NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = G.Orlandini

Found 89 matches.

Back to query form



2023KE04      Phys.Rev.Lett. 130, 152502 (2023)

S.Kegel, P.Achenbach, S.Bacca, N.Barnea, J.Bericic, D.Bosnar, L.Correa, M.O.Distler, A.Esser, H.Fonvieille, I.Friscic, M.Heilig, P.Herrmann, M.Hoek, P.Klag, T.Kolar, W.Leidemann, H.Merkel, M.Mihovilovic, J.Muller, U.Muller, G.Orlandini, J.Pochodzalla, B.S.Schlimme, M.Schoth, F.Schulz, C.Sfienti, S.Sirca, R.Spreckels, Y.Stottinger, M.Thiel, A.Tyukin, T.Walcher, A.Weber

Measurement of the α-Particle Monopole Transition Form Factor Challenges Theory: A Low-Energy Puzzle for Nuclear Forces?

NUCLEAR REACTIONS 4He(e-, e-'), E=450, 690, 795 MeV; measured reaction products; deduced missing mass spectrum, monopole transition form factor, resonance parameters, modern nuclear forces, including those derived within chiral effective field theory fail to reproduce the excitation of the α particle. The Mainz Microtron MAMI.

doi: 10.1103/PhysRevLett.130.152502
Citations: PlumX Metrics


2018RO11      Phys.Rev. C 97, 055501 (2018)

N.Rocco, W.Leidemann, A.Lovato, G.Orlandini

Relativistic effects in ab initio electron-nucleus scattering

NUCLEAR REACTIONS 4He(e-, e-'), E=300-1108 MeV; calculated longitudinal and transverse electromagnetic response functions with and without two-body relativistic kinematics, and double differential σ(E, θ) using Green's Function Monte Carlo (GFMC) approach with the inclusion of two-fragment model; developed a new algorithm to interpolate response functions to arbitrary values of momentum transfer. Comparison with previous theoretical predictions, and with experimental values.

doi: 10.1103/PhysRevC.97.055501
Citations: PlumX Metrics


2016HA27      Nat.Phys. 12, 186 (2016)

G.Hagen, A.Ekstrom, C.Forssen, G.R.Jansen, W.Nazarewicz, T.Papenbrock, K.A.Wendt, S.Bacca, N.Barnea, B.Carlsson, C.Drischler, K.Hebeler, M.Hjorth-Jensen, M.Miorelli, G.Orlandini, A.Schwenk, J.Simonis

Neutron and weak-charge distributions of the 48Ca nucleus

NUCLEAR STRUCTURE 48Ca; calculated neutron skin parameters, radii. Ab initio calculations.

doi: 10.1038/nphys3529
Citations: PlumX Metrics


2016MI19      Phys.Rev. C 94, 034317 (2016)

M.Miorelli, S.Bacca, N.Barnea, G.Hagen, G.R.Jansen, G.Orlandini, T.Papenbrock

Electric dipole polarizability from first principles calculations

NUCLEAR STRUCTURE 4He, 16,22O, 40Ca; calculated electric dipole polarizability, photoabsorption response functions. Coupled-cluster method with bound-state techniques, and using different interactions from chiral effective field theory. Comparison with experimental data. Relevance to radii of proton and neutron distributions.

doi: 10.1103/PhysRevC.94.034317
Citations: PlumX Metrics


2015BA08      Phys.Rev. C 91, 024303 (2015)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Examination of the first excited state of 4He as a potential breathing mode

NUCLEAR STRUCTURE 4He; calculated inelastic isoscalar monopole (InISM) strength distribution within a few-body ab initio approach, energy of the excited 0+ state, transition density between the ground state and the 0+ resonance state, transition form factor, q-dependence and sum rule. Lorentz integral transform and hyperspherical harmonics expansion. Focus on 0+ resonance. Discussed breathing mode.

doi: 10.1103/PhysRevC.91.024303
Citations: PlumX Metrics


2014BA40      Few-Body Systems 55, 1051 (2014)

N.Barnea, V.Efros, W.Leidemann, G.Orlandini, E.Tomusiak

Transverse (e, e') Response Functions for 4He

NUCLEAR REACTIONS 4He(E, E'), E=500 MeV; calculated transverse response function parameters.

doi: 10.1007/s00601-014-0826-2
Citations: PlumX Metrics


2014BA62      Phys.Rev. C 90, 064619 (2014)

S.Bacca, N.Barnea, G.Hagen, M.Miorelli, G.Orlandini, T.Papenbrock

Giant and pigmy dipole resonances in 4He, 16, 22O, and 40Ca from chiral nucleon-nucleon interactions

NUCLEAR REACTIONS 4He, 16,22O, 40Ca(γ, n), E not given; calculated dipole response functions using Lorentz integral transform combined with the CC method (LITCC), GDR and PDR, low-lying E1 strength in 22O, electric dipole polarizability in 40Ca. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.064619
Citations: PlumX Metrics


2014DE35      Few-Body Systems 55, 831 (2014)

S.Deflorian, N.Barnea, W.Leidemann, G.Orlandini

Nonsymmetrized Hyperspherical Harmonics with Realistic Potentials

doi: 10.1007/s00601-013-0781-3
Citations: PlumX Metrics


2014OR05      Few-Body Systems 55, 907 (2014)

