NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = I.Stetcu

Found 72 matches.

Back to query form



2023GI01      Phys.Rev. C 107, 014612 (2023)

N.P.Giha, S.Marin, J.A.Baker, I.E.Hernandez, K.J.Kelly, M.Devlin, J.M.O'Donnell, R.Vogt, J.Randrup, P.Talou, I.Stetcu, A.E.Lovell, O.Litaize, O.Serot, A.Chebboubi, C.-Y.Wu, S.D.Clarke, S.A.Pozzi

Correlations between energy and γ-ray emission in 239Pu(n, f)

NUCLEAR REACTIONS 239Pu(n, f), E=2-40 MeV; measured fragments, En, In, Eγ, Iγ, (fragments)γ-coin, (fragment)n-coin, nγ-coin; deduced γ spectrum, γ multiplicity, linear relation between incident neutron energy and γ multiplicity. Comparison to fission model calculations done with CGMF, FIFRELIN and FREYA codes. Multiplicity results are compared to ENDF/B-VIII.0 data and to experimental data on 238U(n, F), 239Pu(d, F), 233Pu(d, F), 240Pu(d, F) reactions. Broad-spectrum neutron beam produced via spallation reaction of an 800 MeV proton beam on W target (Los Alamos Neutron Science Center). Chi-Nu liquid scintillator array, a hemispherical array of 54 EJ-309 (n- and γ- measurement) surrounding multifoil parallel-plate avalanche counter (PPAC) serving as target and contain ing 239Pu (fragment measurement).

doi: 10.1103/PhysRevC.107.014612
Citations: PlumX Metrics


2023KA11      Phys.Rev. C 107, 044608 (2023)

T.Kawano, A.E.Lovell, S.Okumura, H.Sasaki, I.Stetcu, P.Talou

Consideration of memory of spin and parity in the fissioning compound nucleus by applying the Hauser-Feshbach fission fragment decay model to photonuclear reactions

NUCLEAR REACTIONS 238U(n, X), (γ, X), E<20 MeV; calculated partial population of compound nucleus. 235,238U, 239Pu(γ, F), E=1-20 MeV; calculated prompt fission γ-ray spectra, average number of prompt and delayed neutrons, total kinetic energies, cumulative fission product yields. Hauser-Feshbach statistical calculations of fission fragment decay with HF3D model. Comparison to experimental results and IAEA evaluation.

doi: 10.1103/PhysRevC.107.044608
Citations: PlumX Metrics


2023LE08      Phys.Rev. C 108, 014608 (2023)

E.Leal-Cidoncha, A.Couture, E.M.Bond, T.A.Bredeweg, C.Fry, T.Kawano, A.E.Lovell, G.Rusev, I.Stetcu, J.L.Ullmann, L.Leal, M.T.Pigni

Measurement of the neutron-induced capture-to-fission cross section ratio in 233U at LANSCE

NUCLEAR REACTIONS 235U(n, F), (n, γ), E=0.007-250 keV; measured Eγ, Iγ, γ-sum, En, In, nγ-coin; deduced capture-to-fission σ ratio, σ(E) of (n, γ) reaction derived from obtained ratio and ENDF/B-VIII.0 fission σ. Comparison to other experimental data, statistical model calculations and data from ENDF/B-VIII.0, JEFF-3.3, and JENDL-5 libraries. Discussed impact of the data on Th-U fuel cycle. Detector for Advanced Neutron Capture Experiments (DANCE) γ-calorimeter composed of 160 BaF2 crystals combined with the neutron detector array at DANCE (NEUANCE) composed of 21 stilbene crystals at Los Alamos Neutron Science Center (LANSCE, LANL).

doi: 10.1103/PhysRevC.108.014608
Citations: PlumX Metrics


2023MU06      Phys.Rev. C 107, 034606 (2023)

M.R.Mumpower, D.Neudecker, H.Sasaki, T.Kawano, A.E.Lovell, M.W.Herman, I.Stetcu, M.Dupuis

Collective enhancement in the exciton model

NUCLEAR REACTIONS 239Pu(n, 2n), E=6-24 MeV; calculated σ(E). 239Pu(n, xn), E=14 MeV; 181Ta, 165(n, xn), E=20 MeV; calculated neutron emission spectra. Calculation with statistical model framework CoH3 with increased one-particle-one-hole state density used in the exciton model. Comparison to experimental data and ENDF/B-VIII.0.

NUCLEAR STRUCTURE 239Pu; calculated 1p-1h state densities.

doi: 10.1103/PhysRevC.107.034606
Citations: PlumX Metrics


2023SA19      Phys.Rev. C 107, 054312 (2023)

H.Sasaki, T.Kawano, I.Stetcu

Quasiparticle random-phase approximation calculations for M1 transitions with the noniterative finite-amplitude method and application to neutron radiative capture cross sections

NUCLEAR REACTIONS 156Gd(γ, X), E<20 MeV; calculated total photoabsorption σ(E) of the M1 and E1 transitions, B(M1) strength functions of the M1 transitions, scissor mode excitations with and without spurious mode. 156,157,158,161Gd(n, X), E=0.001-15 MeV; calculated capture σ(E). Calculations of magnetic dipole transitions in the framework of finite amplitude method of quasiparticle random-phase approximation (FAM-QRPA) with the Hartree-Fock+Bardeen-Cooper-Schrieffer(HF+BCS) single-particle states. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.054312
Citations: PlumX Metrics


2023SC16      Phys.Rev. C 108, L061602 (2023)

G.Scamps, I.Abdurrahman, M.Kafker, A.Bulgac, I.Stetcu

Spatial orientation of the fission fragment intrinsic spins and their correlations

doi: 10.1103/PhysRevC.108.L061602
Citations: PlumX Metrics


2023ST12      Phys.Rev. C 108, L031306 (2023)

I.Stetcu, A.Baroni, J.Carlson

Projection algorithm for state preparation on quantum computers

doi: 10.1103/PhysRevC.108.L031306
Citations: PlumX Metrics


2022BU05      Phys.Rev.Lett. 128, 022501 (2022)

A.Bulgac, I.Abdurrahman, K.Godbey, I.Stetcu

Fragment Intrinsic Spins and Fragments' Relative Orbital Angular Momentum in Nuclear Fission

NUCLEAR REACTIONS 235U, 239Pu(n, F), E not given; analyzed available data. 236U, 240Pu; calculated of the primary fission fragment intrinsic spins and of the fission fragments relative orbital angular momentum using the time-dependent density functional theory framework.

