NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = C.Simenel

Found 86 matches.

Back to query form

2023BE02      Eur.Phys.J. A 59, 51 (2023)

R.N.Bernard, C.Simenel, G.Blanchon

Hartree-Fock-Bogoliubov study of quantum shell effects on the path to fission in 180Hg, 236U and 256Fm

NUCLEAR STRUCTURE 180Hg, 236U, 256Fm; calculated potential energy surfaces, occupation numbers, density distributions of the nuclei on their fission path just before scission; deduced shell effect impacts. Hartree-Fock-Bogoliubov calculations using the D1S parametrisation of the Gogny interaction, Strutinsky shell energy correction and single-particle energy level density near the Fermi surface.

doi: 10.1140/epja/s10050-023-00964-2
Citations: PlumX Metrics

2023CE03      Phys.Rev. C 108, 054307 (2023)

J.Cesca, C.Simenel

Symmetry breaking and restoration on a fermionic quantum ring

doi: 10.1103/PhysRevC.108.054307
Citations: PlumX Metrics

2023JE01      Phys.Lett. B 837, 137641 (2023)

D.Y.Jeung, D.J.Hinde, M.Dasgupta, C.Simenel, E.C.Simpson, K.J.Cook, H.M.Albers, J.Buete, I.P.Carter, Ch.E.Dullmann, J.Khuyagbaatar, B.Kindler, N.Lobanov, B.Lommel, C.Mokry, E.Prasad, J.Runke, C.Sengupta, J.F.Smith, P.Thorle-Pospiech, N.Trautmann, K.Vo-Phuoc, J.Walshe, E.Williams, A.Yakushev

Sequential fission and the influence of 208Pb closed shells on the dynamics of superheavy element synthesis reactions

NUCLEAR REACTIONS 238U, 244Pu, 248Cm, 249Cf(50Ti, F), E ∼ 230 MeV; measured fission fragments. 208Pb; deduced σ, binary quasifission mass spectra, sequential fission survival probabilities. The ANU Heavy Ion Accelerator Facility.

doi: 10.1016/j.physletb.2022.137641
Citations: PlumX Metrics

2023MC02      Phys.Rev. C 107, 054614 (2023)

P.McGlynn, C.Simenel

Time-dependent Hartree-Fock study of quasifission trajectories in reactions forming 294Og

NUCLEAR STRUCTURE 294Og; calculated zero-temperature potential energy surface. Calculations using the static Hartree-Fock + BCS code SKYAX.

NUCLEAR REACTIONS 246Cf(48Ca, X)294Og, E(cm)=180-242; 208Pb(86Kr, X)294Og, E(cm)=324-629; 168Er(126Sn, X)294Og, E(cm)=306-611 MeV; calculated total kinetic energies of the fission fragments, proton and neutron numbers of the final (light) primary fragments, contact time, quasifission trajectories. Time-dependent Hartree-Fock (TDHF) calculations.

doi: 10.1103/PhysRevC.107.054614
Citations: PlumX Metrics

2023SW01      Phys.Lett. B 837, 137655 (2023)

B.M.A.Swinton-Bland, J.Buete, D.J.Hinde, M.Dasgupta, T.Tanaka, A.C.Berriman, D.Y.Jeung, K.Banerjee, L.T.Bezzina, I.P.Carter, K.J.Cook, C.Sengupta, C.Simenel, E.C.Simpson, M.A.Stoyer

Multi-modal mass-asymmetric fission of 178Pt from simultaneous mass-kinetic energy fitting

NUCLEAR REACTIONS 144Sm(34S, F), E=146 MeV; measured fission fragments. 178Pt; deduced mass-angle distribution (MAD), the total kinetic energy (TKE) of the fission fragments, three fission modes: one mass-symmetric and two mass-asymmetric. The 14UD tandem accelerator at the Australian National University Heavy Ion Accelerator Facility.

doi: 10.1016/j.physletb.2022.137655
Citations: PlumX Metrics

2023TA12      Phys.Rev. C 107, 054601 (2023)

T.Tanaka, D.J.Hinde, M.Dasgupta, E.Williams, K.Vo-Phuoc, C.Simenel, E.C.Simpson, D.Y.Jeung, I.P.Carter, K.J.Cook, N.R.Lobanov, D.H.Luong, C.Palshetkar, D.C.Rafferty, K.Ramachandran

Competition between fusion and quasifission in the angular momentum dependent dynamics of heavy element synthesis reactions

NUCLEAR REACTIONS 196Pt(54Cr, X), E(cm)=209.5, 215.7, 219.0, 223.8 MeV;198Pt(52Cr, X), E(cm)=213.4, 218.1, 222.9, 226.7 MeV; measured reaction products; deduced capture σ(E), fission and scattering σ(θ), dependence of capture σ on the angular momentum, fragments angular momentum distribution, correlated distributions of mass and angle (MADs) of the fragments, fragments total kinetic energies, ratio of symmetric component to total fission component (quasifission and fusion-fission). ANU CUBE detector system consisting of two large-area position-sensitive MWPCs at 14UD tandem electrostatic accelerator of the Australian National University Heavy Ion Accelerator Facility.

doi: 10.1103/PhysRevC.107.054601
Citations: PlumX Metrics

2023UM01      Phys.Rev. C 107, 064605 (2023)

A.S.Umar, K.Godbey, C.Simenel

Cluster model of 12C in the density functional theory framework

NUCLEAR STRUCTURE 12C; calculated 3-α energy surface, total density for the ground state configuration of the 3 α particles, angular momentum projection of the 12C ground state configuration, total density for the bent-arm state configuration of the 3 α particles, localization function of the bent-arm state configuration. Framework to study the cluster structures based on density constrained Hartree-Fock approach. Showed that the 12C ground state is an equilateral triangle, which has a molecular type configuration.

doi: 10.1103/PhysRevC.107.064605
Citations: PlumX Metrics

2022BE17      Phys.Rev. C 105, 064614 (2022)

A.C.Berriman, D.J.Hinde, D.Y.Jeung, M.Dasgupta, H.Haba, T.Tanaka, K.Banerjee, T.Banerjee, L.T.Bezzina, J.Buete, K.J.Cook, S.Parker-Steele, C.Sengupta, C.Simenel, E.C.Simpson, M.A.Stoyer, B.M.A.Swinton-Bland, E.Williams

Energy dependence of p + 232Th fission mass distributions: Mass-asymmetric standard I and standard II modes, and multichance fission

NUCLEAR REACTIONS 232Th(p, F), E=6.2-28MeV; measured reaction products, fission fragments; deduced fission fragment yields mass distribution. Studied the influence of the multichance fission on the shape of the mass distribution. Comparison to other experimental data and GEF calculations. CUBE spectrometer consisting of large MWPCs at 14UD tandem electrostatic accelerator of the Australian National University Heavy Ion Accelerator Facility.

