NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = N.Barnea

Found 85 matches.

Back to query form

2023BA26      Phys.Lett. B 844, 138078 (2023)

M.Bagnarol, M.Schafer, B.Bazak, N.Barnea

Five-body calculation of s-wave n-4He scattering at next-to-leading order pionless effective field theory

NUCLEAR REACTIONS 4He(n, n), E<6 MeV; calculated five-body s-wave scattering within leading order and next-to-leading order (NLO) pionless effective field theory using an harmonic oscillator trap technique, phase shifts, scattering length and effective range. Comparison with experimental data.

doi: 10.1016/j.physletb.2023.138078
Citations: PlumX Metrics

2023BE07      Phys.Rev. C 107, 064306 (2023)

S.Beck, R.Weiss, N.Barnea

Nuclear short-range correlations and the zero-energy eigenstates of the Schrodinger equation

doi: 10.1103/PhysRevC.107.064306
Citations: PlumX Metrics

2023KE04      Phys.Rev.Lett. 130, 152502 (2023)

S.Kegel, P.Achenbach, S.Bacca, N.Barnea, J.Bericic, D.Bosnar, L.Correa, M.O.Distler, A.Esser, H.Fonvieille, I.Friscic, M.Heilig, P.Herrmann, M.Hoek, P.Klag, T.Kolar, W.Leidemann, H.Merkel, M.Mihovilovic, J.Muller, U.Muller, G.Orlandini, J.Pochodzalla, B.S.Schlimme, M.Schoth, F.Schulz, C.Sfienti, S.Sirca, R.Spreckels, Y.Stottinger, M.Thiel, A.Tyukin, T.Walcher, A.Weber

Measurement of the α-Particle Monopole Transition Form Factor Challenges Theory: A Low-Energy Puzzle for Nuclear Forces?

NUCLEAR REACTIONS 4He(e-, e-'), E=450, 690, 795 MeV; measured reaction products; deduced missing mass spectrum, monopole transition form factor, resonance parameters, modern nuclear forces, including those derived within chiral effective field theory fail to reproduce the excitation of the α particle. The Mainz Microtron MAMI.

doi: 10.1103/PhysRevLett.130.152502
Citations: PlumX Metrics

2022AK02      Phys.Rev. C 105, 024301 (2022)

K.Akdogan, D.Layh, I.Weinberger, J.Simonis, N.Barnea, S.Bacca

Removing center of mass effects in response function and sum rule calculations based on the harmonic oscillator basis

doi: 10.1103/PhysRevC.105.024301
Citations: PlumX Metrics

2022SC02      Phys.Rev. C 105, 015202 (2022)

M.Schafer, B.Bazak, N.Barnea, A.Gal, J.Mares

Consequences of increased hypertriton binding for s-shell Λ-hypernuclear systems

NUCLEAR STRUCTURE 3,5H; analyzed spin-singlet and spin-triplet scattering lengths for 3H hypernucleus from Λp data, binding energies for 3H and 5H hypernuclei for several different interaction strengths, ratio of the hypertriton excited state lifetime to the free Λ lifetime. Pionless effective field theory (EFT) approach at leading order for s-shell hypernuclei, constrained by the binding energies of the 0+ and 1+ states of 4H hypernucleus. Comparison with experimental binding energies from emulsion data, and from STAR collaboration. Relevance to anticipated measurements of the Λd correlation function at ALICE2CERN and new experiments at MAMI and J-PARC, JLAB, and ELPH facilities for more precise determination of binding energy of hypertriton, and its excited state.

doi: 10.1103/PhysRevC.105.015202
Citations: PlumX Metrics

2022SC09      Phys.Rev. C 106, L031001 (2022)

M.Schafer, N.Barnea, A.Gal

In-medium Λ isospin impurity from charge symmetry breaking in the 4ΛH-4ΛHe mirror hypernuclei

NUCLEAR STRUCTURE 4H, 4He; calculated charge symmetry breaking in the mirror hypernuclei, I = 1 admixture amplitude in the Λ hyperon, charge symmetry broken values of the ΛN scattering lengths. Pionless effective field theory using partially conserved baryon-baryon SU(3) flavor symmetry.

doi: 10.1103/PhysRevC.106.L031001
Citations: PlumX Metrics

2021BA02      Nucl.Phys. A1006, 122112 (2021)

N.Barnea, E.Friedman, A.Gal

On the width of the K-D atom ground state

ATOMIC PHYSICS 2H; calculated g.s. widths for K-D atom. Comparison with available data.

doi: 10.1016/j.nuclphysa.2020.122112
Citations: PlumX Metrics

2021SC07      Phys.Rev. C 103, 025204 (2021)

M.Schafer, B.Bazak, N.Barnea, J.Mares

Nature of the Λnn (Jπ = 1/2+, I=1) and 3ΛH*(Jπ = 3/2+, I=0) states

NUCLEAR STRUCTURE 3n, 3H; calculated energies of the bound states of Λnn and 3ΛH hyper nuclei, real and imaginary parts of the resonance energies and virtual states, trajectories of the nn resonance pole in a complex energy plane. 4H, 5He; calculated separation energies of hypernuclei. Pionless effective field theory at leading order, and stochastic variational method (SVM).

