NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = C.W.Johnson

Found 68 matches.

Back to query form

2023FO05      Phys.Rev. C 108, 054310 (2023)

J.M.R.Fox, C.W.Johnson, R.N.Perez

Uncertainty quantification of transition operators in the empirical shell model

doi: 10.1103/PhysRevC.108.054310
Citations: PlumX Metrics

2023HE12      Phys.Rev. C 108, 024304 (2023)

N.D.Heller, G.H.Sargsyan, K.D.Launey, C.W.Johnson, T.Dytrych, J.P.Draayer

New insights into backbending in the symmetry-adapted shell-model framework

NUCLEAR STRUCTURE 48Cr, 20Ne; calculated levels, J, π, backbending, excitation energy vs angular momentum for rotational bands, yrast bands structure, moments of inertia. Symmetry-adapted no-core shell model (SA-NCSM) with the NNLO chiral potential and symmetry-adapted shell model (SA-SM) with the GXPF1 interaction. Comparison to experimental values.

doi: 10.1103/PhysRevC.108.024304
Citations: PlumX Metrics

2023JO06      J.Phys.(London) G50, 045110 (2023)

C.W.Johnson, O.C.Gorton

Proton-neutron entanglement in the nuclear shell model

NUCLEAR STRUCTURE 20Ne, 36Ar, 22Na, 34Cl, 24Mg, 32S, 26Al, 30P, 28Si, 28,40Ne, 56Ar; calculated the proton-neutron entanglement entropy in the interacting nuclear shell model for a variety of nuclides and interactions; deduced that the entanglement entropy at low excitation energy tends to decrease for nuclides when N is not equal Z.

doi: 10.1088/1361-6471/acbece
Citations: PlumX Metrics

2022CI08      J.Phys.(London) G49, 120502 (2022)

V.Cirigliano, Z.Davoudi, J.Engel, R.J.Furnstahl, G.Hagen, U.Heinz, H.Hergert, M.Horoi, C.W.Johnson, A.Lovato, E.Mereghetti, W.Nazarewicz, A.Nicholson, T.Papenbrock, S.Pastore, M.Plumlee, D.R.Phillips, P.E.Shanahan, S.R.Stroberg, F.Viens, A.Walker-Loud, K.A.Wendt, S.M.Wild

Towards precise and accurate calculations of neutrinoless double-beta decay

RADIOACTIVITY 48Ca(2β-); calculated neutrinoless nuclear matrix elements using chiral-EFT interactions, EDF, IBM, QRPA, SM-pf, SM-sdpf, SM-MBPT, RSM, QMC+SM, IM-GCM, VS-IMSRG, CCSD, CCSD-T1.

doi: 10.1088/1361-6471/aca03e
Citations: PlumX Metrics

2022HE03      Phys.Rev. C 105, 015801 (2022)

R.A.Herrera, C.W.Johnson, G.M.Fuller

Modified Brink-Axel hypothesis for astrophysical Gamow-Teller transitions

RADIOACTIVITY 53,55,56Fe, 57Co(EC), 55Cr(β-); calculated B(GT) for 53Fe to 53Mn, 55Fe to 55Mn, 56Fe to 56Mn, and 57Co to 57Fe from two adjacent initial states with excitation energies near 4.5 MeV, running sums of the strength functions for 53Fe to 53Mn, and 55Cr to 55Mn, transition strength running sums, thermal electron capture rates, and thermal positron emission rates for 57Co to 57Fe. 28Si(EC); calculated running sum of the strength function for 28Si to 28Al. Modified "local" Brink-Axel hypothesis for Gamow-Teller transitions for pf-shell nuclei in astrophysical applications. Relevance to computing accurate thermal weak transition rates for medium-mass nuclei at temperatures occurring in stellar cores near collapse stage.

doi: 10.1103/PhysRevC.105.015801
Citations: PlumX Metrics

2022LU03      Phys.Rev. C 105, 034317 (2022)

Y.Lu, Y.Lei, C.W.Johnson, J.Shen

Nuclear states projected from a pair condensate

NUCLEAR STRUCTURE 22,24,26,28,30,32,34Si, 46,48Ca, 48,50Ti, 50,52Cr, 104Sn, 106Te, 108Xe; calculated levels J, π, B(E2). 52Fe; calculated backbending of yrast state band. 124,126Xe, 126,128Ba; calculated levels J, π. Projection after variation of pair condensates (PVPC) method. Comparison to experimental data and projected Hartree-Fock (PHF) and shell-model calculations.

doi: 10.1103/PhysRevC.105.034317
Citations: PlumX Metrics

2022NA17      J.Phys.(London) G49, 065201 (2022)

J.-U.Nabi, M.Nayab, C.W.Johnson

How effective is the Brink-Axel hypothesis for astrophysical weak rates?