RADIOACTIVITY 252Cf(SF); analyzed available data; calculated of the primary fission fragment intrinsic spins and of the fission fragments relative orbital angular momentum using the time-dependent density functional theory framework.

doi: 10.1103/PhysRevLett.128.022501
Citations: PlumX Metrics


2022GA37      Nucl.Instrum.Methods Phys.Res. A1037, 166853 (2022)

P.Gastis, J.R.Winkelbauer, D.S.Connolly, S.A.Kuvin, S.M.Mosby, C.J.Prokop, I.Stetcu

Absolute mass calibration of fission product distributions measured with the E-υ method

RADIOACTIVITY 252Cf(SF); measured decay products, Eγ, Iγ. 92Rb; deduced fission product yields. The single-arm SPIDER spectrometer.

doi: 10.1016/j.nima.2022.166853
Citations: PlumX Metrics


2022SA16      Phys.Rev. C 105, 044311 (2022)

H.Sasaki, T.Kawano, I.Stetcu

Noniterative finite amplitude methods for E1 and M1 giant resonances

NUCLEAR REACTIONS 16O, 40,48Ca, 54Fe, 154Sm, 208Pb, 238U(γ, X), E<40 MeV; calculated photoabsorption σ(E), E1 and M1 strengths distributions, giant dipole resonance features. Finite amplitude method (FAM) used to solve the fully self-consistent random phase approximation equations (FAM-RPA method). Comparison to experimental data.

doi: 10.1103/PhysRevC.105.044311
Citations: PlumX Metrics


2022ST05      Phys.Rev. C 105, 064308 (2022)

I.Stetcu, A.Baroni, J.Carlson

Variational approaches to constructing the many-body nuclear ground state for quantum computing

NUCLEAR STRUCTURE 6He, 8Be, 20O, 22O; calculated ground state energy. Gate-based quantum hardware using variational algorithms. Discussed the perspectives of quantum computing for calculation of nuclear states.

doi: 10.1103/PhysRevC.105.064308
Citations: PlumX Metrics


2021BU03      Phys.Rev.Lett. 126, 142502 (2021)

A.Bulgac, I.Abdurrahman, S.Jin, K.Godbey, N.Schunck, I.Stetcu

Fission Fragment Intrinsic Spins and Their Correlations

RADIOACTIVITY 236U, 240Pu(SF); calculated fission fragment intrinsic spins and their correlations using two nuclear energy density functionals.

doi: 10.1103/PhysRevLett.126.142502
Citations: PlumX Metrics


2021KA34      Phys.Rev. C 104, 014611 (2021)

T.Kawano, S.Okumura, A.E.Lovell, I.Stetcu, P.Talou

Influence of nonstatistical properties in nuclear structure on emission of prompt fission neutrons

NUCLEAR REACTIONS 235U(n, F), E=thermal; calculated prompt fission E(n), I(n), individual contribution from each fission fragment to prompt fission neutron spectrum (PFNS) using Hauser-Feshbach fission-fragment decay (HF3D) model. Comparison with experimental data.

doi: 10.1103/PhysRevC.104.014611
Citations: PlumX Metrics


2021LO02      Phys.Rev. C 103, 014615 (2021)

A.E.Lovell, T.Kawano, S.Okumura, I.Stetcu, M.R.Mumpower, P.Talou

Extension of the Hauser-Feshbach fission fragment decay model to multichance fission

NUCLEAR REACTIONS 235U(n, F), E=0-20 MeV; calculated multichance fission probabilities, average excitation energy causing fission for first-, second-, third-, and fourth-chance fission, pre-neutron-emission mass yields, total kinetic energy (TKE) and average prompt neutron and γ-ray multiplicities as function of incident neutron energy, average neutron multiplicity as a function of fragment mass, prompt fission γ-ray spectrum, independent and cumulative fission mass yields, average number of delayed neutrons emitted in fission. Extended deterministic Hauser-Feshbach fission fragment decay model (HF3D) within the code BeoH to calculate prompt and delayed particle emission from fission fragments. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.014615
Citations: PlumX Metrics


2021MA54      Phys.Rev. C 104, 024602 (2021)

S.Marin, M.S.Okar, E.P.Sansevero, I.E.Hernandez, C.A.Ballard, R.Vogt, J.Randrup, P.Talou, A.E.Lovell, I.Stetcu, O.Serot, O.Litaize, A.Chebboubi, S.D.Clarke, V.A.Protopopescu, S.A.Pozzi

Structure in the event-by-event energy-dependent neutron-γ multiplicity correlations in 252Cf(sf)

RADIOACTIVITY 252Cf(SF); analyzed Eγ and E(n) data collected at the Chi-Nu array at the Los Alamos Neutron Science Center with the application of the normalized differential multiplicity covariances; deduced neutron-γ correlations, evidence for enhancements in neutron-γ correlations around Eγ=0.7 and 1.2 MeV. Comparison with model calculations. Relevance to disagreement in the literature about correlations between neutron-γ competition and fragment properties.

doi: 10.1103/PhysRevC.104.024602
Citations: PlumX Metrics


2021NE06      Phys.Rev. C 104, 034611 (2021)

D.Neudecker, O.Cabellos, A.R.Clark, M.J.Grosskopf, W.Haeck, M.W.Herman, J.Hutchinson, T.Kawano, A.E.Lovell, I.Stetcu, P.Talou, S.Vander Wiel

Informing nuclear physics via machine learning methods with differential and integral experiments

NUCLEAR REACTIONS 238U(n, n'), E=14 MeV; analyzed pulsed-sphere neutron-leakage experimental spectrum obtained at LLNL facility, and compared with evaluated data in ENDF/B-VIII.0. 241Pu(n, F), E=0.1-1.0, 14 MeV; analyzed differential and integral experimental data for fission σ(E) by combining experimental σ data, nuclear-physics theory and neutron-transport simulations of the experiments using machine learning (ML) random forest algorithm and expert judgment. Relevance to improvement of description of nuclear-physics observables in particular application areas.

doi: 10.1103/PhysRevC.104.034611
Citations: PlumX Metrics


2021ST18      Phys.Rev.Lett. 127, 222502 (2021)

I.Stetcu, A.E.Lovell, P.Talou, T.Kawano, S.Marin, S.A.Pozzi, A.Bulgac

Angular Momentum Removal by Neutron and γ-Ray Emissions during Fission Fragment Decays

NUCLEAR REACTIONS 235U, 239Pu(n, F), E thermal; 238U(n, F), E=1.9 MeV; analyzed available data; deduced the angular momentum removal from fission fragments through neutron and γ-ray emission, wide angular momentum removal distributions can hide any underlying correlations in the fission fragment initial spin values.

RADIOACTIVITY 252Cf(SF); analyzed available data; deduced the angular momentum removal from fission fragments through neutron and γ-ray emission.

doi: 10.1103/PhysRevLett.127.222502
Citations: PlumX Metrics


2021TA33      Comput.Phys.Commun. 269, 108087 (2021)

P.Talou, I.Stetcu, P.Jaffke, M.E.Rising, A.E.Lovell, T.Kawano

Fission fragment decay simulations with the CGMFcode

RADIOACTIVITY 252Cf(SF); calculated fission fragment mass yields.