doi: 10.1103/PhysRevC.103.025204
Citations: PlumX Metrics

2021WE05      Phys.Rev. C 103, L031301 (2021)

R.Weiss, A.W.Denniston, J.R.Pybus, O.Hen, E.Piasetzky, A.Schmidt, L.B.Weinstein, N.Barnea

Extracting the number of short-range correlated nucleon pairs from inclusive electron scattering data

NUCLEAR REACTIONS 2H, 4He(e-, e-'), E at 50, 100, 150 MeV/c; calculated σ(E), σ(4He)/σ(d) ratio; deduced GCF parameter confidence intervals. 40,48Ca(e-, e-'), E not given; analyzed recent measurements of a2; deduced relative abundances of short-range correlated (SRC) nucleon pairs. Generalized contact formalism (GCF) with several nuclear interaction mode. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.L031301
Citations: PlumX Metrics

2020EL06      Phys.Rev. C 102, 044003 (2020)

M.Eliyahu, B.Bazak, N.Barnea

Extrapolating lattice QCD results using effective field theory

NUCLEAR STRUCTURE 2n, 2,3H, 4He; calculated binding energies as function of lattice size using pionless effective field theory; extrapolated the lattice results from finite to infinite volumes using nuclear effective field theory (EFT). Comparison with results of NPLQCD collaboration for pion mass of 806 MeV.

doi: 10.1103/PhysRevC.102.044003
Citations: PlumX Metrics

2020PY01      Phys.Lett. B 805, 135429 (2020)

J.R.Pybus, I.Korover, R.Weiss, A.Schmidt, N.Barnea, D.W.Higinbotham, E.Piasetzky, M.Strikman, L.B.Weinstein, O.Hen

Generalized contact formalism analysis of the 4He(e, e'pN) reaction

NUCLEAR REACTIONS 4He(e-, X), E not given; analyzed available data; deduced that kinematic distributions, such as the reconstructed pair opening angle, recoil neutron momentum distribution, and pair center of mass motion, as well as the measured missing energy, missing mass distributions, are all well reproduced by the Generalized Contact Formalism (GCF) calculations.

doi: 10.1016/j.physletb.2020.135429
Citations: PlumX Metrics

2019DI06      Phys.Rev. C 99, 034004 (2019)

N.N.Dinur, O.J.Hernandez, S.Bacca, N.Barnea, C.Ji, S.Pastore, M.Piarulli, R.B.Wiringa

Zemach moments and radii of 2, 3H and 3, 4He

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated Zemach electromagnetic moments, charge radii, ground-state wave-functions using various few-body methods, such as Numerov algorithm or the harmonic oscillator expansion method for A=2 nuclei, and Monte Carlo (VMC) and Green's function Monte Carlo (GFMC) methods, with hyperspherical harmonics (HH) expansions and momentum-space formulation (HH-p), and the effective interaction scheme in coordinate space (EIHH). Comparison with experimental values. Benchmarking of electromagnetic moments relevant to ongoing experimental efforts of muon-nucleus systems, and to muonic atom data measured by the CREMA collaboration at the Paul Scherrer Institute.

doi: 10.1103/PhysRevC.99.034004
Citations: PlumX Metrics

2019HE18      Phys.Rev. C 100, 064315 (2019)

O.J.Hernandez, C.Ji, S.Bacca, N.Barnea

Probing uncertainties of nuclear structure corrections in light muonic atoms

doi: 10.1103/PhysRevC.100.064315
Citations: PlumX Metrics

2018CO11      Phys.Rev.Lett. 121, 102502 (2018)

L.Contessi, N.Barnea, A.Gal

Resolving the Λ Hypernuclear Overbinding Problem in Pionless Effective Field Theory

NUCLEAR STRUCTURE 3,4H, 4,5He; calculated ground-state separation energies and excitation energies of s-shell hypernuclei.

doi: 10.1103/PhysRevLett.121.102502
Citations: PlumX Metrics

2018HE03      Phys.Lett. B 778, 377 (2018)

O.J.Hernandez, A.Ekstrom, N.N.Dinur, C.Ji, S.Bacca, N.Barnea

The deuteron-radius puzzle is alive: A new analysis of nuclear structure uncertainties

NUCLEAR STRUCTURE 2H; analyzed available data; deduced discrepancy between the calculated and the corresponding experimental deuteron radii.

doi: 10.1016/j.physletb.2018.01.043
Citations: PlumX Metrics

2018JI05      J.Phys.(London) G45, 093002 (2018)

C.Ji, S.Bacca, N.Barnea, O.J.Hernandez, N.N.Dinur

Ab initio calculation of nuclear-structure corrections in muonic atoms

NUCLEAR REACTIONS 1,2,3H, 3,4He(μ, X), E not given; calculated nuclear-structure corrections to the Lamb shift energy of muonic atoms.