RADIOACTIVITY 248Cm(SF); measured fission fragments; deduced fission fragment yields mass distribution.

doi: 10.1103/PhysRevC.105.064614
Citations: PlumX Metrics

2022GO12      Phys.Rev. C 106, L051602 (2022)

K.Godbey, A.S.Umar, C.Simenel

Theoretical uncertainty quantification for heavy-ion fusion

NUCLEAR REACTIONS 48Ca(48Ca, X), E(cm)=45-61 MeV; 40Ca(40Ca, X), E(cm)=49-67 MeV; 48Ca(40Ca, X), E(cm)=46-67 MeV; 16O(208Pb, X), E(cm)=67-95 MeV; calculated fusion σ(E), theoretical model uncertainties. Quantified the uncertainties arising from uncertainties of the calculations input parameters. Density constrained time-dependent Hartree-Fock TDHF method (DC-TDHF). Comparison to experimental data.

doi: 10.1103/PhysRevC.106.L051602
Citations: PlumX Metrics

2022HI12      Phys.Rev. C 106, 064614 (2022)

D.J.Hinde, R.du Rietz, D.Y.Jeung, K.J.Cook, M.Dasgupta, E.C.Simpson, R.G.Thomas, M.Evers, C.J.Lin, D.H.Luong, L.R.Gasques, R.Rafiei, A.Wakhle, C.Simenel

Experimental investigation of the role of shell structure in quasifission mass distributions

NUCLEAR REACTIONS 154Sm, 162Dy, 170Er, 174Yb, 186W, 192Os, 196Pt, 200Hg(48Ti, F), E=198-245 MeV; measured reaction products; deduced fission fragment mass-angle distributions, ratio of the fusion-fission yield to the total fission yield, mass-ratio spectra, compound nuclei forming probability. Pointed that with increasing target (or equivalently compound nucleus)atomic number, a rapid transition occurs from dominant fusion-fission to dominantly quasifission. Comparison to GEF calculations. Position-sensitive multiwire proportional counters (MWPCs) at 14UD tandem electrostatic accelerator (Australian National University).

doi: 10.1103/PhysRevC.106.064614
Citations: PlumX Metrics

2022LA02      Phys.Rev. C 105, 034617 (2022)

N.-W.T.Lau, R.N.Bernard, C.Simenel

Smoothing of one- and two-dimensional discontinuities in potential energy surfaces

NUCLEAR STRUCTURE 252Cf, 222Th, 218Ra; calculated one-dimensional fission paths in Q20 direction, two-dimensional potential energy surfaces (PESs) in (Q20, Q30) plane. Axially symmetric calculations using self-consistent Hartree-Fock-Bogoliubov model with Gogny D1S interaction. Smoothing of discontinuities using optimised tree search algorithms to explore higher-dimensional potential energy surfaces.

doi: 10.1103/PhysRevC.105.034617
Citations: PlumX Metrics

2021BA41      Phys.Lett. B 820, 136601 (2021)

K.Banerjee, D.J.Hinde, M.Dasgupta, J.Sadhukhan, E.C.Simpson, D.Y.Jeung, C.Simenel, B.M.A.Swinton-Bland, E.Williams, L.T.Bezzina, I.P.Carter, K.J.Cook, H.M.Albers, Ch.E.Dullmann, J.Khuyagbaatar, B.Kindler, B.Lommel, C.Mokry, E.Prasad, J.Runke, N.Schunck, C.Sengupta, J.F.Smith, P.Thorle-Pospiech, N.Trautmann, K.Vo-Phuoc, J.Walshe, A.Yakushev

Sensitive search for near-symmetric and super-asymmetric fusion-fission of the superheavy element Flerovium (Z=114)

NUCLEAR REACTIONS 208Pb, 244Pu(48Ca, X), 232Th(54Cr, X)Fl, E not given; analyzed available data; deduced masses, σ(θ). Comparison with microscopic calculations of Helmholtz free energy surfaces (FES).

doi: 10.1016/j.physletb.2021.136601
Citations: PlumX Metrics

2021BR01      Phys.Rev. C 103, 014302 (2021)

A.W.Bray, C.Simenel

Fermions with long and finite-range interactions on a quantum ring

doi: 10.1103/PhysRevC.103.014302
Citations: PlumX Metrics

2021JE02      Phys.Rev. C 103, 034603 (2021)

D.Y.Jeung, D.J.Hinde, E.Williams, M.Dasgupta, E.C.Simpson, R.du Rietz, D.H.Luong, R.Rafiei, M.Evers, I.P.Carter, K.Ramachandran, C.Palshetkar, D.C.Rafferty, C.Simenel, A.Wakhle

Energy dissipation and suppression of capture cross sections in heavy ion reactions

NUCLEAR REACTIONS 232Th(18O, X), (30Si, X), (34S, X), (40Ca, X), E(cm)=145-203 MeV; measured binary reaction products, including pairs of fission fragments, scattered beam particles and recoils in coincidence, and σ(θ) using the CUBE spectrometer at the 14UD tandem accelerator of Australian National University Heavy Ion Accelerator Facility; deduced distributions of the source velocity components of the fissioning nuclei, mass angle distributions (MADs), CC capture cross sections, full momentum transfer (FMT) fission cross sections, ratio of sequential fission to capture-fission, capture barriers. Comparison with coupled-channel (CC) calculations using CCFULL code; discussed sequential and total fission cross sections.

doi: 10.1103/PhysRevC.103.034603
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD1001.

2021TA31      Phys.Rev.Lett. 127, 222501 (2021)

T.Tanaka, D.J.Hinde, M.Dasgupta, E.Williams, K.Vo-Phuoc, C.Simenel, E.C.Simpson, D.Y.Jeung, I.P.Carter, K.J.Cook, N.R.Lobanov, D.H.Luong, C.Palshetkar, D.C.Rafferty, K.Ramachandran

Mass Equilibration and Fluctuations in the Angular Momentum Dependent Dynamics of Heavy Element Synthesis Reactions

NUCLEAR REACTIONS 198Pt(52Cr, X)250No, E=219 MeV; 196Pt(54Cr, X)250No, E=222.9 MeV; measured reaction products; deduced correlated distributions of mass and angle is called a mass-angle distribution (MAD), scattering σ. TDHF calculations. The Heavy Ion Accelerator Facility of the Australian National University.

doi: 10.1103/PhysRevLett.127.222501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD1021.