NUCLEAR REACTIONS 235U(n, F), E=0.0000000253, 2, 5 MeV; calculated fission fragment mass yields.

doi: 10.1016/j.cpc.2021.108087
Citations: PlumX Metrics


2020BE28      J.Phys.(London) G47, 113002 (2020)

M.Bender, R.Bernard, G.Bertsch, S.Chiba, J.Dobaczewski, N.Dubray, S.A.Giuliani, K.Hagino, D.Lacroix, Z.Li, P.Magierski, J.Maruhn, W.Nazarewicz, J.Pei, S.Peru, N.Pillet, J.Randrup, D.Regnier, P.G.Reinhard, L.M.Robledo, W.Ryssens, J.Sadhukhan, G.Scamps, N.Schunck, C.Simenel, J.Skalski, I.Stetcu, P.Stevenson, S.Umar, M.Verriere, D.Vretenar, M.Warda, S.Aberg

Future of nuclear fission theory

doi: 10.1088/1361-6471/abab4f
Citations: PlumX Metrics


2020LO08      Phys.Rev. C 102, 024621 (2020)

A.E.Lovell, P.Talou, I.Stetcu, K.J.Kelly

Correlations between fission fragment and neutron anisotropies in neutron-induced fission

NUCLEAR REACTIONS 235,238U, 239Pu(n, F), E=0-20 MeV; calculated anisotropic angular distributions for fission-fragments, prompt neutrons only from fission, and all prompt neutrons as a function of incident energy, ratio between the neutron anisotropy and the fission-fragment anisotropy. Comparison between the Hauser-Feshbach Monte Carlo calculations using CGMF code, and preliminary experimental data from the Chi-Nu liquid scintillator array at LANL.

doi: 10.1103/PhysRevC.102.024621
Citations: PlumX Metrics


2020ST01      Nucl.Data Sheets 163, 261 (2020)

I.Stetcu, M.B.Chadwick, T.Kawano, P.Talou, R.Capote, A.Trkov

Evaluation of the Prompt Fission Gamma Properties for Neutron Induced Fission of 235, 238U and 239Pu

NUCLEAR REACTIONS 235,238U, 239Pu(n, F), E<20 MeV; analyzed available data; deduced prompt fission γ-ray emission properties.

doi: 10.1016/j.nds.2019.12.007
Citations: PlumX Metrics


2019BU15      Phys.Rev. C 100, 014615 (2019)

A.Bulgac, S.Jin, I.Stetcu

Unitary evolution with fluctuations and dissipation

RADIOACTIVITY 258Fm(SF); calculated fission fragment mass yield distribution, total kinetic energy (TKE) distribution. 240Pu(SF); calculated fission trajectory in the quadrupole-octupole (Q20-Q30) plane. Quantum hydrodynamics equations using time dependent density functional theory with and without dissipation and fluctuation of collective degrees of freedom. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.014615
Citations: PlumX Metrics


2019BU20      Phys.Rev. C 100, 034615 (2019)

A.Bulgac, S.Jin, K.J.Roche, N.Schunck, I.Stetcu

Fission dynamics of 240Pu from saddle to scission and beyond

NUCLEAR REACTIONS 239Pu(n, F), E=thermal, 2, 4, 5.5 MeV; calculated fission pathway for 240Pu along the mass quadrupole moment Q20 using SeaLL1, SkM*, and UNEDF1 energy density functionals (EDFs), contours of neutron and proton densities, magnitudes and phases of neutron and proton pairing fields, snapshots of the induced fission of 240Pu with enhanced pairing strength, fission trajectories using SeaLL1 and SkM* EDFs, initial excitation energy, TKE, neutron and proton numbers, excitation energies of the heavy and light fission fragments (FFs), total excitation energy of FFs, average saddle-to-scission times, internal temperatures for the light and heavy FFs, average neutron multiplicity emitted by FFs as a function of incident neutron energy, time evolution of quadrupole Q20 and octupole Q30 moments of the light and heavy FFs before and after scission, number of neutrons emitted predominantly after scission; deduced minor effect of pairing strength on the fission dynamics. Calculations based on time-dependent superfluid local density approximation (TDSLDA), with no limit on pairing . Comparison with experimental data for average neutron multiplicities.

doi: 10.1103/PhysRevC.100.034615
Citations: PlumX Metrics


2019LO14      Phys.Rev. C 100, 054610 (2019)

A.E.Lovell, I.Stetcu, P.Talou, G.Rusev, M.Jandel

Prompt neutron multiplicity distributions inferred from γ-ray and fission fragment energy measurements

RADIOACTIVITY 252Cf(SF); calculated total γ-ray energy as a function of total fragment kinetic energy (TKE) before and after neutron emission, and for events where the total number of prompt neutrons emitted is zero, two, and four, prompt neutron multiplicity distribution P(ν) using a novel method to extract the neutron multiplicity distribution from correlation plots of the total γ-ray energy and the total fission fragment kinetic energy (TKE), without measuring neutrons. Comparison with calculations using CGMF computer code.

NUCLEAR REACTIONS 235U(n, F), E=thermal; calculated total γ-ray energy as a function of total fragment kinetic energy (TKE) using novel method to extract the neutron multiplicity distributions. Comparison with calculations using CGMF computer code.

doi: 10.1103/PhysRevC.100.054610
Citations: PlumX Metrics


2019SC12      Phys.Rev. C 100, 014605 (2019)

P.F.Schuster, M.J.Marcath, S.Marin, S.D.Clarke, M.Devlin, R.C.Haight, R.Vogt, P.Talou, I.Stetcu, T.Kawano, J.Randrup, S.A.Pozzi

High resolution measurement of tagged two-neutron energy and angle correlations in 252Cf (sf)

RADIOACTIVITY 252Cf(SF); measured prompt neutron time of flight, angular distribution of neutrons, nn-coin, prompt neutron emission anisotropy, correlations in angle and energy between prompt neutrons emitted in spontaneous fission using fission chamber and the Chi-Nu liquid scintillator detector array at LANSCE-LANL facility. Comparison with simulations produced by the fission event generators CGMF, FREYA, and MCNPX-POLIMI IPOL(1)=1.

doi: 10.1103/PhysRevC.100.014605
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14574.