doi: 10.1088/1361-6471/aad3eb
Citations: PlumX Metrics

2017BA44      Nucl.Phys. A968, 35 (2017)

N.Barnea, E.Friedman, A.Gal

Onset of η-meson binding in the He isotopes

NUCLEAR STRUCTURE 2,3H, 3,4He; calculated η-meson binding energy, Q using few-body stochastic variational method calculations with ηN potentials derived from coupled-channel models of the N*(1535) resonance and different NN central potentials. Compared with results of ηNNN and ηNNNN pionless effective field theory.

doi: 10.1016/j.nuclphysa.2017.07.021
Citations: PlumX Metrics

2017GA27      Acta Phys.Pol. B48, 1781 (2017)

A.Gal, N.Barnea, B.Bazak, E.Friedman

Onset of η-Nuclear Binding

NUCLEAR STRUCTURE 3,4He; calculated η-nuclear binding, Q of η-hypernuclei using energy-dependent η-nucleon potential.

doi: 10.5506/APhysPolB.48.1781
Citations: PlumX Metrics

2017KI06      Phys.Rev. C 96, 024001 (2017)

J.Kirscher, E.Pazy, J.Drachman, N.Barnea

Electromagnetic characteristics of A ≤ 3 physical and lattice nuclei

NUCLEAR STRUCTURE 3He, 2,3H; analyzed pion-mass dependence of magnetic moments, charge radii, and magnetic polarizabilities using pionless effective field theory (EFT) to experimental data and numerical lattice calculations.

doi: 10.1103/PhysRevC.96.024001
Citations: PlumX Metrics

2017WE13      Phys.Rev. C 96, 041303 (2017)

R.Weiss, N.Barnea

Contact formalism for coupled channels

doi: 10.1103/PhysRevC.96.041303
Citations: PlumX Metrics

2016HA27      Nat.Phys. 12, 186 (2016)

G.Hagen, A.Ekstrom, C.Forssen, G.R.Jansen, W.Nazarewicz, T.Papenbrock, K.A.Wendt, S.Bacca, N.Barnea, B.Carlsson, C.Drischler, K.Hebeler, M.Hjorth-Jensen, M.Miorelli, G.Orlandini, A.Schwenk, J.Simonis

Neutron and weak-charge distributions of the 48Ca nucleus

NUCLEAR STRUCTURE 48Ca; calculated neutron skin parameters, radii. Ab initio calculations.

doi: 10.1038/nphys3529
Citations: PlumX Metrics

2016MI19      Phys.Rev. C 94, 034317 (2016)

M.Miorelli, S.Bacca, N.Barnea, G.Hagen, G.R.Jansen, G.Orlandini, T.Papenbrock

Electric dipole polarizability from first principles calculations

NUCLEAR STRUCTURE 4He, 16,22O, 40Ca; calculated electric dipole polarizability, photoabsorption response functions. Coupled-cluster method with bound-state techniques, and using different interactions from chiral effective field theory. Comparison with experimental data. Relevance to radii of proton and neutron distributions.

doi: 10.1103/PhysRevC.94.034317
Citations: PlumX Metrics

2016WE05      Eur.Phys.J. A 52, 92 (2016)

R.Weiss, B.Bazak, N.Barnea

The generalized nuclear contact and its application to the photoabsorption cross-section

doi: 10.1140/epja/i2016-16092-3
Citations: PlumX Metrics

2015BA05      Phys.Rev.Lett. 114, 052501 (2015)

N.Barnea, L.Contessi, D.Gazit, F.Pederiva, U.van Kolck

Effective Field Theory for Lattice Nuclei

NUCLEAR STRUCTURE 3H, 3,4,5He, 5,6Li; calculated binding energies. Comparison with available data.

doi: 10.1103/PhysRevLett.114.052501
Citations: PlumX Metrics

2015BA08      Phys.Rev. C 91, 024303 (2015)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Examination of the first excited state of 4He as a potential breathing mode

NUCLEAR STRUCTURE 4He; calculated inelastic isoscalar monopole (InISM) strength distribution within a few-body ab initio approach, energy of the excited 0+ state, transition density between the ground state and the 0+ resonance state, transition form factor, q-dependence and sum rule. Lorentz integral transform and hyperspherical harmonics expansion. Focus on 0+ resonance. Discussed breathing mode.

doi: 10.1103/PhysRevC.91.024303
Citations: PlumX Metrics

2015KI10      Phys.Rev. C 92, 054002 (2015)

J.Kirscher, N.Barnea, D.Gazit, F.Pederiva, U.van Kolck

Spectra and scattering of light lattice nuclei from effective field theory

doi: 10.1103/PhysRevC.92.054002
Citations: PlumX Metrics

2015WE02      Phys.Rev.Lett. 114, 012501 (2015)