2021UM01      Phys.Rev. C 104, 034619 (2021)

A.S.Umar, C.Simenel, K.Godbey

Pauli energy contribution to the nucleus-nucleus interaction

NUCLEAR REACTIONS 40,48Ca(40Ca, X), 48Ca(48Ca, X), E not given; 208Pb(16O, X), E not given; calculated frozen neutron and proton HF density contours, nucleus-nucleus potentials from FHF, DCFHF, and DC-TDHF methods, neutron and proton contributions to the Pauli repulsion in the frozen approximation, dynamical contributions to the Pauli repulsion, proton and neutron Pauli energy and Pauli repulsion in 40Ca+40Ca system, effect of dynamical rearrangement on Pauli energy, Pauli kinetic energy (PKE) spatial distributions. Frozen Hartree Fock (FHF), density constrained frozen Hartree-Fock (DCFHF) and in the density constrained time-dependent Hartree-Fock (DC-TDHF) microscopic methods. Relevance to impact of Pauli exclusion principle on various models and approaches of calculating the interaction of two nuclei.

doi: 10.1103/PhysRevC.104.034619
Citations: PlumX Metrics

2020BE28      J.Phys.(London) G47, 113002 (2020)

M.Bender, R.Bernard, G.Bertsch, S.Chiba, J.Dobaczewski, N.Dubray, S.A.Giuliani, K.Hagino, D.Lacroix, Z.Li, P.Magierski, J.Maruhn, W.Nazarewicz, J.Pei, S.Peru, N.Pillet, J.Randrup, D.Regnier, P.G.Reinhard, L.M.Robledo, W.Ryssens, J.Sadhukhan, G.Scamps, N.Schunck, C.Simenel, J.Skalski, I.Stetcu, P.Stevenson, S.Umar, M.Verriere, D.Vretenar, M.Warda, S.Aberg

Future of nuclear fission theory

doi: 10.1088/1361-6471/abab4f
Citations: PlumX Metrics

2020GO03      Phys.Rev. C 101, 034602 (2020)

K.Godbey, C.Simenel, A.S.Umar

Microscopic predictions for the production of neutron-rich nuclei in the reaction 176Yb + 176Yb

NUCLEAR REACTIONS 176Yb(176Yb, X), E(cm)=660, 880 MeV; calculated scattering angles, total kinetic energies of the outgoing fragments, particle number fluctuations and correlations, mass-angle and mass-energy distributions, primary fragments production σ(E), production σ(E) of NZ, ZZ and NN nuclei using time-dependent Hartree-Fock (TDHF) calculations and its time-dependent random-phase approximation (TDRPA) extension for scattering and multi-nucleon transfer (MNT) characteristics. Relevance to r process in nuclear astrophysical models.

doi: 10.1103/PhysRevC.101.034602
Citations: PlumX Metrics

2020MC03      Phys.Rev. C 102, 064614 (2020)

P.McGlynn, C.Simenel

Imaginary-time mean-field method for collective tunneling

doi: 10.1103/PhysRevC.102.064614
Citations: PlumX Metrics

2020PR14      Phys.Lett. B 811, 135941 (2020)

E.Prasad, D.J.Hinde, M.Dasgupta, D.Y.Jeung, A.C.Berriman, B.M.A.Swinton-Bland, C.Simenel, E.C.Simpson, R.Bernard, E.Williams, K.J.Cook, D.C.Rafferty, C.Sengupta, J.F.Smith, K.Vo-Phuoc, J.Walshe

Systematics of the mass-asymmetric fission of excited nuclei from 176Os to 206Pb

NUCLEAR REACTIONS 176Os, 176,180Pt, 192,198Hg, 206Pb(p, F), (12C, F), (32S, F), (40Ca, F), (48Ca, F), E not given; analyzed available data; deduced mass-asymmetric fission systematics, total kinetic energy distributions, fission mass-ratio distributions. Comparison with GEF calculations.

doi: 10.1016/j.physletb.2020.135941
Citations: PlumX Metrics

2020SI08      Phys.Rev.Lett. 124, 212504 (2020)

C.Simenel, K.Godbey, A.S.Umar

Timescales of Quantum Equilibration, Dissipation and Fluctuation in Nuclear Collisions

NUCLEAR REACTIONS 238U(40Ca, X), 249Bk(48Ca, X), (50Ti, X), 186W(54Cr, X), E not given; analyzed available data; calculated timescales in collisions of atomic nuclei using fully microscopic approaches using time-dependent Hartree-Fock and time-dependent random-phase approximation.

doi: 10.1103/PhysRevLett.124.212504
Citations: PlumX Metrics

2020SW02      Phys.Rev. C 102, 054611 (2020)

B.M.A.Swinton-Bland, M.A.Stoyer, A.C.Berriman, D.J.Hinde, C.Simenel, J.Buete, T.Tanaka, K.Banerjee, L.T.Bezzina, I.P.Carter, K.J.Cook, M.Dasgupta, D.Y.Jeung, C.Sengupta, E.C.Simpson, K.Vo-Phuoc

Mass-asymmetric fission of 205, 207, 209Bi at energies close to the fission barrier using proton bombardment of 204, 206, 208Pb

NUCLEAR REACTIONS 204Pb(p, X)205Bi*, E=18.99, 20.99, 22.98, 24.99, 28.00 MeV; 206Pb(p, X)207Bi*, E=20.99, 22.98, 24.98, 28.00 MeV; 208Pb(p, X)209Bi*, E=24.98, 28.00 MeV; measured fission fragments using the CUBE fission spectrometer, with two large area position sensitive multiwire proportional counters (MWPCs), angular distributions at the 14UD tandem accelerator at Australian National University; deduced fission yields, fission mass ratios, fission mass distributions, mass-angle distribution (MAD) as a function of mass ratio, light and heavy fragment peak values. Comparison to previous experimental data, and theoretical calculations using GEF2019/1.3.

doi: 10.1103/PhysRevC.102.054611
Citations: PlumX Metrics

2019BA26      Phys.Rev.Lett. 122, 232503 (2019)

K.Banerjee, D.J.Hinde, M.Dasgupta, E.C.Simpson, D.Y.Jeung, C.Simenel, B.M.A.Swinton-Bland, E.Williams, I.P.Carter, K.J.Cook, H.M.David, C.E.Dullmann, J.Khuyagbaatar, B.Kindler, B.Lommel, E.Prasad, C.Sengupta, J.F.Smith, K.Vo-Phuoc, J.Walshe, A.Yakushev

Mechanisms Suppressing Superheavy Element Yields in Cold Fusion Reactions

NUCLEAR REACTIONS 208Pb(50Ti, X), (48Ca, X), (54Cr, X), E not given; analyzed available data; deduced projectile impact on drastic fall in the symmetric fission yield, which is reflected in the measured mass-angle distribution by the presence of competing fast nonequilibrium deep inelastic and quasifission processes.

doi: 10.1103/PhysRevLett.122.232503
Citations: PlumX Metrics

2019GO17      Phys.Rev. C 100, 024610 (2019)

K.Godbey, A.S.Umar, C.Simenel

Deformed shell effects in 48Ca + 249Bk quasifission fragments

NUCLEAR REACTIONS 249Bk(48Ca, X), E(cm)=234 MeV; calculated total kinetic energies of quasifission fragments as a function of their mass ratio and compared to Viola systematics, mass-angle correlations, yields of fragments by mass, proton and neutron numbers, distribution of scattering angle as function of mass ratio, proton and neutron numbers using time-dependent Hartree-Fock simulations. Influence of shell effects, and orientation of the deformed target in the entrance channel in the formation of the fragments. Relevance to optimization of entrance channels for the formation of superheavy nuclei (SHN).

doi: 10.1103/PhysRevC.100.024610
Citations: PlumX Metrics

2019GO18      Phys.Rev. C 100, 024619 (2019)