G.Orlandini, S.Bacca, N.Barnea, G.Hagen, M.Miorelli, T.Papenbrock

Coupling the Lorentz Integral Transform (LIT) and the Coupled Cluster (CC) Methods: A Way Towards Continuum Spectra of "Not-So-Few-Body" System

NUCLEAR REACTIONS 16O, 40Ca(γ, X), E=10-20 MeV; analyzed available data; deduced resonance parameters for the giant dipole resonance. LIT and CC calculations.

doi: 10.1007/s00601-013-0772-4
Citations: PlumX Metrics


2013BA04      Phys.Rev.Lett. 110, 042503 (2013)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Isoscalar Monopole Resonance of the Alpha Particle: A Prism to Nuclear Hamiltonians

NUCLEAR STRUCTURE 3H, 3,4He; calculated ground-state energies with N3LO and N2LO, transition form factors. Ab initio study.

doi: 10.1103/PhysRevLett.110.042503
Citations: PlumX Metrics


2013BA47      Phys.Rev.Lett. 111, 122502 (2013)

S.Bacca, N.Barnea, G.Hagen, G.Orlandini, T.Papenbrock

First Principles Description of the Giant Dipole Resonance in 16O

NUCLEAR STRUCTURE 16O; calculated giant dipole resonance parameters, position and strength. Nucleon-nucleon interaction, comparison with available data.

doi: 10.1103/PhysRevLett.111.122502
Citations: PlumX Metrics


2013LE18      Prog.Part.Nucl.Phys. 68, 158 (2013)

W.Leidemann, G.Orlandini

Modern ab initio approaches and applications in few-nucleon physics with A ≥ 4

doi: 10.1016/j.ppnp.2012.09.001
Citations: PlumX Metrics


2011BA50      J.Phys.:Conf.Ser. 312, 082011 (2011)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Three-nucleon forces effects in the electron scattering off 4He

NUCLEAR REACTIONS 4He(e, e'), E at 50-, 100, 150, 200, 250, 300, 350 MeV/c; calculated longitudinal response function using full four-body continuum dynamics via Lorentz integral transform. Compared with data.

doi: 10.1088/1742-6596/312/4/082011
Citations: PlumX Metrics


2011EF01      Phys.Rev. C 83, 057001 (2011)

V.D.Efros, W.Leidemann, G.Orlandini, E.L.Tomusiak

Frame dependence of 3He transverse (e, e') response functions at intermediate momentum transfers

NUCLEAR REACTIONS 3H(e, e'), E at 500-700 MeV/c; analyzed frame dependence of transverse response function using two-fragment model. relativistic effects, realistic NN- and NNN-forces.

doi: 10.1103/PhysRevC.83.057001
Citations: PlumX Metrics


2011LE02      Few-Body Systems 49, 71 (2011)

W.Leidemann, Vi.D.Efros, G.Orlandini, E.L.Tomusiak

Inclusive Electron Scattering Response Functions of 3He

doi: 10.1007/s00601-010-0114-8
Citations: PlumX Metrics


2011OR03      J.Phys.:Conf.Ser. 312, 092049 (2011)

G.Orlandini, N.Barnea, W.Leidemann

The effective interaction hyperspherical harmonics method for non-local potentials

NUCLEAR STRUCTURE 6He, 6Li; calculated mass excess, binding energy using EIHH (effective interaction hyperspherical harmonics).

doi: 10.1088/1742-6596/312/9/092049
Citations: PlumX Metrics


2010BA18      Phys.Rev. C 81, 064001 (2010)

N.Barnea, W.Leidemann, G.Orlandini

Hyperspherical effective interaction for nonlocal potentials

NUCLEAR STRUCTURE 4,6He, 6Li; calculated rms radii, ground-state energy using effective interaction hyperspherical-harmonics model and an effective-field-theory nucleon-nucleon potential model (Idaho-N3LO).

doi: 10.1103/PhysRevC.81.064001
Citations: PlumX Metrics


2010EF01      Phys.Rev. C 81, 034001 (2010)

V.D.Efros, W.Leidemann, G.Orlandini, E.L.Tomusiak

Improved transverse (e, e') response function of 3He at intermediate momentum transfers

NUCLEAR REACTIONS 3He(e, e'), E at 400-700 MeV/c; calculated transverse response functions using one-photon exchange approximation and AV18 NN potential and the UIX 3NF as the nuclear force in active nucleon Breit (ANB) frame. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.034001
Citations: PlumX Metrics


2009BA13      Phys.Rev.Lett. 102, 162501 (2009)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Role of the Final-State Interaction and Three-Body Force on the Longitudinal Response Function of 4He

doi: 10.1103/PhysRevLett.102.162501
Citations: PlumX Metrics


2009BA54      Phys.Rev. C 80, 064001 (2009)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Search for three-nucleon force effects on the longitudinal response function of 4He

NUCLEAR REACTIONS 4He(e, e'), E at 50-500 MeV/c; calculated longitudinal response functions, isovector and isoscalar multipole strength distribution, and Coulomb sum rule (CSR) using the Argonne V18 nucleon-nucleon interaction and three-nucleon force models. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.064001
Citations: PlumX Metrics