R.Weiss, B.Bazak, N.Barnea

Nuclear Neutron-Proton Contact and the Photoabsorption Cross Section

doi: 10.1103/PhysRevLett.114.012501
Citations: PlumX Metrics

2015WE15      Phys.Rev. C 92, 054311 (2015)

R.Weiss, B.Bazak, N.Barnea

Generalized nuclear contacts and momentum distributions

NUCLEAR STRUCTURE 4,6,8He, 6Li, 8Be, 10B; calculated matrix of contacts for particle pairs pp, nn, and pn; derived relations between the contact matrices and one-nucleon and two-nucleon momentum distributions, Levinger's constant, short-range correlations (SRCs). Generalization of contact formalism to nuclear systems. Tan's relations for the zero range model.

doi: 10.1103/PhysRevC.92.054311
Citations: PlumX Metrics

2014BA38      Few-Body Systems 55, 851 (2014)

B.Bazak, N.Barnea

Log-Periodic Oscillations in the Photo Response of Efimov Trimers

doi: 10.1007/s00601-014-0879-2
Citations: PlumX Metrics

2014BA40      Few-Body Systems 55, 1051 (2014)

N.Barnea, V.Efros, W.Leidemann, G.Orlandini, E.Tomusiak

Transverse (e, e') Response Functions for 4He

NUCLEAR REACTIONS 4He(E, E'), E=500 MeV; calculated transverse response function parameters.

doi: 10.1007/s00601-014-0826-2
Citations: PlumX Metrics

2014BA62      Phys.Rev. C 90, 064619 (2014)

S.Bacca, N.Barnea, G.Hagen, M.Miorelli, G.Orlandini, T.Papenbrock

Giant and pigmy dipole resonances in 4He, 16, 22O, and 40Ca from chiral nucleon-nucleon interactions

NUCLEAR REACTIONS 4He, 16,22O, 40Ca(γ, n), E not given; calculated dipole response functions using Lorentz integral transform combined with the CC method (LITCC), GDR and PDR, low-lying E1 strength in 22O, electric dipole polarizability in 40Ca. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.064619
Citations: PlumX Metrics

2014DE35      Few-Body Systems 55, 831 (2014)

S.Deflorian, N.Barnea, W.Leidemann, G.Orlandini

Nonsymmetrized Hyperspherical Harmonics with Realistic Potentials

doi: 10.1007/s00601-013-0781-3
Citations: PlumX Metrics

2014DI06      Phys.Rev. C 89, 064317 (2014)

N.N.Dinur, N.Barnea, C.Ji, S.Bacca

Efficient method for evaluating energy-dependent sum rules

NUCLEAR STRUCTURE 4He; calculated energy-dependent sum rule (EDSR) for unretarded E1 response. Comparison with other methods. Lorentz integral transform method and the Lanczos algorithm. Use in electroweak reactions.

doi: 10.1103/PhysRevC.89.064317
Citations: PlumX Metrics

2014DI11      Few-Body Systems 55, 997 (2014)

N.N.Dinur, N.Barnea, W.Leidemann

Theoretical Study of the 4He(γ, p)3H and 4He(γ, n)3He Reactions

NUCLEAR REACTIONS 4He(γ, p), (γ, n), E<40 MeV; calculated σ. ab initio methods.

doi: 10.1007/s00601-013-0754-6
Citations: PlumX Metrics

2014JI11      Few-Body Systems 55, 917 (2014)

C.Ji, N.N.Dinur, S.Bacca, N.Barnea

Nuclear Polarization Effects in Muonic Atoms

doi: 10.1007/s00601-014-0809-3
Citations: PlumX Metrics

2014OR05      Few-Body Systems 55, 907 (2014)

G.Orlandini, S.Bacca, N.Barnea, G.Hagen, M.Miorelli, T.Papenbrock

Coupling the Lorentz Integral Transform (LIT) and the Coupled Cluster (CC) Methods: A Way Towards Continuum Spectra of "Not-So-Few-Body" System

NUCLEAR REACTIONS 16O, 40Ca(γ, X), E=10-20 MeV; analyzed available data; deduced resonance parameters for the giant dipole resonance. LIT and CC calculations.

doi: 10.1007/s00601-013-0772-4
Citations: PlumX Metrics

2013BA04      Phys.Rev.Lett. 110, 042503 (2013)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Isoscalar Monopole Resonance of the Alpha Particle: A Prism to Nuclear Hamiltonians

NUCLEAR STRUCTURE 3H, 3,4He; calculated ground-state energies with N3LO and N2LO, transition form factors. Ab initio study.

doi: 10.1103/PhysRevLett.110.042503
Citations: PlumX Metrics

2013BA47      Phys.Rev.Lett. 111, 122502 (2013)

S.Bacca, N.Barnea, G.Hagen, G.Orlandini, T.Papenbrock

First Principles Description of the Giant Dipole Resonance in 16O

NUCLEAR STRUCTURE 16O; calculated giant dipole resonance parameters, position and strength. Nucleon-nucleon interaction, comparison with available data.

