparison with available experimental data.

doi: 10.1103/PhysRevC.95.034321
Citations: PlumX Metrics


Back to query form