K.Godbey, C.Simenel, A.S.Umar

Absence of hindrance in a microscopic 12C + 12C fusion study

NUCLEAR REACTIONS 12C(12C, X), E(cm)=2-12 MeV; calculated fusion σ(E) and astrophysical S(E) factors using a static Hartree-Fock and time-dependent Hartree-Fock mean-field method; no S factor maximum observed, and no extreme sub-barrier hindrance predicted at low energies. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.024619
Citations: PlumX Metrics

2019HA17      Phys.Rev. C 99, 054621 (2019)

K.Hammerton, D.J.Morrissey, Z.Kohley, D.J.Hinde, M.Dasgupta, A.Wakhle, E.Williams, I.P.Carter, K.J.Cook, J.Greene, D.Y.Jeung, D.H.Luong, S.D.McNeil, C.Palshetkar, D.C.Rafferty, C.Simenel, K.Stiefel

Entrance channel effects on the quasifission reaction channel in Cr + W systems

NUCLEAR REACTIONS 180W(50Cr, X)230Cf*, E(cm)=210.0 MeV; 180W(52Cr, X)232Cf*, E(cm)=214.1; 180W(54Cr, X)234Cf*, E(cm)=215.4 MeV; 182W(54Cr, X)236Cf*, E(cm)=213.8 MeV; 184W(52Cr, X)236Cf*, E(cm)=209.7 MeV; 184W(54Cr, X)238Cf*, E(cm)=211.8 MeV; 186W(50Cr, X)236Cf*, E(cm)=201.3 MeV; 186W(54Cr, X)240Cf*, E(cm)=209.5 MeV; measured fission fragments, mass-angle distributions, mass distribution of fragments using the CUBE detector for charged particle detection at the Heavy Ion Accelerator Facility of the Australian National University; deduced curvature parameter, entrance channel effects, and impact of target deformation effects on the quasifission process.

doi: 10.1103/PhysRevC.99.054621
Citations: PlumX Metrics

2019SC17      Phys.Rev. C 100, 041602 (2019)

G.Scamps, C.Simenel

Effect of shell structure on the fission of sub-lead nuclei

NUCLEAR STRUCTURE 180Hg; calculated potential energy as a function of quadrupole moment along the symmetric fission path and asymmetric fission valley, neutron and proton single-particle energies as function of quadrupole and octupole deformation parameters for 100Ru, a heavy fragment in the fission of 180Hg. 176,178,180,182,184,186,188,190,192,194,196,198Hg; calculated centroids of light and heavy fragments in asymmetric fission due to the effect of octupole correlations induced by deformed shell gaps at N=52-56 neutrons in the fission fragments. Z=20-60, N=25-75; calculated expected values of the neutron and proton numbers of the fission fragments in the asymmetric mode of systems. Microscopic mean-field calculations of fission based on the Hartree-Fock approach with BCS pairing correlations.

doi: 10.1103/PhysRevC.100.041602
Citations: PlumX Metrics

2018CO01      Phys.Rev. C 97, 021601 (2018)

K.J.Cook, I.P.Carter, E.C.Simpson, M.Dasgupta, D.J.Hinde, L.T.Bezzina, S.Kalkal, C.Sengupta, C.Simenel, B.M.A.Swinton-Bland, K.Vo-Phuoc, E.Williams

Interplay of charge clustering and weak binding in reactions of 8Li

NUCLEAR REACTIONS 209Bi(8Li, X), E=38.2-40.9 MeV, [secondary 8Li from primary reaction 9Be(7Li, 8Li)8Be, E=45 MeV using SOLEROO separator at Australian National University]; measured proton, deuteron, triton, α, 7,8Li spectra using two ΔE-E telescopes, energy and angle, αα-, αt-, αd-, and αp-coin; deduced total α production σ, energy averages σ(θ) for singles and coincidence events, reaction Q values, relative energy distribution, 8Li breakup into charged clusters; calculated time of breakup for αt-pairs using classical dynamical model.

doi: 10.1103/PhysRevC.97.021601
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0896.

2018HI02      Phys.Rev. C 97, 024616 (2018)

D.J.Hinde, D.Y.Jeung, E.Prasad, A.Wakhle, M.Dasgupta, M.Evers, D.H.Luong, R.du Rietz, C.Simenel, E.C.Simpson, E.Williams

Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

NUCLEAR REACTIONS 232Th(34S, X)266Sg*, E(cm)=143.6, 145.7, 147.9, 150.5, 158.4, 166.7 MeV; 238U(28Si, X)266Sg*, E(cm)=126.9, 129.5, 137.4, 145.7, 151.0, 155.5 MeV; 232Th(30Si, X)262Rf*, E(cm)=128.2, 131.8, 135.9, 139.5, 143.1, 146.7 MeV; 238U(24Mg, X)262Rf*, E(cm)=110.0, 113.2, 116.4, 120.0, 126.3, 129.5 MeV; measured reaction products, fission and quasifission mass and angle distributions (MADs); 232Th(19F, X), E=76.4, 78.3, 80.1, 82.0, 83.8, 85.7, 87.6, 89.4, 91.2, 93.1, 95.0, 96.8, 98.6, 100.5, 102.4, 107.0 MeV; 232Th(32S, X), (19F, X), (16O, X), (12C, X), (11B, X), E/VB=0.8-1.3; 238U(16O, X), (12C, X), (11B, X), E/VB=0.8-1.3; measured angular distribution of mass-symmetric fission events, σ(E) for full momentum transfer (FMT) fission for 19F+232Th reaction. Experiments used CUBE fission spectrometer at the Australian National University 14UD tandem accelerator facility to determine the probabilities of fast and slow quasifission in reactions with prolate deformed actinide nuclei. Relevance to formation of superheavy elements (SHEs) by fusion of two massive nuclei.

doi: 10.1103/PhysRevC.97.024616
Citations: PlumX Metrics

2018KH05      Phys.Rev. C 97, 064618 (2018)

J.Khuyagbaatar, H.M.David, D.J.Hinde, I.P.Carter, K.J.Cook, M.Dasgupta, Ch.E.Dullmann, D.Y.Jeung, B.Kindler, B.Lommel, D.H.Luong, E.Prasad, D.C.Rafferty, C.Sengupta, C.Simenel, E.C.Simpson, J.F.Smith, K.Vo-Phuoc, J.Walshe, A.Wakhle, E.Williams, A.Yakushev

Nuclear structure dependence of fusion hindrance in heavy element synthesis

NUCLEAR REACTIONS 204,208Pb(48Ti, X), E=240.0, 245.0, 252.2, 259.0, 270.0, 280.0 MeV; 206,208Pb(50Ti, X), E=236.0, 240.0, 252.0, 258.0, 264.0, 270.0, 280.2 MeV; measured reaction products, mass ratio and angular distributions (MAD) of fragments, double differential σ(θ, MR), and widths using CUBE detector array at the Heavy Ion Accelerator Facility of Australian National University. 206Pb(36S, X), (34S, X), (48Ti, X), (50Ti, X), E*=25-60 MeV; calculated mean-squared angular momenta, widths and MR distributions, and compared with experimental data. Discussed impact of nuclear structure on fusion-evaporation reactions.