2008DE15      Phys.Rev. C 77, 044007 (2008)

S.Della Monaca, V.D.Efros, A.Khugaev, W.Leidemann, G.Orlandini, E.L.Tomusiak, L.P.Yuan

Transverse electron scattering response function of 3He

NUCLEAR REACTIONS 3He(e, e), E=250-500 MeV/c; calculated transverse response function, meson exchange currents.

doi: 10.1103/PhysRevC.77.044007
Citations: PlumX Metrics


2007BA48      Phys.Rev. C 76, 014003 (2007)

S.Bacca, H.Arenhovel, N.Barnea, W.Leidemann, G.Orlandini

Inclusive electron scattering off 4He

doi: 10.1103/PhysRevC.76.014003
Citations: PlumX Metrics


2007BA51      Nucl.Phys. A790, 360c (2007)

S.Bacca, H.Arenhovel, N.Barnea, W.Leidemann, G.Orlandini

Inclusive electron scattering off 4He

NUCLEAR REACTIONS 4He(e, e'), E not given; calculated longitudinal and transverse response functions. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.03.065
Citations: PlumX Metrics


2007OR05      Nucl.Phys. A790, 368c (2007)

G.Orlandini, S.Bacca, N.Barnea, W.Leidemann

Test of J-matrix inverse scattering potentials on photonuclear reactions of A=2, 3, 4 nuclei

NUCLEAR REACTIONS 2,3H, 3,4He(γ, X), E=2-100 MeV; calculated total photoabsorption σ. J-matrix inverse scattering potential models. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.03.067
Citations: PlumX Metrics


2007QU02      Nucl.Phys. A790, 372c (2007)

S.Quaglioni, I.Stetcu, S.Bacca, B.R.Barrett, C.W.Johnson, P.Navratil, N.Barnea, W.Leidemann, G.Orlandini

Benchmark calculation of inclusive responses in the four-body nuclear system

NUCLEAR STRUCTURE 4He; calculated quadrupole response function. No-core shell model, effective interaction hyperspherical harmonic approach.

doi: 10.1016/j.nuclphysa.2007.03.068
Citations: PlumX Metrics


2007ST05      Nucl.Phys. A785, 307 (2007)

I.Stetcu, S.Quaglioni, S.Bacca, B.R.Barrett, C.W.Johnson, P.Navratil, N.Barnea, W.Leidemann, G.Orlandini

Benchmark calculation of inclusive electromagnetic responses in the four-body nuclear system

NUCLEAR STRUCTURE 4He; calculated ground-state energy, quadrupole and dipole response functions. No-core shell model, effective interaction hyperspherical harmonic approaches.

doi: 10.1016/j.nuclphysa.2006.12.047
Citations: PlumX Metrics


2006BA42      Few-Body Systems 39, 1 (2006)

N.Barnea, W.Leidemann, G.Orlandini, V.D.Efros, E.L.Tomusiak

On the Accuracy of Hyperspherical Harmonics Approaches to Photonuclear Reactions

doi: 10.1007/s00601-006-0152-4
Citations: PlumX Metrics


2006BA57      Phys.Rev. C 74, 034003 (2006)

N.Barnea, W.Leidemann, G.Orlandini

Test of J-matrix inverse scattering potentials on electromagnetic reactions of few-nucleon systems

NUCLEAR REACTIONS 2,3H, 3,4He(γ, X), E=2-140 MeV; calculated total photoabsorption σ. J-matrix inverse scattering potential models, comparison with data.

doi: 10.1103/PhysRevC.74.034003
Citations: PlumX Metrics


2006EF01      Bull.Rus.Acad.Sci.Phys. 70, 308 (2006)

V.D.Efros, W.Leidemann, G.Orlandini, E.L.Tomusiak

Allowance for relativistic effects in (e, e') response functions

NUCLEAR REACTIONS 3He(e, e'), E ≈ 50-400 MeV; analyzed response functions, relativistic effects. Various approaches discussed.


2006GA12      Phys.Rev.Lett. 96, 112301 (2006)

D.Gazit, S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Photoabsorption on 4He with a Realistic Nuclear Force

NUCLEAR REACTIONS 4He(γ, X), E ≈ 20-140 MeV; calculated total photoabsorption σ; deduced three-nucleon force effects. Realistic nucleon-nucleon potentials, comparison with data.

NUCLEAR STRUCTURE 4He; calculated binding energy, radius.

doi: 10.1103/PhysRevLett.96.112301
Citations: PlumX Metrics


2006GA39      Phys.Rev.C 74, 061001 (2006)

D.Gazit, N.Barnea, S.Bacca, W.Leidemann, G.Orlandini

Photonuclear sum rules and the tetrahedral configuration of 4He

NUCLEAR STRUCTURE 4He; calculated photonuclear sum rules, possible deviation from tetrahedral symmetry. Photodisintegration, ab initio calculations.

doi: 10.1103/PhysRevC.74.061001
Citations: PlumX Metrics


2005EF02      Phys.Rev. C 72, 011002 (2005)

V.D.Efros, W.Leidemann, G.Orlandini, E.L.Tomusiak

Improved (e, e') response functions at intermediate momentum transfers: The 3He case