2018BR05      Nucl.Data Sheets 148, 1 (2018)

D.A.Brown, M.B.Chadwick, R.Capote, A.C.Kahler, A.Trkov, M.W.Herman, A.A.Sonzogni, Y.Danon, A.D.Carlson, M.Dunn, D.L.Smith, G.M.Hale, G.Arbanas, R.Arcilla, C.R.Bates, B.Beck, B.Becker, F.Brown, R.J.Casperson, J.Conlin, D.E.Cullen, M.-A.Descalle, R.Firestone, T.Gaines, K.H.Guber, A.I.Hawari, J.Holmes, T.D.Johnson, T.Kawano, B.C.Kiedrowski, A.J.Koning, S.Kopecky, L.Leal, J.P.Lestone, C.Lubitz, J.I.Marquez Damian, C.M.Mattoon, E.A.McCutchan, S.Mughabghab, P.Navratil, D.Neudecker, G.P.A.Nobre, G.Noguere, M.Paris, M.T.Pigni, A.J.Plompen, B.Pritychenko, V.G.Pronyaev, D.Roubtsov, D.Rochman, P.Romano, P.Schillebeeckx, S.Simakov, M.Sin, I.Sirakov, B.Sleaford, V.Sobes, E.S.Soukhovitskii, I.Stetcu, P.Talou, I.Thompson, S.van der Marck, L.Welser-Sherrill, D.Wiarda, M.White, J.L.Wormald, R.Q.Wright, M.Zerkle, G.Zerovnik, Y.Zhu

ENDF/B-VIII.0: The 8 th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data

COMPILATION Z=1-118; compiled, analyzed decay data, Maxwellian averaged neutron capture σ, neutron-induced fission σ.

NUCLEAR REACTIONS 1,2H, 3He, 6,7Li, 9Be, 10,11B, 12,13C, 14,15N, 16,17,18O, 19F, 20,21,22Ne, 22,23Na, 24,25,26Mg, 26,27Al, 28,29,30,31,32Si, 31P, 32,33,34,35,36S, 35,36,37Cl, 36,37,38,39,40,41Ar, 39,40,41K, 40,41,42,43,44,45,46,47,48Ca, 45Sc, 46,47,48,49,50Ti, 49,50,51V, 50,51,52,53,54Cr, 54,55Mn, 54,55,56,57,58Fe, 58,59Co, 58,59,60,61,62,63,64Ni, 63,64,65Cu, 64,65,66,67,68,69,70Zn, 69,70,71Ga, 70,71,72,73,74,75,76Ge, 73,74,75As, 74,75,76,77,78,79,80,81,82Se, 79,80,81Br, 78,79,80,81,82,83,84,85,86Kr, 85,86,87Rb, 84,85,86,87,88,89,90Sr, 89,90,91Y, 90,91,92,93,94,95,96Zr, 93,94,95Nb, 92,93,94,95,96,97,98,99,100Mo, 98,99Tc, 96,97,98,99,100,101,102,103,104,105,106Ru, 103,104,105Rh, 102,103,104,105,106,107,108,109,110Pd, 107,108,109,110,111,112,113,114,115,116,117,118Ag, 106,107,108,109,110,111,112,113,114,115,116Cd, 113,114,115In, 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126Sn, 121,122,123,124,125,126Sb, 120,121,122,123,124,125,126,127,128,129,130,121,132Te, 127,128,129,130,131,132,133,134,135I, 123,124,125,126,127,128,129,130,131,132,133,134,135,136Xe, 133,134,135,136,137Cs, 130,131,132,133,134,135,136,137,138,139,140Ba, 138,139,140La, 136,137,138,139,140,141,142,143,144Ce, 141,142,143Pr, 142,143,144,145,146,147,148,149,150Nd, 143,144,145,146,147,148,149,151Pm, 144,145,146,147,148,149,150,151,152,153,154Sm, 151,152,153,154,155,156,157Eu, 152,153,154,155,156,157,158,159,160Gd, 158,159,160,161Tb, 154,155,156,157,158,159,160,161,162,163,164Dy, 165,166Ho, 162,163,164,165,166,167,168,170,170Er, 168,169,170,171Tm, 168,169,170,171,172,173,174,175,176Yb, 175,176Lu, 174,175,176,177,178,179,180,181,182Hf, 180,181,182Ta, 180,181,182,183,184,185,186W, 185,186,187Re, 184,185,186,187,188,189,190,191,192Os, 191,192,193Ir, 190,191,192,193,194,195,196,197,198Pt, 197Au, 196,197,198,199,200,201,202,203,204Hg, 203,204,205Tl, 204,205,206,207,208,209,210Pb, 209,210Bi, 208,209,210Po, 223,224,225,226Ra, 225,226,227Ac, 227,228,229,230,231,232,233,234Th, 229,230,231,232,233Pa, 230,231,232,233,234,235,236,237,238,239,240,241U, 234,235,236,237,238,239Np, 236,237,238,239,240,241,242,243,244,245,246Pu, 240,241,242,243,244Am, 240,241,242,243,244,245,246,247,248,249,250Cm, 245,246,247,248,249,250Bk, 246,247,248,249,250,251,252,253,254Cf, 251,252,253,254,255Es, 255Fm(n, γ), E=30 keV; calculated Maxwellian-averaged σ using ENDF/B-VIII.0 evaluated neutron library. Comparison with ENDF/B-VII.1 and KADONIS values.

NUCLEAR REACTIONS 227,228,229,230,231,232,233,234Th, 229,230,231,232,233Pa, 230,231,232,233,234,235,236,237,238,239,240,241U, 234,235,236,237,238,239Np, 236,237,238,239,240,241,242,243,244,245,246Pu, 240,241,242,243,244Am, 240,241,242,243,244,245,246,247,248,249,250Cm, 245,246,247,248,249,250Bk, 246,247,248,249,250,251,252,253,254Cf, 251,252,253,254,255Es, 255Fm(n, γ), (n, F), E=thermal; calculated thermal σ. Comparison with ENDF/B-VII.1, JENDL-4.0u+ and Atlas of Neutron Resonances values.

doi: 10.1016/j.nds.2018.02.001
Citations: PlumX Metrics


2018CA08      Nucl.Data Sheets 148, 254 (2018)

R.Capote, A.Trkov, M.Sin, M.T.Pigni, V.G.Pronyaev, J.Balibrea, D.Bernard, D.Cano-Ott, Y.Danon, A.Daskalakis, T.Goricanec, M.W.Herman, B.Kiedrowski, S.Kopecky, E.Mendoza, D.Neudecker, L.Leal, G.Noguere, P.Schillebeeckx, I.Sirakov, E.S.Soukhovitskii, I.Stetcu, P.Talou

IAEA CIELO Evaluation of Neutron-induced Reactions on 235U and 238U Targets

NUCLEAR REACTIONS 235,238U(n, X), E<20 MeV; analyzed available data; calculated σ, σ(θ), σ(θ, E).

doi: 10.1016/j.nds.2018.02.005
Citations: PlumX Metrics


2018CH34      Phys.Lett. B 782, 652 (2018)

A.Chyzh, P.Jaffke, C.Y.Wu, R.A.Henderson, P.Talou, I.Stetcu, J.Henderson, M.Q.Buckner, S.A.Sheets, R.Hughes, B.Wang, J.L.Ullmann, S.Mosby, T.A.Bredeweg, A.C.Hayes-Sterbenz, J.M.O'Donnell

Dependence of the prompt fission γ-ray spectrum on the entrance channel of compound nucleus: Spontaneous vs. neutron-induced fission

RADIOACTIVITY 240,242Pu(SF); measured decay products, Eγ, Iγ; deduced prompt γ-ray spectra.