doi: 10.1103/PhysRevC.97.064618
Citations: PlumX Metrics

2018MO13      Phys.Rev. C 97, 054603 (2018)

G.Mohanto, D.J.Hinde, K.Banerjee, M.Dasgupta, D.Y.Jeung, C.Simenel, E.C.Simpson, A.Wakhle, E.Williams, I.P.Carter, K.J.Cook, D.H.Luong, C.S.Palshetkar, D.C.Rafferty

Interplay of spherical closed shells and N/Z asymmetry in quasifission dynamics

NUCLEAR REACTIONS 208Pb(50Cr, X)258Sg*,208Pb(52Cr, X)260Sg*,208Pb(54Cr, X)262Sg*,206Pb(52Cr, X)258Sg*,204Pb(54Cr, X), 258Sg*, E=257-292.7 MeV; measured fission fragments, two fission fragments in coincidence mode, and mass angle distributions (MADs) using CUBE spectrometer at the Australian National University 14 UD tandem accelerator facility; deduced mass-ratio distributions of fission fragments, symmetric-peaked fission to total fission ratio, symmetric fission as a function of entrance channel magicity, effect of entrance-channel spherical closed shells and N/Z asymmetry on quasifission dynamics. Relevance to synthesis of superheavy-elements.

doi: 10.1103/PhysRevC.97.054603
Citations: PlumX Metrics

2018SI24      Prog.Part.Nucl.Phys. 103, 19 (2018)

C.Simenel, A.S.Umar

Heavy-ion collisions and fission dynamics with the time-dependent Hartree-Fock theory and its extensions

doi: 10.1016/j.ppnp.2018.07.002
Citations: PlumX Metrics

2018UM01      Acta Phys.Pol. B49, 573 (2018)

A.S.Umar, C.Simenel

TDHF Investigations of the U+U Quasifission Process

NUCLEAR REACTIONS 238U(238U, x), E(cm)=850-1350 MeV; calculated possibilities of reaching high-Z rich isotopes using unrestricted TDHF, Skyrme Hartree-Fock, Quantum Molecular Dynamics (QMD), Improved QMD (ImQMD), Dinuclear Nuclear System (DNS), Relativistic Mean-Field (RMF), Time-Dependent Hartree-Fock (TDHF), Density Constrained TDHF (DC-TDHF)(evaporation residue σ strongly reduced due to Quasifission (QF) and Fusion-Fission (FF)); calculated evolution of central collisions, reaching (in tip-side oriented collision) exit heavy fragment of Z≈ 194 and A≈325, nuclear contact time for E(cm)=850-1350 MeV for tip-side and tip-tip orientations, also with ternary fission possibility and shown with the ternary fragment of Z≈7 shown in the calculations; calculated final E* vs E at central collisions.

doi: 10.5506/aphyspolb.49.573
Citations: PlumX Metrics

2018UM02      Nuovo Cim. C 41, 173 (2018)

A.S.Umar, C.Simenel, K.Godbey

Equilibration dynamics and isospin effects in nuclear reactions

NUCLEAR REACTIONS 249Bk(48Ca, X), E(cm)=234 MeV; 186W(54Cr, X), E(cm)=218.6 MeV; 208Pb(78Kr, X), E=8.5 MeV/nucleon; analyzed available data; calculated equilibration times for mass, isospin, and TKE (total kinetic energy). TDFHF approach.

doi: 10.1393/ncc/i2018-18173-9
Citations: PlumX Metrics

2018WA06      Phys.Rev. C 97, 021602 (2018)

A.Wakhle, K.Hammerton, Z.Kohley, D.J.Morrissey, K.Stiefel, J.Yurkon, J.Walshe, K.J.Cook, M.Dasgupta, D.J.Hinde, D.J.Jeung, E.Prasad, D.C.Rafferty, C.Simenel, E.C.Simpson, K.Vo-Phuoc, J.King, W.Loveland, R.Yanez

Capture cross sections for the synthesis of new heavy nuclei using radioactive beams

NUCLEAR REACTIONS 181Ta(39K, X), E=180-210 MeV; 181Ta(46K, X), E=190-215 MeV; measured time of flight and relative position of fission fragments, capture-fission σ(E) from a binary event using 14UD Heavy-ion accelerator facility of Australian National University (ANU), and Coupled Cyclotron Facility (CCF) projectile fragmentation facility at NSCL-MSU, and the Coincident Fission Fragment Detector (CFFD) at the ReA3 facility at NSCL; deduced velocity vectors of the coincident fragments, masses and angular distributions of fission fragments. Comparison with several phenomenological models and microscopic time-dependent Hartree-Fock calculations. Discussed implications for the synthesis of heavy nuclei at radioactive beam facilities. 197Au(31Al, X), E(cm), 248Cm(26Mg, X), E(cm)=110-160 MeV; 248Cm(48Ca, X), E(cm)=195-230 MeV; 154Sm(31Al, X), E(cm)=125-190 MeV; 238U(48Ca, X), E(cm)=185-235 MeV; 238U(64Ni, X), E(cm)=260-300 MeV; compiled theoretical and experimental values of capture fission σ(E). Comparison with several theoretical results.

doi: 10.1103/PhysRevC.97.021602
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2285.

2018WI01      Phys.Rev.Lett. 120, 022501 (2018)

E.Williams, K.Sekizawa, D.J.Hinde, C.Simenel, M.Dasgupta, I.P.Carter, K.J.Cook, D.Y.Jeung, S.D.McNeil, C.S.Palshetkar, D.C.Rafferty, K.Ramachandran, A.Wakhle

Exploring Zeptosecond Quantum Equilibration Dynamics: From Deep-Inelastic to Fusion-Fission Outcomes in 58Ni + 60Ni Reactions

NUCLEAR REACTIONS 58,60Ni(58Ni, X), E=158.4 MeV; measured reaction products; deduced σ, σ(θ, E). Comparison with theoretical predictions using time dependent Hartree-Fock and time dependent random phase approximation approaches, which, respectively, incorporate one-body energy dissipation and fluctuations.

doi: 10.1103/PhysRevLett.120.022501
Citations: PlumX Metrics

2017GO03      Phys.Rev. C 95, 011601 (2017)

K.Godbey, A.S.Umar, C.Simenel

Dependence of fusion on isospin dynamics

NUCLEAR REACTIONS 48Ca(40Ca, X), E(cm)=55 MeV; 208Pb(16O, X), E(cm)=75, 90, 120 MeV; 208Pb(48Ca, X), (50Ti, X), E(cm)/VB=1.065; 40,48Ca(132Sn, X), E(cm)=75 MeV; calculated total and isoscalar density-constrained time-dependent Hartree-Fock (DC-TDHF) potentials. 40Ca(132Sn, X), E(cm)=108-140 MeV; calculated fusion σ(E). Time-dependent Hartree-Fock theory and isoscalar and isovector properties of energy density functional (EDF).