doi: 10.1103/PhysRevLett.111.122502
Citations: PlumX Metrics

2012BA41      Phys.Rev. C 86, 034321 (2012)

S.Bacca, N.Barnea, A.Schwenk

Matter and charge radius of 6He in the hyperspherical-harmonics approach

NUCLEAR STRUCTURE 4,6He; calculated binding energy, point-proton and matter radii using two-body low-momentum interactions based on chiral effective field theory (EFT) potentials. Discussed importance of three-nucleon forces. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.034321
Citations: PlumX Metrics

2012GO24      Phys.Rev. C 86, 064316 (2012)

R.Goerke, S.Bacca, N.Barnea

Nuclear electric polarizability of 6He

NUCLEAR STRUCTURE 6He; calculated nuclear electric polarizability αE based on hyperspherical harmonics expansion with simple semirealistic potentials using six-body microscopic calculations. Correlation between αE and S(2n), αE and neutron skin radius. Comparison with polarizability for 4He. Disagreement of calculated αE for 6He halo nucleus with experimental data.

doi: 10.1103/PhysRevC.86.064316
Citations: PlumX Metrics

2012LI15      Phys.Rev.Lett. 108, 112501 (2012)

E.Liverts, B.Bazak, N.Barnea

Quadrupole Response of a Weakly Bound Bosonic Trimer

doi: 10.1103/PhysRevLett.108.112501
Citations: PlumX Metrics

2011BA50      J.Phys.:Conf.Ser. 312, 082011 (2011)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Three-nucleon forces effects in the electron scattering off 4He

NUCLEAR REACTIONS 4He(e, e'), E at 50-, 100, 150, 200, 250, 300, 350 MeV/c; calculated longitudinal response function using full four-body continuum dynamics via Lorentz integral transform. Compared with data.

doi: 10.1088/1742-6596/312/4/082011
Citations: PlumX Metrics

2011OR03      J.Phys.:Conf.Ser. 312, 092049 (2011)

G.Orlandini, N.Barnea, W.Leidemann

The effective interaction hyperspherical harmonics method for non-local potentials

NUCLEAR STRUCTURE 6He, 6Li; calculated mass excess, binding energy using EIHH (effective interaction hyperspherical harmonics).

doi: 10.1088/1742-6596/312/9/092049
Citations: PlumX Metrics

2010BA18      Phys.Rev. C 81, 064001 (2010)

N.Barnea, W.Leidemann, G.Orlandini

Hyperspherical effective interaction for nonlocal potentials

NUCLEAR STRUCTURE 4,6He, 6Li; calculated rms radii, ground-state energy using effective interaction hyperspherical-harmonics model and an effective-field-theory nucleon-nucleon potential model (Idaho-N3LO).

doi: 10.1103/PhysRevC.81.064001
Citations: PlumX Metrics

2009BA13      Phys.Rev.Lett. 102, 162501 (2009)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Role of the Final-State Interaction and Three-Body Force on the Longitudinal Response Function of 4He

doi: 10.1103/PhysRevLett.102.162501
Citations: PlumX Metrics

2009BA54      Phys.Rev. C 80, 064001 (2009)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Search for three-nucleon force effects on the longitudinal response function of 4He

NUCLEAR REACTIONS 4He(e, e'), E at 50-500 MeV/c; calculated longitudinal response functions, isovector and isoscalar multipole strength distribution, and Coulomb sum rule (CSR) using the Argonne V18 nucleon-nucleon interaction and three-nucleon force models. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.064001
Citations: PlumX Metrics

2009VA08      Phys.Rev. C 79, 065501 (2009)

S.Vaintraub, N.Barnea, D.Gazit

6He β-decay rate and the suppression of the axial constant in nuclear matter

RADIOACTIVITY 6He(β-); calculated decay rates, binding energies, rms matter radii, GT matrix element using chiral perturbation theory calculations. Wave functions derived from J-matrix inverse scattering nucleon-nucleon potential (JISP). Comparison with experimental data. 3H(β-); calculated GT matrix elements and used for calibration.

doi: 10.1103/PhysRevC.79.065501
Citations: PlumX Metrics

2007BA07      Phys.Rev. C 75, 022202 (2007)

N.Barnea, E.Friedman

Radial sensitivity of kaonic atoms and strongly bound K-bar states

ATOMIC PHYSICS 12C, Ni; calculated kaon-nucleus potentials for kaonic atoms. Functional derivatives of global fits.

doi: 10.1103/PhysRevC.75.022202
Citations: PlumX Metrics

2007BA48      Phys.Rev. C 76, 014003 (2007)

S.Bacca, H.Arenhovel, N.Barnea, W.Leidemann, G.Orlandini

Inclusive electron scattering off 4He

doi: 10.1103/PhysRevC.76.014003
Citations: PlumX Metrics

2007BA51      Nucl.Phys. A790, 360c (2007)

S.Bacca, H.Arenhovel, N.Barnea, W.Leidemann, G.Orlandini

Inclusive electron scattering off 4He

NUCLEAR REACTIONS 4He(e, e'), E not given; calculated longitudinal and transverse response functions. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.03.065
Citations: PlumX Metrics