RADIOACTIVITY 31,32Si, 27Mg(β-), 34Ar, 27S, 30Cl(EC); calculated stellar rates using the Brink-Axel hypothesis (BAH).

doi: 10.1088/1361-6471/ac58b1
Citations: PlumX Metrics

2022YU04      Phys.Rev. C 106, 044309 (2022)

Y.X.Yu, Y.Lu, G.J.Fu, C.W.Johnson, Z.Z.Ren

Nucleon-pair truncation of the shell model for medium-heavy nuclei

NUCLEAR STRUCTURE 44,46,48Ti, 48,50Cr, 52Fe, 60,62,64Zn, 66,68Ge, 68Se, 108,110Xe, 112,114Ba, 116,118,120Ce; calculated levels, J, π, yrast states, B(E2). Particle-number conserved Bardeen-Cooper-Schrieffer (NBCS) approximation developed for implementing efficient truncation scheme in the frame of shell-model. Comparison to experimental data.

doi: 10.1103/PhysRevC.106.044309
Citations: PlumX Metrics

2021CE01      Phys.Rev. C 104, 024305 (2021)

M.J.Cervia, A.B.Balantekin, S.N.Coppersmith, C.W.Johnson, P.J.Love, C.Poole, K.Robbins, M.Saffman

Lipkin model on a quantum computer

doi: 10.1103/PhysRevC.104.024305
Citations: PlumX Metrics

2021DA11      Phys.Rev. C 103, 064327 (2021)

B.Dai, B.S.Hu, Y.Z.Ma, J.G.Li, S.M.Wang, C.W.Johnson, F.R.Xu

Tensor force role in β decays analyzed within the Gogny-interaction shell model

NUCLEAR STRUCTURE 10,11,12,13,14,15C; calculated levels, J, π, ground-state energies. 10,11,12,13,14,15N; calculated ground-state energies. Shell-model calculations with the effective interaction derived from D1S Gogny interaction with and without the tensor force. 15,17O; calculated spectra using the Single-particle energies (SPEs) and two-body matrix elements (TBMEs) from the D1S interaction. Comparison with theoretical calculations using WBP interaction, and with experimental data.

RADIOACTIVITY 10,11C, 12,13N(β+); 14,15C(β-); calculated β spectra, B(GT) using shell model within the p-sd space and the D1S Gogny interaction with different components of tensor force. Comparison with theoretical calculations using WBP interaction, and with experimental data. Relevance to anomalously long half-life of 14C decay, and role of tensor force, cross-shell mixing, and three-body forces in β decay.

doi: 10.1103/PhysRevC.103.064327
Citations: PlumX Metrics

2021FU05      Phys.Rev. C 103, L021302 (2021)

G.J.Fu, C.W.Johnson, P.Van Isacker, Z.Ren

Nucleon-pair coupling scheme in Elliott's SU(3) model

NUCLEAR STRUCTURE 52Fe; calculated energies of the levels and B(E2) in the ground band up to 10+ using the shell-model with the GXPF1 interaction, and compared with experimental data. Representation of SU(3) symmetry in nucleon-pair approximation (NPA) truncation scheme of the shell-model configuration space.

doi: 10.1103/PhysRevC.103.L021302
Citations: PlumX Metrics

2021FU13      Phys.Rev. C 104, 024312 (2021)

G.J.Fu, C.W.Johnson

Nucleon-pair approximation for nuclei from spherical to deformed regions

NUCLEAR STRUCTURE 46Ca, 44,46,48Ti, 48,50Cr, 52Fe, 60,62,64Zn, 64,66Ge, 84Mo, 108,110,112Xe, 112,114Ba; calculated yrast positive-parity levels, B(E2), magnetic dipole moment for the first 2+ states using nucleon-pair approximation (NPA) of the shell model with three approaches: generalized seniority scheme, conjugate gradient method, and Hartree-Fock approach for medium- and heavy-mass nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.104.024312
Citations: PlumX Metrics

2021LA11      J.Phys.(London) G48, 095107 (2021)

S.M.Lauber, H.C.Frye, C.W.Johnson

Benchmarking angular-momentum projected Hartree-Fock as an approximation

NUCLEAR STRUCTURE 20Ne, 25Mg, 29Na, 30Si, 30Al, 34Cl, 46Ti, 48V, 62,64Ni, 63Zn, 64Cu, 64,66,68,70,72,74,76,78Ge; analyzed available data; deduced HF energies, deformation parameters.

doi: 10.1088/1361-6471/ac1390
Citations: PlumX Metrics

2021ZB01      J.Phys.(London) G48, 075102 (2021)