doi: 10.1103/PhysRevC.95.011601
Citations: PlumX Metrics

2017MO40      Phys.Rev.Lett. 119, 222502 (2017)

M.Morjean, D.J.Hinde, C.Simenel, D.Y.Jeung, M.Airiau, K.J.Cook, M.Dasgupta, A.Drouart, D.Jacquet, S.Kalkal, C.S.Palshetkar, E.Prasad, D.Rafferty, E.C.Simpson, L.Tassan-Got, K.Vo-Phuoc, E.Williams

Evidence for the Role of Proton Shell Closure in Quasifission Reactions from X-Ray Fluorescence of Mass-Identified Fragments

NUCLEAR REACTIONS 238U(48Ti, X), E=276 MeV; measured reaction products, characteristic fluorescence x rays; deduced photon spectrum, fragment yields.

doi: 10.1103/PhysRevLett.119.222502
Citations: PlumX Metrics

2017PR07      Phys.Rev. C 96, 034608 (2017)

E.Prasad, D.J.Hinde, E.Williams, M.Dasgupta, I.P.Carter, K.J.Cook, D.Y.Jeung, D.H.Luong, C.S.Palshetkar, D.C.Rafferty, K.Ramachandran, C.Simenel, A.Wakhle

Fusion and quasifission studies for the 40Ca + 186W, 192Os reactions

NUCLEAR REACTIONS 186W(40Ca, X)226Pu*, E=199.3, 204.3, 214.3, 225.4 MeV; 192Os(40Ca, X)232Cm*, E=199.3, 204.3, 214.3, 225.3, 239.8, 262.6 MeV; measured mass-angle distributions (MADs) of the fragments, differential σ(θ, E), total fusion σ(E) using the CUBE spectrometer at the Heavy Ion Accelerator Facility of the Australian National University; deduced fragment mass ratio σ(MR), potential parameters from Coupled-channels calculations, Coulomb barriers as a function of orientation angles, parameters of the sticking-time distribution and average sticking time for quasifission components. Comparison with theoretical calculations using classical phenomenological approach by GEneral description of Fission observables (GEF) model. Relevance to quasifission and fusion-fission processes in the production of superheavy elements (SHE).

doi: 10.1103/PhysRevC.96.034608
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0932.

2017SI06      Phys.Rev. C 95, 031601 (2017)

C.Simenel, A.S.Umar, K.Godbey, M.Dasgupta, D.J.Hinde

How the Pauli exclusion principle affects fusion of atomic nuclei

NUCLEAR REACTIONS 40Ca(40Ca, X), E(cm)=48-64 MeV; 48Ca(48Ca, X), E(cm)=45-61 MeV; 208Pb(16O, X), E(cm)=65-90 MeV; calculated nucleus-nucleus potentials with and without Pauli exclusion principle, fusion σ(E), FHF and DCFHF σ(E) without couplings. 16O(16O, X), 40Ca(40Ca, X), 48Ca(40Ca, X), 208Pb(48Ca, X); calculated nucleus-nucleus potentials without (FHF) and with (DCFHF) Pauli exclusion principle. Coupled-channel calculations using CCFULL code, and Woods-Saxon fits of the Frozen Hartree-Fock (FHF) and density-constrained frozen Hartree-Fock (DCFHF) potentials. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.031601
Citations: PlumX Metrics

2017UM01      Phys.Rev. C 96, 024625 (2017)

A.S.Umar, C.Simenel, W.Ye

Transport properties of isospin asymmetric nuclear matter using the time-dependent Hartree-Fock method

NUCLEAR REACTIONS 208Pb(78Kr, X), (92Kr, X), E=8.5 MeV/nucleon; calculated impact parameter and energy-loss dependence of relevant observables, neutron and proton numbers transferred to and from the projectile-like fragments (PLFs), neutron and proton numbers of the PLFs as a function of impact parameter and the angle representing initial orientation of deformed projectile with respect to the beam axis, deflection functions, final kinetic energy versus the scattering angle for the reactions, sticking time as a function of impact parameter, N/Z values for PLFs and target-like fragments (TLFs) as a function of energy loss, (N-Z)/A values of primary PLFs and TLFs as function of contact time between the collision partners, distribution of PLF neutron and proton numbers in the N-Z plane, percent of total excitation energy carried by the PLFs as a function of energy loss. Time-dependent density-constrained Hartree-Fock (TDHF) method in full three dimensions.

doi: 10.1103/PhysRevC.96.024625
Citations: PlumX Metrics

2016BO04      Phys.Rev. C 93, 034604 (2016)

D.Bourgin, C.Simenel, S.Courtin, F.Haas

Microscopic study of 40Ca + 58-64Ni fusion reactions

NUCLEAR REACTIONS 58,64Ni(40Ca, X), E(cm)=64-100 MeV; calculated fusion σ(E), fusion barrier distributions D(E); deduced lowering of the fusion barrier heights. Frozen Hartree-Fock and coupled-channel calculations for σ(E). Time-dependent Hartree-Fock calculations for D(E) including couplings to inelastic and transfer channels. Neutron transfer probability calculations using the particle number projection technique. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.034604
Citations: PlumX Metrics

2016KA16      Phys.Rev. C 93, 044605 (2016)

S.Kalkal, E.C.Simpson, D.H.Luong, K.J.Cook, M.Dasgupta, D.J.Hinde, I.P.Carter, D.Y.Jeung, G.Mohanto, C.S.Palshetkar, E.Prasad, D.C.Rafferty, C.Simenel, K.Vo-Phuoc, E.Williams, L.R.Gasques, P.R.S.Gomes, R.Linares

Asymptotic and near-target direct breakup of 6Li and 7Li

NUCLEAR REACTIONS 58Ni(6Li, X), (7Li, X), E=13.07 MeV; 64Zn(6Li, X), E=13.55 MeV; 64Zn(7Li, X), E=13.60 MeV; measured energy, position, and time of flight (TOF) of the charged breakup fragments in coincidence mode using BALiN array, spectra of α-d and α-t breakup pairs at ANU Heavy Ion accelerator facility; deduced prompt and asymptotic breakups, probability of populating the excitation energies above the breakup threshold for 3+ resonant states of 6Li, excitation energy dependent mean-lives, β versus θ12 distributions, asymptotic, near-target, and total direct breakup differential σ(θ). Simulations using a modified version of Monte Carlo classical trajectory model code PLATYPUS.

doi: 10.1103/PhysRevC.93.044605
Citations: PlumX Metrics

2016LI42      Phys.Rev. C 94, 024616 (2016)

J.F.Liang, J.M.Allmond, C.J.Gross, P.E.Mueller, D.Shapira, R.L.Varner, M.Dasgupta, D.J.Hinde, C.Simenel, E.Williams, K.Vo-Phuoc, M.L.Brown, I.P.Carter, M.Evers, D.H.Luong, T.Ebadi, A.Wakhle

Examining the role of transfer coupling in sub-barrier fusion of 46, 50Ti + 124Sn

NUCLEAR REACTIONS 46,50Ti(124Sn, X), E(cm)=120-154 MeV; 124Sn(46Ti, X), (50Ti, X), E(cm)=116-140 MeV; measured evaporation residues (ERs), fusion σ(E) for the 124Sn beam at HRIBF-ORNL facility, and 46,50Ti beams at ANU 14UD tandem accelerator facility. Comparison of experimental reduced σ(E) values and reduced barrier distributions for 40,48Ca+96Zr, 40,48Ca+124Sn, 40,48Ca+132Sn, 46,50Ti+124Sn, 58,64Ni+124Sn 58,64Ni+132Sn and 64Ni+118Sn reactions. Comparison with coupled-channel calculations using CCFULL code.

doi: 10.1103/PhysRevC.94.024616
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2240.