2007BA77      Phys.Rev. C 76, 067302 (2007)


Density functional theory for self-bound systems

doi: 10.1103/PhysRevC.76.067302
Citations: PlumX Metrics

2007GA21      Phys.Rev.Lett. 98, 192501 (2007)

D.Gazit, N.Barnea

Low-Energy Inelastic Neutrino Reactions on 4He

NUCLEAR REACTIONS 4He(ν, X), E not given; calculated inelastic cross sections microscopically Argonne V18 nucleon-nucleon potential amd Urbana IX three-nucleon force.

doi: 10.1103/PhysRevLett98.192501
Citations: PlumX Metrics

2007GA37      Nucl.Phys. A790, 356c (2007)

D.Gazit, N.Barnea

Few body calculation of neutrino neutral inelastic scattering on 4He

NUCLEAR REACTIONS 4He(ν, ν'), E=spectrum; calculated temperature-averaged σ, final state interaction effects. Hyperspherical-harmonic calculations.

doi: 10.1016/j.nuclphysa.2007.03.064
Citations: PlumX Metrics

2007OC01      Phys.Rev. C 75, 055803 (2007)

E.O'Connor, D.Gazit, C.J.Horowitz, A.Schwenk, N.Barnea

Neutrino breakup of A = 3 nuclei in supernovae

NUCLEAR REACTIONS 3H(ν, X), 3He(ν, X), E not given; calculated mass fraction of nucleons, average neutral current inclusive inelastic cross section per nucleon, and neutrino energy loss for inelastic excitations at supernova temperature and desities using the cirial equation of state.

doi: 10.1103/PhysRevC.75.055803
Citations: PlumX Metrics

2007OR05      Nucl.Phys. A790, 368c (2007)

G.Orlandini, S.Bacca, N.Barnea, W.Leidemann

Test of J-matrix inverse scattering potentials on photonuclear reactions of A=2, 3, 4 nuclei

NUCLEAR REACTIONS 2,3H, 3,4He(γ, X), E=2-100 MeV; calculated total photoabsorption σ. J-matrix inverse scattering potential models. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.03.067
Citations: PlumX Metrics

2007QU02      Nucl.Phys. A790, 372c (2007)

S.Quaglioni, I.Stetcu, S.Bacca, B.R.Barrett, C.W.Johnson, P.Navratil, N.Barnea, W.Leidemann, G.Orlandini

Benchmark calculation of inclusive responses in the four-body nuclear system

NUCLEAR STRUCTURE 4He; calculated quadrupole response function. No-core shell model, effective interaction hyperspherical harmonic approach.

doi: 10.1016/j.nuclphysa.2007.03.068
Citations: PlumX Metrics

2007ST05      Nucl.Phys. A785, 307 (2007)

I.Stetcu, S.Quaglioni, S.Bacca, B.R.Barrett, C.W.Johnson, P.Navratil, N.Barnea, W.Leidemann, G.Orlandini

Benchmark calculation of inclusive electromagnetic responses in the four-body nuclear system

NUCLEAR STRUCTURE 4He; calculated ground-state energy, quadrupole and dipole response functions. No-core shell model, effective interaction hyperspherical harmonic approaches.

doi: 10.1016/j.nuclphysa.2006.12.047
Citations: PlumX Metrics

2007VI15      Nucl.Phys. A790, 542c (2007)

J.Vijande, N.Barnea, A.Valcarce

Hyperspherical harmonic study of identical-flavor four-quark systems

doi: 10.1016/j.nuclphysa.2007.03.091
Citations: PlumX Metrics

2006BA42      Few-Body Systems 39, 1 (2006)

N.Barnea, W.Leidemann, G.Orlandini, V.D.Efros, E.L.Tomusiak

On the Accuracy of Hyperspherical Harmonics Approaches to Photonuclear Reactions

doi: 10.1007/s00601-006-0152-4
Citations: PlumX Metrics

2006BA57      Phys.Rev. C 74, 034003 (2006)

N.Barnea, W.Leidemann, G.Orlandini

Test of J-matrix inverse scattering potentials on electromagnetic reactions of few-nucleon systems

NUCLEAR REACTIONS 2,3H, 3,4He(γ, X), E=2-140 MeV; calculated total photoabsorption σ. J-matrix inverse scattering potential models, comparison with data.

doi: 10.1103/PhysRevC.74.034003
Citations: PlumX Metrics

2006GA12      Phys.Rev.Lett. 96, 112301 (2006)

D.Gazit, S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Photoabsorption on 4He with a Realistic Nuclear Force

NUCLEAR REACTIONS 4He(γ, X), E ≈ 20-140 MeV; calculated total photoabsorption σ; deduced three-nucleon force effects. Realistic nucleon-nucleon potentials, comparison with data.