NUCLEAR REACTIONS 3He(e, e'), E ≈ 50-350 MeV; calculated response functions vs momentum transfer. Frame dependence, realistic NN and NNN forces. Comparison with data.

doi: 10.1103/PhysRevC.72.011002
Citations: PlumX Metrics


2005QU04      Phys.Rev. C 72, 064002 (2005)

S.Quaglioni, V.D.Efros, W.Leidemann, G.Orlandini

4He(e, e'p)3H reaction with full final-state interactions

NUCLEAR REACTIONS 4He(e, e'p), E=high; calculated longitudinal response. Comparison with data.

doi: 10.1103/PhysRevC.72.064002
Citations: PlumX Metrics


2004BA44      Phys.Rev. C 69, 057001 (2004)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Effect of P-wave interaction in 6He and 6Li photoabsorption

NUCLEAR REACTIONS 6He, 6Li(γ, X), E=0-100 MeV; calculated total photoabsorption σ, contribution from P-wave interaction. Lorentz integral transform method, comparison with data.

doi: 10.1103/PhysRevC.69.057001
Citations: PlumX Metrics


2004BA66      Few-Body Systems 34, 127 (2004)

N.Barnea, S.Bacca, W.Leidemann, G.Orlandini

Photodisintegration of Light Nuclei

NUCLEAR REACTIONS 6He, 6Li(γ, X), E=0-100 MeV; calculated photoabsorption σ. Lorentz integral transform method.

doi: 10.1007/s00601-004-0034-6
Citations: PlumX Metrics


2004BA94      Phys.Lett. B 603, 159 (2004)

S.Bacca, H.Arenhovel, N.Barnea, W.Leidemann, G.Orlandini

Ab initio calculation of 7Li photodisintegration

NUCLEAR REACTIONS 7Li(γ, X), E=threshold-100 MeV; calculated photoabsorption σ. Microscopic approach, comparison with data.

doi: 10.1016/j.physletb.2004.10.025
Citations: PlumX Metrics


2004BB02      Few-Body Systems 35, 155 (2004)

N.Barnea, V.D.Efros, W.Leidemann, G.Orlandini

Incorporation of Three-Nucleon Force in the Effective-Interaction Hyperspherical-Harmonic Approach

NUCLEAR STRUCTURE 3H, 3He; calculated binding energies, radii. Three-nucleon force, comparison with previous results.

doi: 10.1007/s00601-004-0066-y
Citations: PlumX Metrics


2004EF01      Phys.Rev. C 69, 044001 (2004)

V.D.Efros, W.Leidemann, G.Orlandini, E.L.Tomusiak

Longitudinal electron scattering response functions of 3H and 3He

NUCLEAR STRUCTURE 3H, 3He; calculated binding energies, radii, electron scattering longitudinal response functions, three-nucleon force effects.

doi: 10.1103/PhysRevC.69.044001
Citations: PlumX Metrics


2004LE19      Nucl.Phys. A737, 231 (2004)

W.Leidemann, S.Bacca, N.Barnea, G.Orlandini

Effective Interaction Method for Hyperspherical Harmonics

doi: 10.1016/j.nuclphysa.2004.03.081
Citations: PlumX Metrics


2004OR02      Nucl.Phys. A737, 210 (2004)

G.Orlandini

Electromagnetic break-up of nuclei with A = 3 - 7

NUCLEAR REACTIONS 4He(γ, n), E=20-120 MeV; 3H, 3,6He, 6,7Li(γ, X), E ≈ 0-100 MeV; compiled, analyzed σ measurement and calculation. Lorentz integral transform method.

doi: 10.1016/j.nuclphysa.2004.03.066
Citations: PlumX Metrics


2004QU02      Phys.Rev. C 69, 044002 (2004)

S.Quaglioni, W.Leidemann, G.Orlandini, N.Barnea, V.D.Efros

Two-body photodisintegration of 4He with full final state interaction

NUCLEAR REACTIONS 4He(γ, p), (γ, n), E=20-120 MeV; calculated σ, final state interaction effects. Comparison with data.

doi: 10.1103/PhysRevC.69.044002
Citations: PlumX Metrics


2003BA37      Phys.Rev. C 67, 054003 (2003)

N.Barnea, W.Leidemann, G.Orlandini

Improved effective interaction for the hyperspherical formalism

NUCLEAR STRUCTURE 4He, 6Li; calculated binding energies. Improved effective interaction, hyperspherical formalism, three-body forces.

doi: 10.1103/PhysRevC.67.054003
Citations: PlumX Metrics


2003MA87      Few-Body Systems 33, 259 (2003)

M.A.Marchisio, N.Barnea, W.Leidemann, G.Orlandini

Efficient Method for Lorentz Integral Transforms of Reaction Cross Sections

NUCLEAR REACTIONS 4He(γ, X), (γ, n), E=21.58 MeV; calculated Lorentz integral transforms for photoabsorption and photodisintegration σ.

doi: 10.1007/s00601-003-0017-z
Citations: PlumX Metrics


2003RE19      Eur.Phys.J. A 17, 589 (2003)

C.Reiss, W.Leidemann, G.Orlandini, E.L.Tomusiak

Application of the Lorentz-transform technique to meson photoproduction

NUCLEAR REACTIONS 2H(γ, π+), E=0-30 MeV; calculated σ, response functions. Lorentz integral transform technique, comparison with data.

doi: 10.1140/epja/i2003-10027-1
Citations: PlumX Metrics


2002BA70      Phys.Rev.Lett. 89, 052502 (2002)

S.Bacca, M.A.Marchisio, N.Barnea, W.Leidemann, G.Orlandini

Microscopic Calculation of Six-Body Inelastic Reactions with Complete Final State Interaction: Photoabsorption of 6He and 6Li

NUCLEAR REACTIONS 6He, 6Li(γ, X), E=0-100 MeV; calculated total σ. Lorentz integral transform method, full six-nucleon final state interaction, comparison with data.