R.Zbikowski, C.W.Johnson, A.E.McCoy, M.A.Caprio, P.J.Fasano

Rotational bands beyond the Elliott model

NUCLEAR STRUCTURE 7,8,9,10Be, 20Ne; analyzed available data; deduced energy levels, J, π, rotational bands using Eliott SU(3) model.

doi: 10.1088/1361-6471/abdd8e
Citations: PlumX Metrics

2020FO04      Phys.Rev. C 101, 054308 (2020)

J.M.R.Fox, C.W.Johnson, R.N.Perez

Uncertainty quantification of an empirical shell-model interaction using principal component analysis

NUCLEAR STRUCTURE 18F, 26Al, 26Mg; calculated B(E2) and B(M1) for several transitions; deduced median values and uncertainty intervals from comparison with experimental values. 17,18,19,20,21,22,23,24O, 18,19,20,21,22,23,24,25,26,27F, 20,21,22,23,24,25,26,27,28Ne, 22,23,24,25,26,27,28,29Na, 24,25,26,27,28,29,30Mg, 26,27,28,29,30,31,32,33Al, 28,29,30,31,32,33,34Si, 30,31,32,33,34,35P, 32,33,34,35,36S, 34,35,36,37Cl, 36,37,38Ar, 38,39K; calculated level energies, J, π; deduced uncertainties from comparison with experimental energies. Uncertainty quantification (UQ) in level energies, B(E2), B(M1) and B(GT) of a "gold-standard" empirical interaction for nuclear configuration-interaction shell model calculations in the sd-shell valence, investigating sensitivity of observables to perturbations in the 66 parameters.

RADIOACTIVITY 26Ne, 32Si(β-); calculated B(GT), dark matter scattering on 36Ar coupling parameter; deduced uncertainty intervals for B(GT) from comparison with experimental values. Uncertainty quantification through shell-model calculations.

doi: 10.1103/PhysRevC.101.054308
Citations: PlumX Metrics

2020JO02      Phys.Rev.Lett. 124, 172502 (2020)


Unmixing Symmetries

doi: 10.1103/PhysRevLett.124.172502
Citations: PlumX Metrics

2020JO07      J.Phys.(London) G47, 105107 (2020)

C.W.Johnson, K.A.Luu, Y.Lu

Exact sum rules with approximate ground states

NUCLEAR STRUCTURE 52,53,54,56Fe; analyzed available data; calculated M-scheme dimensions; deduced sum rules for E2 transitions in the sd shell nuclei.

doi: 10.1088/1361-6471/abacda
Citations: PlumX Metrics

2019JI05      Phys.Rev. C 100, 031303(R) (2019)

C.Jiao, C.W.Johnson

Union of rotational and vibrational modes in generator-coordinate-type calculations, with application to neutrinoless double-β decay

NUCLEAR STRUCTURE 124Sn, 124,130Te, 130,136Xe, 136Ba; calculated energies of first 2+ and 4+ levels, g.s. energies, B(E2) for the first 2+ states. quasiparticle Tamm-Dancoff approximation (QTDA)-driven generator coordinate method (GCM). Comparison with experimental data, and with other theoretical calculations.

RADIOACTIVITY 124Sn, 130Te, 136Xe(2β-); calculated nuclear matrix elements for 0νββ decay mode using QTDA-driven GCM with SVD Hamiltonian. Comparison with calculations using constrained Hartree-Fock-Bogoliubov (CHFB)-GCM, and configuration-interacting shell-model (SM).

doi: 10.1103/PhysRevC.100.031303
Citations: PlumX Metrics

2019JO01      J.Phys.(London) G46, 015101 (2019)

C.W.Johnson, C.Jiao

Convergence and efficiency of angular momentum projection

NUCLEAR STRUCTURE 57Fe, 68Ga, 48Cr; calculated energy levels, minimum number of evaluations needed.

doi: 10.1088/1361-6471/aaee20
Citations: PlumX Metrics

2019KR15      Eur.Phys.J. A 55, 225 (2019)

M.K.G.Kruse, W.E.Ormand, C.W.Johnson

No-core shell model calculations of the photonuclear cross section of 10B

doi: 10.1140/epja/i2019-12905-1
Citations: PlumX Metrics

2018LU05      Phys.Rev. C 97, 034330 (2018)

Y.Lu, C.W.Johnson

Transition sum rules in the shell model

NUCLEAR STRUCTURE 34Cl, 10B, 21,27Ne; analyzed energy-weighted sum rules (EWSR) and transition strength function centroids as a function of initial energy for isoscalar E2 in 34Cl, for E1 in 10B, M1 in 21Ne and GT transitions for 27Ne; calculated ground-state E1 energy-weighted sum rule (EWSR) for Z=N nuclides. Z=11, 13, 15, 17, N=9-19; calculated centroids of E2 transitions from the ground state as a function of neutron number. Z=10, 12, 14, 16, N=10, 12, 14, 16, 18; calculated energies of the first 2+ states. Shell model occupation-space framework using the code PANDASCOMMUTE for non-energy weighted and energy-weighted sums rules of transition strength functions.