NUCLEAR STRUCTURE 4He; calculated binding energy, radius.

doi: 10.1103/PhysRevLett.96.112301
Citations: PlumX Metrics

2006GA39      Phys.Rev.C 74, 061001 (2006)

D.Gazit, N.Barnea, S.Bacca, W.Leidemann, G.Orlandini

Photonuclear sum rules and the tetrahedral configuration of 4He

NUCLEAR STRUCTURE 4He; calculated photonuclear sum rules, possible deviation from tetrahedral symmetry. Photodisintegration, ab initio calculations.

doi: 10.1103/PhysRevC.74.061001
Citations: PlumX Metrics

2006RO23      Few-Body Systems 38, 97 (2006)

Y.Ronen, N.Barnea, W.Leidemann

An α-Particle Model for 16O: Is There a New Four-Body Scale?

NUCLEAR STRUCTURE 12C; calculated ground and excited states energies, radii. 12C, 16O, 20Ne; calculated ground state energies. α-cluster model.

doi: 10.1007/s00601-005-0147-6
Citations: PlumX Metrics

2004BA44      Phys.Rev. C 69, 057001 (2004)

S.Bacca, N.Barnea, W.Leidemann, G.Orlandini

Effect of P-wave interaction in 6He and 6Li photoabsorption

NUCLEAR REACTIONS 6He, 6Li(γ, X), E=0-100 MeV; calculated total photoabsorption σ, contribution from P-wave interaction. Lorentz integral transform method, comparison with data.

doi: 10.1103/PhysRevC.69.057001
Citations: PlumX Metrics

2004BA66      Few-Body Systems 34, 127 (2004)

N.Barnea, S.Bacca, W.Leidemann, G.Orlandini

Photodisintegration of Light Nuclei

NUCLEAR REACTIONS 6He, 6Li(γ, X), E=0-100 MeV; calculated photoabsorption σ. Lorentz integral transform method.

doi: 10.1007/s00601-004-0034-6
Citations: PlumX Metrics

2004BA94      Phys.Lett. B 603, 159 (2004)

S.Bacca, H.Arenhovel, N.Barnea, W.Leidemann, G.Orlandini

Ab initio calculation of 7Li photodisintegration

NUCLEAR REACTIONS 7Li(γ, X), E=threshold-100 MeV; calculated photoabsorption σ. Microscopic approach, comparison with data.

doi: 10.1016/j.physletb.2004.10.025
Citations: PlumX Metrics

2004BB02      Few-Body Systems 35, 155 (2004)

N.Barnea, V.D.Efros, W.Leidemann, G.Orlandini

Incorporation of Three-Nucleon Force in the Effective-Interaction Hyperspherical-Harmonic Approach

NUCLEAR STRUCTURE 3H, 3He; calculated binding energies, radii. Three-nucleon force, comparison with previous results.

doi: 10.1007/s00601-004-0066-y
Citations: PlumX Metrics

2004GA46      Phys.Rev. C 70, 048801 (2004)

D.Gazit, N.Barnea

Neutrino neutral reaction on 4He: Effects of final state interaction and realistic NN force

NUCLEAR REACTIONS 4He(ν, ν'), E not given; calculated temperature-averaged σ, final state interaction effects.

doi: 10.1103/PhysRevC.70.048801
Citations: PlumX Metrics

2004LE19      Nucl.Phys. A737, 231 (2004)

W.Leidemann, S.Bacca, N.Barnea, G.Orlandini

Effective Interaction Method for Hyperspherical Harmonics

doi: 10.1016/j.nuclphysa.2004.03.081
Citations: PlumX Metrics

2004MI23      Phys.Rev. C 69, 044005 (2004)

O.Mintkevich, N.Barnea

Wave function for no-core effective interaction approaches

doi: 10.1103/PhysRevC.69.044005
Citations: PlumX Metrics

2004QU02      Phys.Rev. C 69, 044002 (2004)

S.Quaglioni, W.Leidemann, G.Orlandini, N.Barnea, V.D.Efros

Two-body photodisintegration of 4He with full final state interaction

NUCLEAR REACTIONS 4He(γ, p), (γ, n), E=20-120 MeV; calculated σ, final state interaction effects. Comparison with data.

doi: 10.1103/PhysRevC.69.044002
Citations: PlumX Metrics

2003BA37      Phys.Rev. C 67, 054003 (2003)

N.Barnea, W.Leidemann, G.Orlandini

Improved effective interaction for the hyperspherical formalism

NUCLEAR STRUCTURE 4He, 6Li; calculated binding energies. Improved effective interaction, hyperspherical formalism, three-body forces.

doi: 10.1103/PhysRevC.67.054003
Citations: PlumX Metrics

2003MA87      Few-Body Systems 33, 259 (2003)

M.A.Marchisio, N.Barnea, W.Leidemann, G.Orlandini

Efficient Method for Lorentz Integral Transforms of Reaction Cross Sections

NUCLEAR REACTIONS 4He(γ, X), (γ, n), E=21.58 MeV; calculated Lorentz integral transforms for photoabsorption and photodisintegration σ.

doi: 10.1007/s00601-003-0017-z
Citations: PlumX Metrics

2002BA70      Phys.Rev.Lett. 89, 052502 (2002)

S.Bacca, M.A.Marchisio, N.Barnea, W.Leidemann, G.Orlandini

Microscopic Calculation of Six-Body Inelastic Reactions with Complete Final State Interaction: Photoabsorption of 6He and 6Li

NUCLEAR REACTIONS 6He, 6Li(γ, X), E=0-100 MeV; calculated total σ. Lorentz integral transform method, full six-nucleon final state interaction, comparison with data.