NUCLEAR REACTIONS 239,241Pu(n, F), E ∼ 100 keV; measured reaction products, Eγ, Iγ; deduced prompt fission γ-ray energy spectra. Comparison with Monte Carlo Hauser-Feshbach statistical model for the neutron-induced fission.

doi: 10.1016/j.physletb.2018.06.006
Citations: PlumX Metrics


2018GR08      Acta Phys.Pol. B49, 591 (2018)

J.Grineviciute, P.Magierski, A.Bulgac, S.Jin, I.Stetcu

Accuracy of Fission Dynamics Within the Time-dependent Superfluid Local Density Approximation

NUCLEAR STRUCTURE 240Pu; calculated fission time evolution (energy and quadrupole moment vs time) using Time-Dependent Superfluid Local Density Approximation (TDSLDA).

doi: 10.5506/aphyspolb.49.591
Citations: PlumX Metrics


2018MA25      Phys.Rev. C 97, 044622 (2018)

M.J.Marcath, R.C.Haight, R.Vogt, M.Devlin, P.Talou, I.Stetcu, J.Randrup, P.F.Schuster, S.D.Clarke, S.A.Pozzi

Measured and simulated 252Cf(sf) prompt neutron-photon competition

RADIOACTIVITY 252Cf(SF); measured Eγ, Iγ, E(n), I(n), nγ-coin, time of flight distributions for neutrons and photons, event-by-event neutron-photon correlation using Chi-Nu liquid scintillator array of 45 liquid organic scintillation detectors and a fission chamber at LANL; deduced neutron and photon multiplicities. Comparison with MCPNX-PoliMi simulation with CGMF and FREYA models.

doi: 10.1103/PhysRevC.97.044622
Citations: PlumX Metrics


2018TA05      Eur.Phys.J. A 54, 9 (2018)

P.Talou, R.Vogt, J.Randrup, M.E.Rising, S.A.Pozzi, J.Verbeke, M.T.Andrews, S.D.Clarke, P.Jaffke, M.Jandel, T.Kawano, M.J.Marcath, K.Meierbachtol, L.Nakae, G.Rusev, A.Sood, I.Stetcu, C.Walker

Correlated prompt fission data in transport simulations

COMPILATION 235U, 239Pu(n, F), E=thermal;252Cf(SF); compiled average prompt fission neutron multiplicity vs fragment mass, prompt fission neutron σ(En), γ-decay energy spectrum σ(Eγ), γ multiplicity, n-n angular correlation. Calculated σ, yields using FREYA and CGMF codes. Compared with data.

doi: 10.1140/epja/i2018-12455-0
Citations: PlumX Metrics


2016BU04      Phys.Rev.Lett. 116, 122504 (2016)

A.Bulgac, P.Magierski, K.J.Roche, I.Stetcu

Induced Fission of 240Pu within a Real-Time Microscopic Framework

RADIOACTIVITY 240Pu(SF) [from 239Pu(n, X)240Pu, E low]; calculated fissioning dynamics parameters, fission fragments properties, negligible role the collective inertia in the fully nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included.

doi: 10.1103/PhysRevLett.116.122504
Citations: PlumX Metrics


2016TA24      Phys.Rev. C 94, 064613 (2016)

P.Talou, T.Kawano, I.Stetcu, J.P.Lestone, E.McKigney, M.B.Chadwick

Late-time emission of prompt fission γ rays

NUCLEAR REACTIONS 235U, 239Pu(n, F), E=thermal; 252Cf(SF); calculated average prompt fission γ-ray spectrum, average prompt γ-ray multiplicity as a function of time, energy spectra of late fission γ rays emitted in the 10 ns to 2 μs time window following fission, cumulative average prompt total γ-ray energy and multiplicity as a function of time, pre-neutron-emission fission fragment mass yields. Hauser-Feshbach formalism using the Monte Carlo Hauser-Feshbach code CGMF. Comparison with experimental data. 134Te; γ-ray spectrum for 162-ns isomer decay in the 10-100 ns coincidence window gated on the post-neutron-emission 134Te fission fragment.

RADIOACTIVITY 252Cf(SF); see keywords above for Nuclear Reactions

doi: 10.1103/PhysRevC.94.064613
Citations: PlumX Metrics


2015JA07      Eur.Phys.J. A 51, 179 (2015)

M.Jandel, B.Baramsai, E.Bond, G.Rusev, C.Walker, T.A.Bredeweg, M.B.Chadwick, A.Couture, M.M.Fowler, A.Hayes, T.Kawano, S.Mosby, I.Stetcu, T.N.Taddeucci, P.Talou, J.L.Ullmann, D.J.Vieira, J.B.Wilhelmy

Capture and fission with DANCE and NEUANCE

doi: 10.1140/epja/i2015-15179-7
Citations: PlumX Metrics


2015ST01      Phys.Rev.Lett. 114, 012701 (2015)

I.Stetcu, C.A.Bertulani, A.Bulgac, P.Magierski, K.J.Roche

Relativistic Coulomb Excitation within the Time Dependent Superfluid Local Density Approximation

NUCLEAR REACTIONS 238U(238U, 238U'), E not given; calculated the total energy spectrum of emitted electromagnetic radiation, damping resonance width. Goldhaber-Teller model.

doi: 10.1103/PhysRevLett.114.012701
Citations: PlumX Metrics


2015ST04      Acta Phys.Pol. B46, 391 (2015)

I.Stetcu

Nuclear Structure and Dynamics with Density Functional Theory

NUCLEAR REACTIONS 238U(U, X), E not given; calculated Coulomb excitation parameters for relativistic v=0.7c projectiles.

doi: 10.5506/APhysPolB.46.391
Citations: PlumX Metrics


2014ST13      Nucl.Data Sheets 118, 230 (2014)

I.Stetcu, P.Talou, T.Kawano, M.Jandel

Angular Momentum Distribution of Fission Fragments

NUCLEAR REACTIONS 235U(n, F), E=thermal; calculated prompt γ multiplicity distribution. 83Se, 90Rb, 119,121,123Cd, 123,125In, 127,128Sn, 130Sb, 131,133Te, 135Xe, 138Cs calculated isomeric ratios (isomeric yield ratios); deduced parameters.

doi: 10.1016/j.nds.2014.04.044
Citations: PlumX Metrics


2014ST17      Phys.Rev. C 90, 024617 (2014)

I.Stetcu, P.Talou, T.Kawano, M.Jandel

Properties of prompt-fission γ rays

NUCLEAR REACTIONS 235U, 239Pu(n, F), E=thermal; 235U(n, F), E=5.5 MeV; calculated prompt γ and neutron average energy and multiplicity as function of fragment mass, prompt γ multiplicity distributions, β and p parameters, prompt γ-ray energy spectrum. Monte Carlo Hauser-Feshbach (MCHF) approach. Comparison with experimental data.