doi: 10.1103/PhysRevC.97.034330
Citations: PlumX Metrics

2017HE06      Phys.Rev. C 95, 024303 (2017)

R.A.Herrera, C.W.Johnson

Quasidynamical symmetries in the backbending of chromium isotopes

NUCLEAR STRUCTURE 48,49,50Cr; calculated levels, J, decomposition of wave functions into total orbital angular momentum, total spin, and SU(3) and SU(4) irreducible representations (irreps); discussed backbending and quasidynamical symmetries. Group-theoretical decomposition using configuration-interaction shell-model wave functions from total orbital angular momentum, total spin, and the two-body Casimir operators of SU(3) and SU(4) groups.

doi: 10.1103/PhysRevC.95.024303
Citations: PlumX Metrics

2017JO13      Phys.Rev. C 96, 064304 (2017)

C.W.Johnson, K.D.O'Mara

Projection of angular momentum via linear algebra

NUCLEAR STRUCTURE 48Ca, 60Ni; calculated yrast excitation energies in the pf shell with semiphenomenological GXPF1A interaction, with full shell-model diagonalization, and using newly proposed method of projecting angular momentum with linear algebra. Comparison with experimental values.

doi: 10.1103/PhysRevC.96.064304
Citations: PlumX Metrics

2015JO02      Phys.Rev. C 91, 034313 (2015)


Spin-orbit decomposition of ab initio nuclear wave functions

NUCLEAR STRUCTURE 9Be, 10,11B, 12C; calculated levels, J, π, decomposition of low-lying states in L- and S-components, rotational bands. Large-basis, no-core shell-model (NCSM) calculations using ab initio two-body interactions and L-S decomposition scheme. Comparison with predictions of phenomenological Cohen-Kurath forces. Discussed L-S decomposition as a useful tool for analyzing ab initio wave functions of light nuclei and rotational bands. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.034313
Citations: PlumX Metrics

2015JO07      Rom.J.Phys. 60, 772 (2015)


Random Matrices, Point-Group Symmetries, and Many-Body Systems

NUCLEAR STRUCTURE 46,50Ca; calculated rms nuclear matrix elements for different interactions. Comparison with available data.

2015SA24      Rom.J.Phys. 60, 799 (2015)

M.Sambataro, N.Sandulescu, C.W.Johnson

Proton-Neutron Pairing in Self-Conjugate Nuclei in a Formalism of Quartets

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated ground state correlation energies.

2015SA54      Phys.Lett. B 740, 137 (2015)

M.Sambataro, N.Sandulescu, C.W.Johnson

Isoscalar and isovector pairing in a formalism of quartets

NUCLEAR STRUCTURE 16O, 40Ca, 100Sn, 20Ne, 24Mg, 28Si, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated ground state correlation energies for the isovector plus isoscalar pairing Hamiltonian in even-even N=Z nuclei in a formalism of alpha-like quartets. Comparison with available data.

doi: 10.1016/j.physletb.2014.11.036
Citations: PlumX Metrics

2015SC12      Phys.Rev. C 92, 014320 (2015)

M.D.Schuster, S.Quaglioni, C.W.Johnson, E.D.Jurgenson, P.Navratil

Operator evolution for ab initio electric dipole transitions of 4He

NUCLEAR REACTIONS 4He(γ, X), E>26 MeV; calculated total photoabsorption cross section, total dipole strength through renormalized matrix elements obtained in the framework of similarity renormalization (SRG) group method with NN+3N interactions. Comparison with experimental data.

NUCLEAR STRUCTURE 4He; calculated ground-state energy, point-proton root-mean-square radius, total dipole strength, and electric dipole polarizability using NN+3N Hamiltonians. The ab initio no-core shell-model calculations. Comparison with experimental results.

doi: 10.1103/PhysRevC.92.014320
Citations: PlumX Metrics

2014SC08      Phys.Rev. C 90, 011301 (2014)

M.D.Schuster, S.Quaglioni, C.W.Johnson, E.D.Jurgenson, P.Navratil

Operator evolution for ab initio theory of light nuclei

NUCLEAR STRUCTURE 3H; calculated rms radius as a function of SRG evolution parameter. 4He; calculated ground-state energy, rms radius, and total strength of dipole transition, renormalization percent as a function of range of Gaussian operator. The ab initio calculations using similarity renormalization group (SRG). SRG-evolved operators in the two- and three-body spaces. Importance of three-body contribution at long range.