NUCLEAR STRUCTURE 6He, 6Li; calculated binding energies, radii.

doi: 10.1103/PhysRevLett.89.052502
Citations: PlumX Metrics

2001BA40      Phys.Rev. C63, 057002 (2001)

N.Barnea, V.D.Efros, W.Leidemann, G.Orlandini

Total 4He Photoabsorption Cross Section Reexamined: Correlated versus effective interaction hyperspherical harmonics

NUCLEAR REACTIONS 4He(γ, X), E=20-35 MeV; calculated total photoabsorption σ. Comparison of hyperspherical harmonics expansions.

doi: 10.1103/PhysRevC.63.057002
Citations: PlumX Metrics

2001BA81      Nucl.Phys. A693, 565 (2001)

N.Barnea, W.Leidemann, G.Orlandini

State-Dependent Effective Interaction for the Hyperspherical Formalism with Noncentral Forces

NUCLEAR STRUCTURE 3H, 4He; calculated binding energies, radii. Hyperspherical effective interaction method.

doi: 10.1016/S0375-9474(01)00794-1
Citations: PlumX Metrics

2001KA47      Phys.Rev. C64, 044001 (2001)

H.Kamada, A.Nogga, W.Glockle, E.Hiyama, M.Kamimura, K.Varga, Y.Suzuki, M.Viviani, A.Kievsky, S.Rosati, J.Carlson, S.C.Pieper, R.B.Wiringa, P.Navratil, B.R.Barrett, N.Barnea, W.Leidemann, G.Orlandini

Benchmark Test Calculation of a Four-Nucleon Bound State

NUCLEAR STRUCTURE A=4; calculated four-nucleon bound state energy, radius, related features. Several approaches compared.

doi: 10.1103/PhysRevC.64.044001
Citations: PlumX Metrics

2000BA15      Phys.Rev. C61, 034003 (2000)

N.Barnea, M.Viviani

Projected Faddeev-Yakubovsky Equations for the N-Body Problem

doi: 10.1103/PhysRevC.61.034003
Citations: PlumX Metrics

2000BA39      Phys.Rev. C61, 054001 (2000)

N.Barnea, W.Leidemann, G.Orlandini

State Dependent Effective Interaction for the Hyperspherical Formalism

NUCLEAR STRUCTURE 3H, 4,5,6He, 6Li; calculated binding energies, radii. Hyperspherical effective interaction, comparisons with other models.

doi: 10.1103/PhysRevC.61.054001
Citations: PlumX Metrics

2000BA70      Nucl.Phys. A677, 367 (2000)

N.Barnea, T.S.Walhout

Nuclear Matter in Nontopological Soliton Models with Quark-Meson Coupling

doi: 10.1016/S0375-9474(00)00207-4
Citations: PlumX Metrics

1999BA06      Phys.Lett. 446B, 185 (1999)


Solution of the Schrodinger Equation Including Two-, Three- and Four-Body Correlations - Bose Systems

doi: 10.1016/S0370-2693(98)01548-2
Citations: PlumX Metrics

1999BA37      Nucl.Phys. A650, 427 (1999)

N.Barnea, W.Leidemann, G.Orlandini

Ground State Wave Functions in the Hyperspherical Formalism for Nuclei with A > 4

NUCLEAR STRUCTURE 6Li, 8Be, 12C; calculated binding energies. Hyperspherical formalism, several potentials compared.

doi: 10.1016/S0375-9474(99)00113-X
Citations: PlumX Metrics

1999BA81      Fizika(Zagreb) B8, 181 (1999)

N.Barnea, W.Leidemann, G.Orlandini

Hyperspherical Group State Wave Functions for Nuclei with A > 4

NUCLEAR STRUCTURE 6Li, 8Be; calculated binding energies. Comparison between different potentials and with other calculations. Hyperspherical harmonic wave functions.

1998BA02      Phys.Rev. C57, 409 (1998)

S.Balberg, N.Barnea

S-Wave Pairing of Λ Hyperons in Dense Matter

doi: 10.1103/PhysRevC.57.409
Citations: PlumX Metrics

1994BA28      Phys.Rev. C49, 2910 (1994)

N.Barnea, V.Mandelzweig

Analytic Solution of the Harmonic-Oscillator Faddeev Equations for Three Nonidentical Particles

doi: 10.1103/PhysRevC.49.2910
Citations: PlumX Metrics

Back to query form