RADIOACTIVITY 252Cf(SF); calculated average prompt γ spectrum and multiplicity as a function of fragment mass, prompt γ multiplicity distribution. Monte Carlo Hauser-Feshbach (MCHF) approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.024617
Citations: PlumX Metrics


2014TA15      Nucl.Data Sheets 118, 195 (2014)

P.Talou, T.Kawano, I.Stetcu

Prompt Fission Neutrons and γ Rays

RADIOACTIVITY 252Cf(SF); calculated prompt fission multiplicity, neutron multiplicity vs fission fragment mass, γ-ray multiplicity, γ energy spectrum using Monte Carlo approach to statistical HF theory. Compared to data.

doi: 10.1016/j.nds.2014.04.035
Citations: PlumX Metrics


2014TA16      Nucl.Data Sheets 118, 227 (2014)

P.Talou, T.Kawano, I.Stetcu, R.Vogt, J.Randrup

Monte Carlo Predictions of Prompt Fission Neutrons and Photons: a Code Comparison

RADIOACTIVITY 252Cf(SF); calculated neutron, γ average kinetic energy, neutron multiplicity, γ multiplicity from different fission fragments. Compared with

doi: 10.1016/j.nds.2014.04.043
Citations: PlumX Metrics


2013BE02      Phys.Rev. C 87, 014617 (2013)

B.Becker, P.Talou, T.Kawano, Y.Danon, I.Stetcu

Monte Carlo Hauser-Feshbach predictions of prompt fission γ rays: Application to nth+235U, nth+239Pu, and 252Cf(sf)

NUCLEAR REACTIONS 235U, 239Pu(n, F), E=thermal; calculated ratio of neutron emission for light and heavy fragments as function of heavy fragment mass, neutron emission probability as function of excitation energy and different spin values of 146Ba, average initial fragment spin and energy, average and total neutron multiplicity, average prompt fission neutron spectrum, average center-of-mass energy of prompt fission neutrons, average Eγ and γ multiplicity, prompt fission γ spectrum and multiplicity. Monte Carlo Hauser-Feshbach model. Comparison with experimental data, and with other model calculations.

RADIOACTIVITY 252Cf(SF); calculated average center-of-mass energy of prompt fission neutrons, average prompt fission neutron and γ spectra, average Eγ, and multiplicity, total Eγ, average prompt fission γ multiplicity, γ multiplicity distribution. Monte Carlo Hauser-Feshbach model. Comparison with experimental data, and with other model calculations.

doi: 10.1103/PhysRevC.87.014617
Citations: PlumX Metrics


2013KA29      Nucl.Phys. A913, 51 (2013)

T.Kawano, P.Talou, I.Stetcu, M.B.Chadwick

Statistical and evaporation models for the neutron emission energy spectrum in the center-of-mass system from fission fragments

NUCLEAR REACTIONS 93Nb(n, n'), E=14 MeV;138Xe(n, n'), E*=15 MeV; calculated σ(En). 235,238U(n, F), E=thermal; calculated fission fragments distribution of E*, prompt σ(En) from light and heavy fission fragments. Haser-Feshbach CGM code. Compared with available data.

doi: 10.1016/j.nuclphysa.2013.05.020
Citations: PlumX Metrics


2013ST01      Prog.Part.Nucl.Phys. 69, 182 (2013)

I.Stetcu, J.Rotureau

Effective interactions and operators in the no-core shell model

doi: 10.1016/j.ppnp.2012.10.001
Citations: PlumX Metrics


2013ST23      Phys.Rev. C 88, 044603 (2013)

I.Stetcu, P.Talou, T.Kawano, M.Jandel

Isomer production ratios and the angular momentum distribution of fission fragments

NUCLEAR REACTIONS 235U(n, F), E=thermal; calculated prompt γ multiplicity distribution, prompt γ-ray spectrum for different values of α parameter; 235U(n, F)83Se/90Rb/119Cd/123Cd/123In/125In/127Sn/128Sn/130Sb/131Te/133Te/135Xe/138Cs, E=thermal; calculated isomer production ratios as function of initial angular momentum of the fission fragments, initial spin distributions; compared with experimental data obtained from DANCE facility at LANSCE. 235U(n, F)69Zn/71Zn/71Ge/73Ge/75Ge/77Ge/77Se/79Se/81Se/83Se/85Sr/90Br/99Nb/109Pd/115Cd/121Sn/123Sn/125Sn/127Sn/131Te/133Xe/135Xe/137Ce/139Ce/138Cs/197Hg, E=thermal; calculated isomer production ratios; deduced dependence of isomer ratios on low-lying discrete spectra of fragments; compared with available experimental data in literature. Monte-Carlo method of Hauser-Feshbach formalism for deexcitation of primary fragments after scission using GGMF computer code.

doi: 10.1103/PhysRevC.88.044603
Citations: PlumX Metrics


2013UL01      Phys.Rev. C 87, 044607 (2013)

J.L.Ullmann, E.M.Bond, T.A.Bredeweg, A.Couture, R.C.Haight, M.Jandel, T.Kawano, H.Y.Lee, J.M.O'Donnell, A.C.Hayes, I.Stetcu, T.N.Taddeucci, P.Talou, D.J.Vieira, J.B.Wilhelmy, J.A.Becker, A.Chyzh, J.Gostic, R.Henderson, E.Kwan, C.Y.Wu

Prompt γ-ray production in neutron-induced fission of 239Pu

NUCLEAR REACTIONS 239Pu(n, F), E<30 keV; measured prompt Eγ, Iγ, fission σ(E), Gamma-ray multiplicity using DANCE γ-ray calorimeter at LANSCE facility; deduced average multiplicity, average total energy. GEANT4 simulation of DANCE detector. Fission Tagging. Comparison with Monte Carlo Hauser-Feshbach (MCHF) calculations, previous experimental studies, and with ENDF/B-VII.

doi: 10.1103/PhysRevC.87.044607
Citations: PlumX Metrics


2012RO07      Phys.Rev. C 85, 034003 (2012); Pub.Note Phys.Rev. C 85, 039903 (2012)

J.Rotureau, I.Stetcu, B.R.Barrett, U.van Kolck

Two and three nucleons in a trap, and the continuum limit

doi: 10.1103/PhysRevC.85.034003
Citations: PlumX Metrics


2011BA53      J.Phys.:Conf.Ser. 312, 092016 (2011)