NUCLEAR STRUCTURE 6He, 6Li; calculated binding energies, radii.

doi: 10.1103/PhysRevLett.89.052502
Citations: PlumX Metrics


2002GO24      Nucl.Phys. A707, 365 (2002)

J.Golak, R.Skibinski, W.Glockle, H.Kamada, A.Nogga, H.Witala, V.D.Efros, W.Leidemann, G.Orlandini, E.L.Tomusiak

Benchmark Calculation of the Three-Nucleon Photodisintegration

NUCLEAR REACTIONS 3H, 3He(γ, X), E < 140 MeV; calculated photoabsorption and photodisintegration σ. Fadeev equations and Lorentz integral transform method. Comparison with data.

doi: 10.1016/S0375-9474(02)00989-2
Citations: PlumX Metrics


2001BA40      Phys.Rev. C63, 057002 (2001)

N.Barnea, V.D.Efros, W.Leidemann, G.Orlandini

Total 4He Photoabsorption Cross Section Reexamined: Correlated versus effective interaction hyperspherical harmonics

NUCLEAR REACTIONS 4He(γ, X), E=20-35 MeV; calculated total photoabsorption σ. Comparison of hyperspherical harmonics expansions.

doi: 10.1103/PhysRevC.63.057002
Citations: PlumX Metrics


2001BA81      Nucl.Phys. A693, 565 (2001)

N.Barnea, W.Leidemann, G.Orlandini

State-Dependent Effective Interaction for the Hyperspherical Formalism with Noncentral Forces

NUCLEAR STRUCTURE 3H, 4He; calculated binding energies, radii. Hyperspherical effective interaction method.

doi: 10.1016/S0375-9474(01)00794-1
Citations: PlumX Metrics


2001EF01      Nucl.Phys. A684, 457c (2001)

V.D.Efros, W.Leidemann, G.Orlandini, E.L.Tomusiak

Photodisintegration of Three-Body Nuclei with Realistic Interactions and Effects of 3N Forces

NUCLEAR REACTIONS 3H, 3He(γ, X), E=0-30 MeV; calculated total photoabsorption σ; deduced 3N force contribution. Comparisons with data.

doi: 10.1016/S0375-9474(01)00503-6
Citations: PlumX Metrics


2001EF02      Yad.Fiz. 64, No 3, 536 (2001); Phys.Atomic Nuclei 64, 482 (2001)

V.D.Efros, W.Leidemann, G.Orlandini

Electromagnetic Response Functions of Few-Nucleon Systems

NUCLEAR REACTIONS 4He(e, e'), R ≈ 20-320 MeV; calculated longitudinal response functions. 3H, 3,4He(γ, X), E=20-140 MeV; calculated photoabsorption σ; deduced role of final state interactions, sensitivity to nuclear dynamics. Comparisons with data.

doi: 10.1134/1.1358473
Citations: PlumX Metrics


2001EF03      Nucl.Phys. A689, 421c (2001)

V.D.Efros, W.Leidemann, G.Orlandini, E.L.Tomusiak

Photodisintegration of Trinucleons with Realistic Interactions and Effects of NNN Forces

NUCLEAR REACTIONS 3H, 3He(γ, X), E=5-140 MeV; calculated total photoabsorption σ, three-nucleon force effects.

doi: 10.1016/S0375-9474(01)00869-7
Citations: PlumX Metrics


2001KA47      Phys.Rev. C64, 044001 (2001)

H.Kamada, A.Nogga, W.Glockle, E.Hiyama, M.Kamimura, K.Varga, Y.Suzuki, M.Viviani, A.Kievsky, S.Rosati, J.Carlson, S.C.Pieper, R.B.Wiringa, P.Navratil, B.R.Barrett, N.Barnea, W.Leidemann, G.Orlandini

Benchmark Test Calculation of a Four-Nucleon Bound State

NUCLEAR STRUCTURE A=4; calculated four-nucleon bound state energy, radius, related features. Several approaches compared.

doi: 10.1103/PhysRevC.64.044001
Citations: PlumX Metrics


2001OR01      Nucl.Phys. A686, 261 (2001)

G.Orlandini, T.G.Steele, D.Harnett

Gaussian Sum-Rules and Prediction of Resonance Properties

doi: 10.1016/S0375-9474(00)00512-1
Citations: PlumX Metrics


2000BA39      Phys.Rev. C61, 054001 (2000)

N.Barnea, W.Leidemann, G.Orlandini

State Dependent Effective Interaction for the Hyperspherical Formalism

NUCLEAR STRUCTURE 3H, 4,5,6He, 6Li; calculated binding energies, radii. Hyperspherical effective interaction, comparisons with other models.