2016PR03      Phys.Rev. C 93, 024607 (2016)

E.Prasad, A.Wakhle, D.J.Hinde, E.Williams, M.Dasgupta, M.Evers, D.H.Luong, G.Mohanto, C.Simenel, K.Vo-Phuoc

Exploring quasifission characteristics for 34S + 232Th forming 266Sg

NUCLEAR REACTIONS 232Th(32S, X)266Sg*, E=164.7, 167.2, 169.7, 172.7, 181.6, 191.2 MeV; measured reaction products, fission events, unsymmetrized distribution of fragments, average mass ratio of heavy asymmetric fragments to symmetric fragments as function of E/VB, angular momentum-distributions, fragment-fragment mass angle distribution (MAD) plots, mass drift as function of time. Monte Carlo simulations for mass angle distribution (MAD) plots.

doi: 10.1103/PhysRevC.93.024607
Citations: PlumX Metrics

2016RA26      Phys.Rev. C 94, 024607 (2016)

D.C.Rafferty, M.Dasgupta, D.J.Hinde, C.Simenel, E.C.Simpson, E.Williams, I.P.Carter, K.J.Cook, D.H.Luong, S.D.McNeil, K.Ramachandran, K.Vo-Phuoc, A.Wakhle

Multinucleon transfer in 16, 18O, 19F + 208Pb reactions at energies near the fusion barrier

NUCLEAR REACTIONS 208Pb(16O, X)12C/13C/14C/13N/14N/15N/14O/15O/17O/18O/17F, E(cm)=73.0, 72.5, 70.9, 69.3; 208Pb(18O, X)11B/12C/13C/14C/15C/16C/15N/16N/17N/16O/17O/19O/19F, E(cm)=73.6, 71.6, 71.1, 70.3, 69.6, 68.0 MeV; 208Pb(19F, X)12C/13C/14C/15N/16N/17N/16O/17O/18O/18F/20F/21F/20Ne/21Ne/22Ne, E(cm)=83.3, 81.3, 80.6, 78.9, 77.2, 75.5, 74.1 MeV; measured projectile-like fragments (PLFs) produced in +1p, +2n, +1n, -1n, -2n, -1p, -1p1n, -1p2n, -2p, -2p1n, -2p2n, -2p3n, -2p4n, -3p4n, +1p2n, +1p1n, +2n, -3p2n and -3p3n transfer channels, ΔE-E spectra, probabilities for various transfer processes, ratios of quasielastic and Rutherford scattering cross sections, distribution of excitation energies at ANU Heavy Ion accelerator facility.

doi: 10.1103/PhysRevC.94.024607
Citations: PlumX Metrics

2016UM04      Phys.Rev. C 94, 024605 (2016)

A.S.Umar, V.E.Oberacker, C.Simenel

Fusion and quasifission dynamics in the reactions 48Ca + 249Bk and 50Ti + 249Bk using a time-dependent Hartree-Fock approach

NUCLEAR REACTIONS 249Bk(48Ca, X), E(cm)=211, 218, 193-230 MeV; 249Bk(50Ti, X), E(cm)=233.2, 205-245 MeV; calculated contact time, mass and charge of the light fragment, and excitation energies of the heavy and light fragments as function of incident energy, mass-angle and mass-TKE distributions. Unrestricted time-dependent Hartree-Fock (TDHF) calculations, and the density-constrained TDHF method to extract NN potentials and excitation energy in each fragment. Relevance to the production of Z=117 and 119 superheavy elements, and fusion and quasifission processes.

doi: 10.1103/PhysRevC.94.024605
Citations: PlumX Metrics

2016VO07      Phys.Rev. C 94, 024612 (2016)

K.Vo-Phuoc, C.Simenel, E.C.Simpson

Dynamical effects in fusion with exotic nuclei

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54Ca; calculated HF proton and neutron root mean square radii for two parametrizations of the Skyrme functional, level energies and octupole deformations of first 3- states, time evolution of the octupole moment for 40Ca. Comparison with experimental values.

NUCLEAR REACTIONS 116Sn(40Ca, X), (42Ca, X), (44Ca, X), (46Ca, X), (48Ca, X), (50Ca, X), (52Ca, X), (54Ca, X), E near TDHF fusion threshold; calculated frozen HF barriers and bare potential barrier energies from frozen HF method, TDHF fusion thresholds, and coupled-channel methods. Vibrational couplings treated in coupled-channel framework and time-dependent Hartree-Fock (TDHF) calculations for near-barrier nucleon transfer, using two parametrizations of the Skyrme functional.

doi: 10.1103/PhysRevC.94.024612
Citations: PlumX Metrics

2015HA12      Phys.Rev. C 91, 041602 (2015)

K.Hammerton, Z.Kohley, D.J.Hinde, M.Dasgupta, A.Wakhle, E.Williams, V.E.Oberacker, A.S.Umar, I.P.Carter, K.J.Cook, J.Greene, D.Y.Jeung, D.H.Luong, S.D.McNeil, C.S.Palshetkar, D.C.Rafferty, C.Simenel, K.Stiefel

Reduced quasifission competition in fusion reactions forming neutron-rich heavy elements

NUCLEAR REACTIONS 180W(50Cr, X), E(cm)=222.6 MeV; 180W(52Cr, X), E(cm)=221.2 MeV; 180W(54Cr, X), E(cm)=219.8 MeV; 186W(50Cr, X), E(cm)=221.0 MeV; 184W(52Cr, X), E(cm)=220.1 MeV; 182W(54Cr, X), E(cm)=221.0 MeV; 184W(54Cr, X), E(cm)=218.9 MeV; 186W(54Cr, X), E(cm)=218.3 MeV; measured spectra of neutron-rich fragments from fusion-fission and quasifission in coincidence mode, mass-angle distributions (MADs) using the ANU CUBE detector system at ANU's Heavy-Ion Accelerator Facility; deduced strong dependence on the N/Z of the compound system in quasifission system. Comparison with microscopic time-dependent Hartree-Fock calculations of the quasifission process.

doi: 10.1103/PhysRevC.91.041602
Citations: PlumX Metrics

2015LA21      Int.J.Mod.Phys. E24, 1541005 (2015)