B.Barrett, M.Kruse, A.Lisetskiy, P.Navratil, I.Stetcu, J.Vary

Ab initio shell model with a core: Extending the No Core Shell Model to heavier nuclei

NUCLEAR STRUCTURE 7Li; calculated ground state energy. 8,9,10He; calculated levels, J, π. 6Li; calculated quadrupole moment. SSM (standard shell model), NCSM (No Core Shell Model).

doi: 10.1088/1742-6596/312/9/092016
Citations: PlumX Metrics


2011DE34      Phys.Rev. C 84, 065501 (2011)

J.de Vries, R.Higa, C.-P.Liu, E.Mereghetti, I.Stetcu, R.G.E.Timmermans, U.van Kolck

Electric dipole moments of light nuclei from chiral effective field theory

NUCLEAR STRUCTURE 2,3H, 3He; calculated electric dipole moments by systematic expansion provided by chiral effective field theory (EFT) taking into account parity and time reversal violation.

doi: 10.1103/PhysRevC.84.065501
Citations: PlumX Metrics


2011ST24      Phys.Rev. C 84, 051309 (2011)

I.Stetcu, A.Bulgac, P.Magierski, K.J.Roche

Isovector giant dipole resonance from the 3D time-dependent density functional theory for superfluid nuclei

NUCLEAR REACTIONS 172Yb, 188Os, 238U(γ, n); calculated time-dependent proton and neutron occupation probabilities, photo-absorption cross sections for isovector giant dipole resonances. Fully symmetry-unrestricted time-dependent density functional theory for two Skyrme force parametrizations SkP and SLy4. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.051309
Citations: PlumX Metrics


2009JO04      Phys.Rev. C 80, 024320 (2009)

C.W.Johnson, I.Stetcu

Collapse of the random-phase approximation: Examples and counter-examples from the shell model

NUCLEAR STRUCTURE 12C, 28Si, 32S; calculated ground-state energy, low-lying random phase approximation (RPA) frequencies of spherical and deformed states using shell model, Hartree-Fock (HF) and HF+RPA models.

doi: 10.1103/PhysRevC.80.024320
Citations: PlumX Metrics


2009LI31      Phys.Rev. C 80, 024315 (2009)

A.F.Lisetskiy, M.K.G.Kruse, B.R.Barrett, P.Navratil, I.Stetcu, J.P.Vary

Effective operators from exact many-body renormalization

NUCLEAR STRUCTURE 6Li; calculated levels, J, π, reduced two-body matrix elements, E2 reduced matrix elements and quadrupole moments using ab initio no-core shell model (NCSM) approach. 7,9Li; calculated absolute quadrupole moments and E2 transition matrix elements. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.024315
Citations: PlumX Metrics


2009NA13      J.Phys.(London) G36, 083101 (2009)

P.Navratil, S.Quaglioni, I.Stetcu, B.R.Barrett

Recent developments in no-core shell-model calculations

NUCLEAR STRUCTURE 3H, 4,6,8He, 6,7,8,9,10,11Li, 11Be, 7,8,9,10,11B, 12,13C, 16O;calculated rms radii, level energies, J, π, B(E1), quadrupole and magnetic moments.

NUCLEAR REACTIONS 7Be(p, γ), 3He, 3H(α, γ), E ≤ 1.5, 2.5 MeV; calculated S-factor, NCSM overlap functions.

doi: 10.1088/0954-3899/36/8/083101
Citations: PlumX Metrics


2009ST11      Phys.Rev. C 79, 064001 (2009)

I.Stetcu, S.Quaglioni, J.L.Friar, A.C.Hayes, P.Navratil

Electric dipole polarizabilities of hydrogen and helium isotopes

NUCLEAR STRUCTURE 3H, He, 4He; calculated electric dipole polarizability using the Schrodinger equation. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.064001
Citations: PlumX Metrics


2008LI44      Phys.Rev. C 78, 044302 (2008)

A.F.Lisetskiy, B.R.Barrett, M.K.G.Kruse, P.Navratil, I.Stetcu, J.P.Vary

Ab-initio shell model with a core

NUCLEAR STRUCTURE 6,7Li, 8,9,10He; calculated excitation energies, J, π. Ab-initio no-core shell model calculations.

doi: 10.1103/PhysRevC.78.044302
Citations: PlumX Metrics


2008ST14      Phys.Lett. B 665, 168 (2008)

I.Stetcu, C.-P.Liu, J.L.Friar, A.C.Hayes, P.Navratil

Nuclear electric dipole moment of 3He

NUCLEAR STRUCTURE 3He; calculated electric dipole moment.

doi: 10.1016/j.physletb.2008.06.019
Citations: PlumX Metrics


2007QU02      Nucl.Phys. A790, 372c (2007)

S.Quaglioni, I.Stetcu, S.Bacca, B.R.Barrett, C.W.Johnson, P.Navratil, N.Barnea, W.Leidemann, G.Orlandini

Benchmark calculation of inclusive responses in the four-body nuclear system

NUCLEAR STRUCTURE 4He; calculated quadrupole response function. No-core shell model, effective interaction hyperspherical harmonic approach.

doi: 10.1016/j.nuclphysa.2007.03.068
Citations: PlumX Metrics


2007ST05      Nucl.Phys. A785, 307 (2007)

I.Stetcu, S.Quaglioni, S.Bacca, B.R.Barrett, C.W.Johnson, P.Navratil, N.Barnea, W.Leidemann, G.Orlandini

Benchmark calculation of inclusive electromagnetic responses in the four-body nuclear system

NUCLEAR STRUCTURE 4He; calculated ground-state energy, quadrupole and dipole response functions. No-core shell model, effective interaction hyperspherical harmonic approaches.

doi: 10.1016/j.nuclphysa.2006.12.047
Citations: PlumX Metrics


2006ST06      Phys.Rev. C 73, 037307 (2006)

I.Stetcu, B.R.Barrett, P.Navratil, J.P.Vary

Long- and short-range correlations in the ab-initio no-core shell model

NUCLEAR STRUCTURE 4He, 12C; calculated longitudinal-longitudinal distribution functions, effective operators. No-core shell model, two-body cluster approximation.

doi: 10.1103/PhysRevC.73.037307
Citations: PlumX Metrics


2005JO05      Int.J.Mod.Phys. E14, 57 (2005)

C.W.Johnson, I.Stetcu

Shortcuts to nuclear structure: Lessons in Hartree-Fock, RPA, and the no-core shell model

NUCLEAR STRUCTURE 12C; calculated ground-state energy. No-core shell model.

doi: 10.1142/S0218301305002771
Citations: PlumX Metrics


2005ST11      Int.J.Mod.Phys. E14, 95 (2005)