doi: 10.1103/PhysRevC.61.054001
Citations: PlumX Metrics


2000EF03      Phys.Lett. 484B, 223 (2000)

V.D.Efros, W.Leidemann, G.Orlandini, E.L.Tomusiak

Photodisintegration of Three-Body Nuclei with Realistic 2N and 3N Forces

NUCLEAR REACTIONS 3H, 3He(γ, X), E=5-140 MeV; calculated total photoabsorption σ; deduced three-nucleon force contributions. Several models compared. Comparison with data.

doi: 10.1016/S0370-2693(00)00656-0
Citations: PlumX Metrics


1999BA37      Nucl.Phys. A650, 427 (1999)

N.Barnea, W.Leidemann, G.Orlandini

Ground State Wave Functions in the Hyperspherical Formalism for Nuclei with A > 4

NUCLEAR STRUCTURE 6Li, 8Be, 12C; calculated binding energies. Hyperspherical formalism, several potentials compared.

doi: 10.1016/S0375-9474(99)00113-X
Citations: PlumX Metrics


1999BA81      Fizika(Zagreb) B8, 181 (1999)

N.Barnea, W.Leidemann, G.Orlandini

Hyperspherical Group State Wave Functions for Nuclei with A > 4

NUCLEAR STRUCTURE 6Li, 8Be; calculated binding energies. Comparison between different potentials and with other calculations. Hyperspherical harmonic wave functions.


1999EF05      Few-Body Systems 26, 251 (1999)

V.D.Efros, W.Leidemann, G.Orlandini

Electromagnetic Few-Body Response Functions with the Lorentz Integral Transform Method

NUCLEAR REACTIONS 3H(γ, X), E < 130 MeV; calculated photoabsorption σ. 4He(e, e'X), E not given; calculated longitudinal response function. Lorentz integral transform method.

doi: 10.1007/s006010050118
Citations: PlumX Metrics


1999LE41      Fizika(Zagreb) B8, 135 (1999)

W.Leidemann, V.D.Efros, G.Orlandini, E.L.Tomusiak

Electromagnetic Few-Body Response Functions with the Lorentz Integral Transform

NUCLEAR REACTIONS 3He(γ, X), E<140 MeV; 4He(γ, X), E<35 MeV; calculated photoabsorption σ. 4He(e, e'), E not given; calculated longitudinal response function. Lorentz integral transform method. Comparison with data.


1999OR05      Nucl.Phys. A649, 21c (1999)

G.Orlandini, V.D.Efros, W.Leidemann

Fully Microscopic Calculations of Giant Resonance in Few-Body Systems

NUCLEAR REACTIONS 3,4He(γ, X), E < 140 MeV; calculated total photodisintegration σ; deduced resonance features. Lorentz integral transform method. Comparisons with data.

doi: 10.1016/S0375-9474(99)00033-0
Citations: PlumX Metrics


1998BE24      Nucl.Phys. A634, 463 (1998)

J.Bernabeu, D.Gomez Dumm, G.Orlandini

Electric Polarizability of Nuclei from a Longitudinal Sum Rule

doi: 10.1016/S0375-9474(98)00166-3
Citations: PlumX Metrics


1998EF02      Nucl.Phys. A631, 658c (1998)

V.D.Efros, W.Leidemann, G.Orlandini

Method of Integral Transforms for Calculating Few-Body Reactions

doi: 10.1016/S0375-9474(98)00086-4
Citations: PlumX Metrics


1998EF07      Phys.Rev. C58, 582 (1998)

V.D.Efros, W.Leidemann, G.Orlandini

Exact 4He Spectral Function in a Semirealistic NN Potential Model

NUCLEAR REACTIONS 4He(e, e'), E not given; calculated longitudinal response vs momentum transfer. Momentum distribution approximations in spectral function calculation.

doi: 10.1103/PhysRevC.58.582
Citations: PlumX Metrics


1997EF01      Phys.Rev.Lett. 78, 432 (1997)

V.D.Efros, W.Leidemann, G.Orlandini

Accurate Four-Body Response Function with Full Final State Interaction: Application to electron scattering off 4He

NUCLEAR REACTIONS 4He(e, e'), E not given; calculated response function. Full final state interaction used.

doi: 10.1103/PhysRevLett.78.432
Citations: PlumX Metrics


1997EF04      Phys.Rev.Lett. 78, 4015 (1997); Erratum Phys.Rev.Lett. 80, 1570 (1998)

V.D.Efros, W.Leidemann, G.Orlandini

Is There a Pronounced Giant Dipole Resonance in 4He ( Question )

NUCLEAR REACTIONS 4He(γ, X), E=20-35 MeV; calculated σ(E). 4He deduced pronounced GDR, (γ, np) channel role. Four nucleon calculation, final state interactions.

doi: 10.1103/PhysRevLett.78.4015
Citations: PlumX Metrics


1997EF05      Phys.Lett. 408B, 1 (1997)

V.D.Efros, W.Leidemann, G.Orlandini

Photodistintegration of the Three-Nucleon Systems and Their Polarizabilities

NUCLEAR REACTIONS 3H, 3He(γ, X), E=5-150 MeV; analyzed absorption σ(E); deduced sum rule. 3H, 3He deduced polarizability. Lorentz integral transform method, several potentials compared.