doi: 10.1103/PhysRevC.90.011301
Citations: PlumX Metrics

2014SP01      Phys.Rev. C 90, 014315 (2014)

W.M.Spinella, C.W.Johnson

Testing the spin-cutoff parametrization with shell-model calculations

NUCLEAR STRUCTURE 11,12,13C, 14N, 16,17O, 20Ne, 22,23,24,25,26,27Na, 24,25,26,27,28,29Mg, 26,27,28,29,30Al, 28,29,30,31,32Si, 30,31,32,33P, 32,33,34S, 34,35Cl, 46,47,48,49,50,51,52Ca, 45,46,47,49Sc, 44,45,46,47Ti, 46V; calculated and analyzed level density parameter ρJ/ρ as function of spin and excitation energy. 12,13C, 14N, 17O, 20Ne, 24,26Mg, 26,27,28Al, 28Si, 34,35Cl, 48,49Ca, 45Sc, 44,45,46,47Ti, 46V; calculated spin-cutoff factors as function of excitation energy, in some cases for both positive and negative parities using semirealistic interactions in the interacting shell model. 22Na, 33S, 44Ti; calculated average J(J+1) as function of excitation energy using shell model and from inverting the thermal average.

doi: 10.1103/PhysRevC.90.014315
Citations: PlumX Metrics

2012SA24      Phys.Rev. C 85, 061303 (2012)

N.Sandulescu, D.Negrea, J.Dukelsky, C.W.Johnson

Quartet condensation and isovector pairing correlations in N=Z nuclei

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 44Ti, 48Cr, 52Fe, 104Te, 108Xe, 112Ba; calculated correlation energies for the exact shell model diagonalizations (SM), quartet condensation model (QCM), and the two PBCS approximations using isovector pairing forces extracted from standard shell model interactions with spherical single-particle states, and isovector pairing force of seniority type with axially-deformed single-particle states.

doi: 10.1103/PhysRevC.85.061303
Citations: PlumX Metrics

2012SA47      Phys.Rev. C 86, 041302 (2012)

N.Sandulescu, D.Negrea, C.W.Johnson

Four-nucleon α-type correlations and proton-neutron pairing away from the N=Z line

NUCLEAR STRUCTURE 20,22,24,26,28,30Ne, 24,26,28,30,32Mg, 28,30,32Si, 44,46,48,50Ti, 48,50,52,54Cr, 104,106,108,110,112Te, 108,110,112,114Xe; calculated pairing correlation energies using exact diagonalization, the quartet condensation model (QCM), and the PBCS1 approximation. Importance of four-nucleon correlations of α type in systems with neutron-proton pairing.

doi: 10.1103/PhysRevC.86.041302
Citations: PlumX Metrics

2010JO04      Phys.Rev. C 81, 054303 (2010)

C.W.Johnson, P.G.Krastev

Sensitivity analysis of random two-body interactions

doi: 10.1103/PhysRevC.81.054303
Citations: PlumX Metrics

2010JO05      Phys.Rev. C 82, 031303 (2010)


Many-body fits of phase-equivalent effective interactions

doi: 10.1103/PhysRevC.82.031303
Citations: PlumX Metrics

2009BE28      Phys.Rev. C 80, 027302 (2009)

G.F.Bertsch, C.W.Johnson

Model space truncation in shell-model fits

doi: 10.1103/PhysRevC.80.027302
Citations: PlumX Metrics

2009JO04      Phys.Rev. C 80, 024320 (2009)

C.W.Johnson, I.Stetcu

Collapse of the random-phase approximation: Examples and counter-examples from the shell model

NUCLEAR STRUCTURE 12C, 28Si, 32S; calculated ground-state energy, low-lying random phase approximation (RPA) frequencies of spherical and deformed states using shell model, Hartree-Fock (HF) and HF+RPA models.

doi: 10.1103/PhysRevC.80.024320
Citations: PlumX Metrics

2007AL49      Phys.Atomic Nuclei 70, 1634 (2007)

E.Algin, A.Schiller, A.Voinov, U.Agvaanluvsan, T.Belgya, L.A.Bernstein, C.R.Brune, R.Chankova, P.E.Garrett, S.M.Grimes, M.Guttormsen, M.Hjorth-Jensen, M.J.Hornish, C.W.Johnson, T.Massey, G.E.Mitchell, J.Rekstad, S.Siem, W.Younes

Bulk properties of iron isotopes

NUCLEAR REACTIONS 57Fe(3He, α), (3He, 3He'), E=45 MeV; 56Fe(n, γ), E=thermal; 55Mn(d, n), E=7.0 MeV; measured Eγ, Iγ. Deduced nuclear level densities and radiative strength functions. Compared results to model calculations.