I.Stetcu, B.R.Barrett, P.Navratil, C.W.Johnson

Electromagnetic transitions with effective operators

NUCLEAR STRUCTURE 2H, 6Li; calculated transitions B(E2), B(M1). Effective operators.

doi: 10.1142/S0218301305002813
Citations: PlumX Metrics


2005ST14      Phys.Rev. C 71, 044325 (2005)

I.Stetcu, B.R.Barrett, P.Navratil, J.P.Vary

Effective operators within the ab initio no-core shell model

NUCLEAR STRUCTURE 4He, 6Li, 12C; calculated wave functions, transitions B(M1), B(E2). Effective operator formalism, no-core shell model.

doi: 10.1103/PhysRevC.71.044325
Citations: PlumX Metrics


2005ST35      Eur.Phys.J. A 25, Supplement 1, 489 (2005)

I.Stetcu, B.R.Barrett, P.Navratil, J.P.Vary

Effective operators in the NCSM formalism

NUCLEAR STRUCTURE 12C; calculated B(E2). No-core shell model.

doi: 10.1140/epjad/i2005-06-074-4
Citations: PlumX Metrics


2005VA32      Eur.Phys.J. A 25, Supplement 1, 475 (2005)

J.P.Vary, O.V.Atramentov, B.R.Barrett, M.Hasan, A.C.Hayes, R.Lloyd, A.I.Mazur, P.Navratil, A.G.Negoita, A.Nogga, W.E.Ormand, S.Popescu, B.Shehadeh, A.M.Shirokov, J.R.Spence, I.Stetcu, S.Stoica, T.A.Weber, S.A.Zaytsev

Ab initio No-Core Shell Model -- Recent results and future prospects

NUCLEAR STRUCTURE 4He; calculated radius. 6Li, 16O, 48Ar, 48K, 48Ca, 48Sc, 48Ti, 48V, 48Cr, 48Mn; calculated ground-state energies. 16O, 47Ca; calculated excited states energies. No-core shell model.

doi: 10.1140/epjad/i2005-06-214-x
Citations: PlumX Metrics


2004ST04      Phys.Rev. C 69, 024311 (2004)

I.Stetcu, C.W.Johnson

Gamow-Teller transitions and deformation in the proton-neutron random phase approximation

NUCLEAR STRUCTURE 20,21,22,24Ne, 24,25Na, 24,26Mg, 26,27,29Al, 28,30Si, 32,34S, 36Ar, 44,46Ti; calculated Gamow-Teller transition strengths. Proton-neutron RPA.

doi: 10.1103/PhysRevC.69.024311
Citations: PlumX Metrics


2003ST04      Phys.Rev. C 67, 044315 (2003)

I.Stetcu, C.W.Johnson

Tests of the random phase approximation for transition strengths

NUCLEAR STRUCTURE 20,21,22Ne, 22,24Na, 24,25Mg, 28,29Si, 36Ar, 44Ti, 46V; calculated transition strength distributions. Comparison of RPA and shell model results.

doi: 10.1103/PhysRevC.67.044315
Citations: PlumX Metrics


2002JO15      Phys.Rev. C66, 034312 (2002)

C.W.Johnson, I.Stetcu, J.P.Draayer

SU(3) versus Deformed Hartree-Fock State

NUCLEAR STRUCTURE 20Ne, 24Mg, 32S, 36Ar, 44Ti; calculated ground-state energies, deformation parameters. Comparison of Hartree-Fock and SU(3) models.

doi: 10.1103/PhysRevC.66.034312
Citations: PlumX Metrics


2002JO21      Phys.Rev. C 66, 064304 (2002)

C.W.Johnson, I.Stetcu

Scalar ground-state observables in the random phase approximation

NUCLEAR STRUCTURE 20,22,24O, 19,20,21F, 20,21,22Ne, 22,23Na, 24,25,26Mg, 26Al, 28Si, 44,46Ti, 46V, 48Cr; calculated expectation values for pairing, spin, other observables. RPA, quasiboson approximation. Comparison with mean-field results.

doi: 10.1103/PhysRevC.66.064304
Citations: PlumX Metrics


2002ST29      Phys.Rev. C66, 034301 (2002)

I.Stetcu, C.W.Johnson

Random Phase Approximation vs Exact Shell-Model Correlation Energies

NUCLEAR STRUCTURE 19,20,21,22,23,24O, 19,20,21,22,23,27F, 20,21,22,23,24,28Ne, 22,23,24,25,29Na, 24,25,26,27Mg, 26,27,28Al, 28,29Si, 30,31,32,33,34P, 27,32,33,34S, 34,35Cl, 36,37Ar, 36K, 44,45,46,47,48,49,50Ca, 43,44,45,46,47Sc, 44,45,46,47Ti, 46V, 48Cr; calculated binding energies, correlation energies. Comparison of RPA and exact shell-model results.

doi: 10.1103/PhysRevC.66.034301
Citations: PlumX Metrics


2001AV03      Nucl.Phys. A693, 616 (2001)

M.Avrigeanu, A.N.Antonov, H.Lenske, I.Stetcu

Effective Interactions for Multistep Processes

NUCLEAR REACTIONS 93Nb, 90Zr(p, p), E ≈ 22 MeV; 90Zr(p, n), E=25.6 MeV; 94,95,96,97,98,100Mo(p, xn), E=25.6 MeV; calculated σ(E, θ). Effective interactions, multistep direct processes, comparisons with data.

doi: 10.1016/S0375-9474(01)00810-7
Citations: PlumX Metrics


2000AV05      Trans.Bulg.Nucl.Soc. 5, 3 (2000)

M.Avrigeanu, I.Stetcu, V.Avrigeanu

Realistic Effective NN Interactions for Multistep Direct Reactions to the Continuum

NUCLEAR REACTIONS 90Zr, 93Nb, 96,98,100Mo(n, n), E=17-26 MeV; 90Zr, 93Nb(p, p), E=22 MeV; calculated σ(θ). 90Zr(p, n), E=25.6 MeV; 94,95,96,97,98,100Mo(p, xn), E=25.6 MeV; calculated σ(E, θ). Multistep direct reaction theory, several effective interactions compared. Comparisons with data.


1998HA33      Phys.Rev. C58, 295 (1998)

A.Harangozo, I.Stetcu, M.Avrigeanu, V.Avrigeanu

Particle-Hole State Densities with Nonequidistant Single-Particle Levels

doi: 10.1103/PhysRevC.58.295
Citations: PlumX Metrics


1998ST34      Roum.J.Phys. 43, 529 (1998)

I.Stetcu

Quantum-Mechanical Analysis of Single Particle Level Density

NUCLEAR STRUCTURE 40Ca, 56Fe; calculated single-particle level densities. Quantum-mechanical Green's function approach, comparison with Thomas-Fermi approximation.


Back to query form