doi: 10.1016/S0370-2693(97)00772-7
Citations: PlumX Metrics


1996BA56      Phys.Rev. C54, 1766 (1996)

D.Babusci, V.Bellini, M.Capogni, L.Casano, B.Curro Dossi, A.D'Angelo, D.A.De Lima, F.Ghio, B.Girolami, L.Hu, W.Leidemann, F.Lugaresi, D.Moricciani, G.Orlandini, P.Picozza, C.Schaerf

Quasideutron Effect with a Polarized γ(pol)-Ray Beam

NUCLEAR REACTIONS 28Si(polarized γ, np), E=50-75 MeV; measured Eγ, Iγ, σ(θp, θn), photon polarization asymmetry; deduced quasideuteron absorbtion mechanism.

doi: 10.1103/PhysRevC.54.1766
Citations: PlumX Metrics


1995MA66      Phys.Rev. C52, 1778 (1995)

S.Martinelli, H.Kamada, G.Orlandini, W.Glockle

Longitudinal Response Functions of 3He and 3H by Lorentz Kernel Transformations

NUCLEAR STRUCTURE 3H, 3He; calculated longitudinal response functions. Lorentz kernel transformations approach.

doi: 10.1103/PhysRevC.52.1778
Citations: PlumX Metrics


1994EF03      Phys.Lett. 338B, 130 (1994)

V.D.Efros, W.Leidemann, G.Orlandini

Response Functions from Integral Transforms with a Lorentz Kernel

doi: 10.1016/0370-2693(94)91355-2
Citations: PlumX Metrics


1994LE16      Phys.Rev. C50, 630 (1994)

W.Leidemann, G.Orlandini, M.Traini, E.L.Tomusiak

Two-Body Correlations from (e, e'd) Reactions: 4He(e, e'd)2H as a Test Case

NUCLEAR REACTIONS 4He(e, e'd), E not given; calculated structure functions; deduced short-range, tensor correlations role.

doi: 10.1103/PhysRevC.50.630
Citations: PlumX Metrics


1993TR04      Phys.Rev. C48, 172 (1993)

M.Traini, G.Orlandini, W.Leidemann

Longitudinal Response Functions of Heavier Nuclei

NUCLEAR REACTIONS 208Pb, 238U, 40Ca, 56Fe(e, e'), E not given; calculated longitudinal response functions. Hartree-Fock approach, nucleon-nucleon correlation from nuclear matter calculations.

doi: 10.1103/PhysRevC.48.172
Citations: PlumX Metrics


1992LE05      Phys.Lett. 279B, 212 (1992)

W.Leidemann, G.Orlandini, M.Traini, E.L.Tomusiak

Final State Effects in the 4He(e, e'D)D Reaction

NUCLEAR REACTIONS 4He(e, e'd), E not given; calculated σ(θ(e'), E(e'), θd) vs four-momentum transfer. Plane wave approximation, final state effects, correlated, harmonic oscillator basis wave functions for 4He.

doi: 10.1016/0370-2693(92)90381-D
Citations: PlumX Metrics


1991LE14      Phys.Rev. C44, 1705 (1991)

W.Leidemann, G.Orlandini, M.Traini

Coulomb Sum Rule in Heavier Nuclei

NUCLEAR STRUCTURE 16O, 60Ni, 238U; A=16-56; A=90-238; calculated Coulomb sum rule. Mean field effects, short range correlations.

doi: 10.1103/PhysRevC.44.1705
Citations: PlumX Metrics


1990BH04      Phys.Rev. C42, 1867 (1990)

R.K.Bhaduri, W.Leidemann, G.Orlandini, E.L.Tomusiak

rms Radius of the Deuteron

NUCLEAR STRUCTURE 2H; calculated rms radius; deduced linear relationship to triplet scattering length.

doi: 10.1103/PhysRevC.42.1867
Citations: PlumX Metrics


1990LE04      Nucl.Phys. A506, 447 (1990)

W.Leidemann, G.Orlandini

A Model Study of np Tensor Correlation Effects on the Electron Scattering Response Functions

NUCLEAR STRUCTURE 2H; calculated form factors, response functions. Tensor n-p correlation model study.

doi: 10.1016/0375-9474(90)90197-T
Citations: PlumX Metrics


1988ER05      Z.Phys. A331, 369 (1988)

M.Ericson, W.Leidemann, G.Orlandini

Proton-Neutron Correlations and the Longitudinal Nuclear Response

NUCLEAR STRUCTURE 12C, 40Ca; calculated longitudinal response function; deduced p-n correlations role.