doi: 10.1134/S1063778807090232
Citations: PlumX Metrics

2007JO03      Phys.Rev. C 75, 047305 (2007)

C.W.Johnson, H.A.Nam

New puzzle for many-body systems with random two-body interactions

NUCLEAR STRUCTURE Z=8-92; analyzed excited states energies, correlations.

doi: 10.1103/PhysRevC.75.047305
Citations: PlumX Metrics

2007QU02      Nucl.Phys. A790, 372c (2007)

S.Quaglioni, I.Stetcu, S.Bacca, B.R.Barrett, C.W.Johnson, P.Navratil, N.Barnea, W.Leidemann, G.Orlandini

Benchmark calculation of inclusive responses in the four-body nuclear system

NUCLEAR STRUCTURE 4He; calculated quadrupole response function. No-core shell model, effective interaction hyperspherical harmonic approach.

doi: 10.1016/j.nuclphysa.2007.03.068
Citations: PlumX Metrics

2007ST05      Nucl.Phys. A785, 307 (2007)

I.Stetcu, S.Quaglioni, S.Bacca, B.R.Barrett, C.W.Johnson, P.Navratil, N.Barnea, W.Leidemann, G.Orlandini

Benchmark calculation of inclusive electromagnetic responses in the four-body nuclear system

NUCLEAR STRUCTURE 4He; calculated ground-state energy, quadrupole and dipole response functions. No-core shell model, effective interaction hyperspherical harmonic approaches.

doi: 10.1016/j.nuclphysa.2006.12.047
Citations: PlumX Metrics

2006TE01      Phys.Rev. C 73, 024303 (2006)

E.Teran, C.W.Johnson

Behavior of shell-model configuration moments

NUCLEAR STRUCTURE 20Ne, 33Ar, 44Ti; calculated configuration widths and asymmetries, level density features.

doi: 10.1103/PhysRevC.73.024303
Citations: PlumX Metrics

2006TE08      Phys.Rev.C 74, 067302 (2006)

E.Teran, C.W.Johnson

Simple models for shell-model configuration densities

NUCLEAR STRUCTURE 24Ne, 22,23Na, 47V, 46,49Ca; calculated level densities, configuration densities. Several models compared.

doi: 10.1103/PhysRevC.74.067302
Citations: PlumX Metrics

2005JO05      Int.J.Mod.Phys. E14, 57 (2005)

C.W.Johnson, I.Stetcu

Shortcuts to nuclear structure: Lessons in Hartree-Fock, RPA, and the no-core shell model

NUCLEAR STRUCTURE 12C; calculated ground-state energy. No-core shell model.

doi: 10.1142/S0218301305002771
Citations: PlumX Metrics

2005ST11      Int.J.Mod.Phys. E14, 95 (2005)

I.Stetcu, B.R.Barrett, P.Navratil, C.W.Johnson

Electromagnetic transitions with effective operators

NUCLEAR STRUCTURE 2H, 6Li; calculated transitions B(E2), B(M1). Effective operators.

doi: 10.1142/S0218301305002813
Citations: PlumX Metrics

2005TE07      Eur.Phys.J. A 25, Supplement 1, 673 (2005)

E.Teran, C.W.Johnson

A statistical spectroscopy approach for calculating nuclear level densities

NUCLEAR STRUCTURE 20,21Ne, 34Ar, 34Cl; calculated level densities. Statistical spectroscopy approach.

doi: 10.1140/epjad/i2005-06-081-5
Citations: PlumX Metrics

2004ST04      Phys.Rev. C 69, 024311 (2004)

I.Stetcu, C.W.Johnson

Gamow-Teller transitions and deformation in the proton-neutron random phase approximation

NUCLEAR STRUCTURE 20,21,22,24Ne, 24,25Na, 24,26Mg, 26,27,29Al, 28,30Si, 32,34S, 36Ar, 44,46Ti; calculated Gamow-Teller transition strengths. Proton-neutron RPA.

doi: 10.1103/PhysRevC.69.024311
Citations: PlumX Metrics

2003SC32      Phys.Rev. C 68, 054326 (2003)

A.Schiller, E.Algin, L.A.Bernstein, P.E.Garrett, M.Guttormsen, M.Hjorth-Jensen, C.W.Johnson, G.E.Mitchell, J.Rekstad, S.Siem, A.Voinov, W.Younes

Level densities in 56, 57Fe and 96, 97Mo

NUCLEAR REACTIONS 57Fe, 97Mo(3He, 3He'), (3He, α), E=45 MeV; measured particle spectra, Eγ, Iγ. 56,57Fe, 96,97Mo deduced level densities. Microscopic model, pairing plus random interaction.

doi: 10.1103/PhysRevC.68.054326
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1669.

2003ST04      Phys.Rev. C 67, 044315 (2003)

I.Stetcu, C.W.Johnson

Tests of the random phase approximation for transition strengths

NUCLEAR STRUCTURE 20,21,22Ne, 22,24Na, 24,25Mg, 28,29Si, 36Ar, 44Ti, 46V; calculated transition strength distributions. Comparison of RPA and shell model results.

doi: 10.1103/PhysRevC.67.044315
Citations: PlumX Metrics

2002GU05      Phys.Rev. C65, 024314 (2002)

V.G.Gueorguiev, W.E.Ormand, C.W.Johnson, J.P.Draayer

Mixed-Mode Shell-Model Theory for Nuclear Structure Studies

NUCLEAR STRUCTURE 24Mg; calculated binding energy, level energies. Mixed-mode shell model approach.

doi: 10.1103/PhysRevC.65.024314
Citations: PlumX Metrics

2002JO13      Nucl.Phys. A704, 276c (2002)


Pairing from Random Interactions

doi: 10.1016/S0375-9474(02)00787-X
Citations: PlumX Metrics

2002JO15      Phys.Rev. C66, 034312 (2002)

C.W.Johnson, I.Stetcu, J.P.Draayer

SU(3) versus Deformed Hartree-Fock State

NUCLEAR STRUCTURE 20Ne, 24Mg, 32S, 36Ar, 44Ti; calculated ground-state energies, deformation parameters. Comparison of Hartree-Fock and SU(3) models.

doi: 10.1103/PhysRevC.66.034312
Citations: PlumX Metrics

2002JO21      Phys.Rev. C 66, 064304 (2002)

C.W.Johnson, I.Stetcu

Scalar ground-state observables in the random phase approximation

NUCLEAR STRUCTURE 20,22,24O, 19,20,21F, 20,21,22Ne, 22,23Na, 24,25,26Mg, 26Al, 28Si, 44,46Ti, 46V, 48Cr; calculated expectation values for pairing, spin, other observables. RPA, quasiboson approximation. Comparison with mean-field results.

doi: 10.1103/PhysRevC.66.064304
Citations: PlumX Metrics

2002ST29      Phys.Rev. C66, 034301 (2002)

I.Stetcu, C.W.Johnson

Random Phase Approximation vs Exact Shell-Model Correlation Energies

NUCLEAR STRUCTURE 19,20,21,22,23,24O, 19,20,21,22,23,27F, 20,21,22,23,24,28Ne, 22,23,24,25,29Na, 24,25,26,27Mg, 26,27,28Al, 28,29Si, 30,31,32,33,34P, 27,32,33,34S, 34,35Cl, 36,37Ar, 36K, 44,45,46,47,48,49,50Ca, 43,44,45,46,47Sc, 44,45,46,47Ti, 46V, 48Cr; calculated binding energies, correlation energies. Comparison of RPA and exact shell-model results.

doi: 10.1103/PhysRevC.66.034301
Citations: PlumX Metrics

2001GU04      Phys.Rev. C63, 014318 (2001)

V.G.Gueorguiev, J.P.Draayer, C.W.Johnson

SU(3) Symmetry Breaking in Lower fp-Shell Nuclei

NUCLEAR STRUCTURE 44,46,48Ti, 48Cr; calculated transitions B(E2), role of SU(3) symmetry breaking.

doi: 10.1103/PhysRevC.63.014318
Citations: PlumX Metrics

2001KA02      Phys.Rev. C63, 014307 (2001)

L.Kaplan, T.Papenbrock, C.W.Johnson

Spin Structure of Many-Body Systems with Two-Body Random Interactions

doi: 10.1103/PhysRevC.63.014307
Citations: PlumX Metrics

2000JO01      Phys.Rev. C61, 014311 (2000)

C.W.Johnson, G.F.Bertsch, D.J.Dean, I.Talmi

Generalized Seniority from Random Hamiltonians

NUCLEAR STRUCTURE 20,22,24O, 24,26,28Mg, 44,46,48Ca; calculated pairing features, fractional pair-transfer collectivity. Random two-body matrix elements.

doi: 10.1103/PhysRevC.61.014311
Citations: PlumX Metrics

2000JO06      Phys.Rev. C61, 044327 (2000)

C.W.Johnson, D.J.Dean

Sum Rules Regarding the Sign Problem in Monte Carlo Shell Model Calculations

doi: 10.1103/PhysRevC.61.044327
Citations: PlumX Metrics

1998AD12      Rev.Mod.Phys. 70, 1265 (1998)