1986OR03      Phys.Lett. 179B, 201 (1986)

G.Orlandini, M.Traini, M.Ericson

Spin-Dependent Isoscalar Response Functions and Interpretation of Polarization-Transfer Measurements

NUCLEAR REACTIONS 4He, 16O, 40Ca(p, p'), E not given; calculated isoscalar, isovector spin-isospin response functions; deduced model parameters.

doi: 10.1016/0370-2693(86)90566-6
Citations: PlumX Metrics


1985OR01      Phys.Rev. C31, 280 (1985)

G.Orlandini, M.Traini

Coulomb Sum Rule: Systematic comparison with experimental data

NUCLEAR REACTIONS 40,48Ca, 12C, 54Fe(e, e'), E not given; analyzed data; deduced Coulomb sum rules. Finite nuclei, dynamical correlations.

doi: 10.1103/PhysRevC.31.280
Citations: PlumX Metrics


1985OR02      Phys.Rev. C32, 320 (1985)

G.Orlandini, M.Traini

Electron Scattering Transverse Sum Rule: Tentative comparison with experimental data

NUCLEAR REACTIONS 40,48Ca, 56Fe(e, e), E not given; calculated transverse sum rule. Dynamical correlations.

doi: 10.1103/PhysRevC.32.320
Citations: PlumX Metrics


1985TR03      Z.Phys. A321, 479 (1985)

M.Traini, G.Orlandini

Nucleon Momentum Distributions in Doubly Closed Shell Nuclei

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated nucleon momentum distribution, form factors. Phenomenological model, dynamical short range, tensor correlation effects.

doi: 10.1007/BF01411983
Citations: PlumX Metrics


1984DE02      Phys.Rev. C29, 777 (1984)

F.Dellagiacoma, R.Ferrari, G.Orlandini, M.Traini

Dynamical Correlations in Inelastic Electron Scattering Sum Rules

NUCLEAR REACTIONS 12C, 16O(e, e'), E not given; calculated longitudinal, transverse scattering sum rules; deduced dynamical correlations role. Induced nucleon-nucleon repulsive short range, tensor correlations.

doi: 10.1103/PhysRevC.29.777
Citations: PlumX Metrics


1984FE09      Nuovo Cim. 81A, 696 (1984)

R.Ferrari, G.Orlandini, M.Traini

Role of Tensor Correlations in the Longitudinal and Transverse Nuclear Responses to Isovector Spin Probes

NUCLEAR STRUCTURE 16O; calculated spin, isospin longitudinal, transverse response functions.

doi: 10.1007/BF02724221
Citations: PlumX Metrics


1984OR01      Phys.Lett. 134B, 143 (1984)

G.Orlandini, M.Traini, R.Ferrari, R.Leonardi

Tensor Correlation Effects in the Energy Weighted Sum Rule for Nuclear Spin-Flip Excitation Operators

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated Gamow-Teller, M1 excitation EWSR; deduced tensor correlation effects. Phenomenological approach, correlated ground state.

doi: 10.1016/0370-2693(84)90658-0
Citations: PlumX Metrics


1983DE01      Nucl.Phys. A393, 95 (1983)

F.Dellagiacoma, G.Orlandini, M.Traini

Dynamical Correlations in Finite Nuclei: A simple method to study tensor effects

NUCLEAR REACTIONS 4He(e, e), E not given; calculated form factor. Dynamical correlations.

NUCLEAR STRUCTURE 4He; calculated one body density, momentum distribution, photonuclear enhancement factor. Dynamical correlations.

doi: 10.1016/0375-9474(83)90066-0
Citations: PlumX Metrics


1983OR05      Nuovo Cim. 76A, 246 (1983)

G.Orlandini, M.Traini, F.Dellagiacoma

Role of Tensor Correlations in Inclusive Electron Scattering Processes

NUCLEAR REACTIONS 4He, 12C(e, e), (e, e'), E not given; calculated form factors. 16O(e, e), (e, e'), E not given; calculated exchange current contributions; deduced tensor correlations role in spin-isospin excitations. Sum rule approach, dynamical correlations.

doi: 10.1007/BF02833723
Citations: PlumX Metrics


1982LI03      Nucl.Phys. A373, 502 (1982)

E.Lipparini, G.Orlandini

E1 Density Transitions from the Low-Energy Deuteron Photodisintegration

NUCLEAR REACTIONS 2H(γ, X), E=low; calculated E1 form factor. Bethe-Peierls method, deuteron disintegration.

doi: 10.1016/0375-9474(82)90547-4
Citations: PlumX Metrics


1982OR07      Phys.Lett. 119B, 21 (1982)

G.Orlandini, S.Stringari, M.Traini

Isoscalar Transition Density for the Low-Lying Dipole States

NUCLEAR STRUCTURE 16O, 40Ca; calculated isoscalar dipole state EWSR, transition density. Microscopic model, center of mass motion.

doi: 10.1016/0370-2693(82)90234-9
Citations: PlumX Metrics


1980TO11      Nucl.Phys. A348, 157 (1980)

V.Tornow, G.Orlandini, M.Traini, D.Drechsel, H.Arenhovel

A Study of Electronuclear Sum Rules in Light and Medium-Weight Nuclei

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated dipole polarizabilities, electronuclear EWSR. Realistic, effective forces, exact, RPA wave functions.

doi: 10.1016/0375-9474(80)90332-2
Citations: PlumX Metrics


1979TR03      Nucl.Phys. A318, 162 (1979)

M.Traini, E.Lipparini, G.Orlandini, S.Stringari

Magnetic Susceptibility and M1 Transitions in 208Pb

NUCLEAR STRUCTURE 208Pb; calculated energy-weighted, inverse energy-weighted sum rules; deduced M1 strengths, excitation energies.

doi: 10.1016/0375-9474(79)90477-9
Citations: PlumX Metrics


Back to query form