E.G.Adelberger, S.M.Austin, J.B.Bahcall, A.B.Balantekin, G.Bogaert, L.S.Brown, L.Buchmann, F.E.Cecil, A.E.Champagne, L.de Braeckeleer, C.A.Duba, S.R.Elliott, S.J.Freedom, M.Gai, G.Goldring, C.R.Gould, A.Gruzinov, W.C.Haxton, K.M.Heeger, E.Henley, C.W.Johnson, M.Kamionkowski, R.W.Kavanagh, S.E.Koonin, K.Kubodera, K.Langanke, T.Motobayashi, V.Pandharipande, P.Parker, R.G.H.Robertson, C.Rolfs, R.F.Sawyer, N.Shaviv, T.D.Shoppa, K.A.Snover, E.Swanson, R.E.Tribble, S.Turck-Chieze, J.F.Wilkerson

Solar Fusion Cross Sections

NUCLEAR REACTIONS 7Be, 12,13C, 15N, 16,17,18O(p, γ), 14,15N, 17,18O(p, α), 7Li(d, p), 3He(p, e+), (α, γ), (3He, 2p), 1H(p, e+), E=low; compiled, analyzed S-factor data, calculations; deduced implications for solar neutrino flux calculations.

doi: 10.1103/RevModPhys.70.1265
Citations: PlumX Metrics

1998JO04      Phys.Rev.Lett. 80, 2749 (1998)

C.W.Johnson, G.F.Bertsch, D.J.Dean

Orderly Spectra from Random Interactions

doi: 10.1103/PhysRevLett.80.2749
Citations: PlumX Metrics

1998JO19      Acta Phys.Hung.N.S. 8, 343 (1998)

C.W.Johnson, G.Fai

Saturation Properties of Nuclear Matter with Nonlocal Confining Solitons

1997JO19      Phys.Rev. C56, 3353 (1997)

C.W.Johnson, G.Fai

High-Density Nuclear Matter with Nonlocal Confining Solitons

doi: 10.1103/PhysRevC.56.3353
Citations: PlumX Metrics

1996JO18      Phys.Lett. 386B, 75 (1996)

C.W.Johnson, G.Fai, M.R.Frank

The Hadron-Quark Transition with a Lattice of Nonlocal Confining Solitons

doi: 10.1016/0370-2693(96)00936-7
Citations: PlumX Metrics

1995GI03      Phys.Rev. C51, 1861 (1995)

J.N.Ginocchio, C.W.Johnson

Unified Theory of Fermion Pair to Boson Mappings in Full and Truncated Spaces

doi: 10.1103/PhysRevC.51.1861
Citations: PlumX Metrics

1994JO06      Phys.Rev. C50, R571 (1994)

C.W.Johnson, J.N.Ginocchio

Hermitian Boson Mapping and Finite Truncation

doi: 10.1103/PhysRevC.50.R571
Citations: PlumX Metrics

1994OR01      Phys.Rev. C49, 1422 (1994)

W.E.Ormand, D.J.Dean, C.W.Johnson, G.H.Lang, S.E.Koonin

Demonstration of the Auxiliary-Field Monte Carlo Approach for sd-Shell Nuclei

NUCLEAR STRUCTURE 20,22,24,26Ne, 22Na; calculated energy, quadrupole moment, other operators expectation value. 22Ne; calculated response functions; deduced shape features. Auxiliary-field Monte Carlo approach.

doi: 10.1103/PhysRevC.49.1422
Citations: PlumX Metrics

1993LA24      Phys.Rev. C48, 1518 (1993)

G.H.Lang, C.W.Johnson, S.E.Koonin, W.E.Ormand

Monte Carlo Evaluation of Path Integrals for the Nuclear Shell Model

NUCLEAR STRUCTURE 24Mg, 20Ne; calculated <H>, <J2> vs deformation parameter. Shell model, Monte Carlo evaluation of path integrals.

doi: 10.1103/PhysRevC.48.1518
Citations: PlumX Metrics

1992JO07      Phys.Rev.Lett. 69, 3157 (1992)

C.W.Johnson, S.E.Koonin, G.H.Lang, W.E.Ormand

Monte Carlo Methods for the Nuclear Shell Model

NUCLEAR STRUCTURE 24Mg, 20Ne, 48Cr; calculated ground state, thermal few body operators expectation values.

doi: 10.1103/PhysRevLett.69.3157
Citations: PlumX Metrics

1992KO11      Phys.Rev.Lett. 69, 1163 (1992)

S.E.Koonin, C.W.Johnson, P.Vogel

Optical Model Description of Parity-Nonconserving Neutron Resonances

NUCLEAR REACTIONS 238U, 232Th, 117Sn, 81Br, 111Cd, 139La(polarized n, n), E ≈ resonance; calculated parity nonconserving coupling constant parameter. Optical model.

doi: 10.1103/PhysRevLett.69.1163
Citations: PlumX Metrics

Back to query form