D.Lacroix, Y.Tanimura, G.Scamps, C.Simenel

Microscopic description of large amplitude collective motion in the nuclear astrophysics context

doi: 10.1142/S0218301315410050
Citations: PlumX Metrics

2015PR07      Phys.Rev. C 91, 064605 (2015)

E.Prasad, D.J.Hinde, K.Ramachandran, E.Williams, M.Dasgupta, I.P.Carter, K.J.Cook, D.Y.Jeung, D.H.Luong, S.McNeil, C.S.Palshetkar, D.C.Rafferty, C.Simenel, A.Wakhle, J.Khuyagbaatar, Ch.E.Dullmann, B.Lommel, B.Kindler

Observation of mass-asymmetric fission of mercury nuclei in heavy ion fusion

NUCLEAR REACTIONS 142Nd(40Ca, X)182Hg*, E=167.7, 194.9, 199.9, 210.0, 221.1 MeV; 182W(13C, X)195Hg*, E=60.0, 63.0, 66.0 MeV; measured fission fragments mass rations and mass-angle distributions using the CUBE spectrometer at 14UD Pelletron facility of ANU-Canberra; deduced mass-asymmetric fission of 182Hg compound nucleus at E*=33.6 MeV, and mass-symmetric fission of 195Hg compound nucleus at all energies.Kinematic reconstruction method. Comparison with results from mass-asymmetric fission of 180Hg in beta-delayed fission process, and with theoretical predictions.

doi: 10.1103/PhysRevC.91.064605
Citations: PlumX Metrics

2015SC11      Phys.Rev. C 92, 011602 (2015)

G.Scamps, C.Simenel, D.Lacroix

Superfluid dynamics of 258Fm fission

RADIOACTIVITY 258Fm(SF); calculated potential energies and density contours in symmetric compact fragment, symmetric elongated fragment, and asymmetric elongated fragment, distribution of TKEs, time evolution of pairing energy and quadrupole moment, proton and neutron number distributions in the fragments. Role of quantum shell effects and quantum fluctuations in the dynamics and formation of the fragments. Time-dependent Hartree-Fock theory including BCS dynamical pairing correlations. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.011602
Citations: PlumX Metrics

2015UM02      Phys.Rev. C 92, 024621 (2015)

A.S.Umar, V.E.Oberacker, C.Simenel

Shape evolution and collective dynamics of quasifission in the time-dependent Hartree-Fock approach

NUCLEAR REACTIONS 238U(40Ca, X), E(cm)=211 MeV; 249Bk(48Ca, X), E(cm)=218 MeV; 238U(48Ca, X), E(cm)=203 MeV; calculated effect of moment of inertia on the angular distribution of the fragments, contour plot of the time evolution of the mass density for 249Bk+48Ca reaction, time dependence on the moments inertia, impact parameter and temperature using fully microscopic time-dependent Hartee-Fock (TDHF) approach.

doi: 10.1103/PhysRevC.92.024621
Citations: PlumX Metrics

2014OB06      Phys.Rev. C 90, 054605 (2014)

V.E.Oberacker, A.S.Umar, C.Simenel

Dissipative dynamics in quasifission

NUCLEAR REACTIONS 238U(40Ca, X), (48Ca, X), E(cm)=209 MeV; calculated contact time, mass and charge of light fragment as function of impact parameter, total kinetic energy (TKE) of the quasifission (QF) fragments. Evidence of less QF in 48Ca+238U system than in 40Ca+238U, relevance to formation of superheavy elements (SHE). Discussed the effect due to magicity of 48Ca. TDHF calculations with Skyrme SLy4d energy density functional (EDF).

doi: 10.1103/PhysRevC.90.054605
Citations: PlumX Metrics

2014SI06      Phys.Rev. C 89, 031601 (2014)

C.Simenel, A.S.Umar

Formation and dynamics of fission fragments

RADIOACTIVITY 258,264Fm(SF); calculated adiabatic fission potential for symmetric fission as function of distance between fragments, time evolution of various energies using realistic mean-field computer codes, and time-dependent Hartree-Fock (TDHF) method.

doi: 10.1103/PhysRevC.89.031601
Citations: PlumX Metrics

2014UM01      Phys.Rev. C 89, 034611 (2014)

A.S.Umar, C.Simenel, V.E.Oberacker

Energy dependence of potential barriers and its effect on fusion cross sections

NUCLEAR REACTIONS 40Ca(40Ca, X), E(cm)=50, 53, 60, 65 MeV; 208Pb(16O, X), E(cm)=75, 80, 100 MeV; calculated ion-ion interaction potentials, fusion σ(E), fusion barrier distributions as function of incident energy. Density-constrained and direct time-dependent Hartree-Fock (DC-TDHF) methods. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034611
Citations: PlumX Metrics

2014WA41      Phys.Rev.Lett. 113, 182502 (2014)

A.Wakhle, C.Simenel, D.J.Hinde, M.Dasgupta, M.Evers, D.H.Luong, R.du Rietz, E.Williams

Interplay between Quantum Shells and Orientation in Quasifission

NUCLEAR REACTIONS 238U(40Ca, X), E=225.4 MeV; measured reaction products, fission fragments; deduced fragment yields, mass-angle distribution σ(θ). Comparison with microscopic quantum calculations.

doi: 10.1103/PhysRevLett.113.182502
Citations: PlumX Metrics

2013AV03      Eur.Phys.J. A 49, 76 (2013)

B.Avez, C.Simenel

Structure and direct decay of Giant Monopole Resonances

NUCLEAR STRUCTURE 16O; calculated, analyzed giant monopole resonance, monopole moment time evolution, strength function. Compared with available data. 100,132Sn; calculated, analyzed GMR (giant monopole resonance) strength function. RPA with time-dependent energy density functional method in linear response regime.

doi: 10.1140/epja/i2013-13076-9
Citations: PlumX Metrics

2013DU17      Phys.Rev. C 88, 054618 (2013)

R.du Rietz, E.Williams, D.J.Hinde, M.Dasgupta, M.Evers, C.J.Lin, D.H.Luong, C.Simenel, A.Wakhle

Mapping quasifission characteristics and timescales in heavy element formation reactions

NUCLEAR REACTIONS 186W(16O, X)202Pb*, E(cm)=102.1 MeV; 192Os(16O, X)208Po*, E(cm)=102.3 MeV; 178Hf(24Mg, X)202Po*, E(cm)=102.1 MeV; 168Er(34S, X)202Po*, E(cm)=128.4 MeV; 144Sm(48Ti, X)192Po*, E(cm)=164.2 MeV; 196Pt(16O, X)212Rn*, E(cm)=102.0 MeV; 208Pb(12C, X)220Ra*, E(cm)=59.9 MeV; 200Hg(16O, X)216Ra*, E(cm)=102.8 MeV; 178Hf(32S, X)210Ra*, E(cm)=138.3 MeV; 162Dy(48Ti, X)210Ra*, E(cm)=168.9 MeV; 208Pb(16O, X)224Th*, E(cm)=103.0 MeV; 186W(34S, X)220Th*, E(cm)=144.5 MeV; 170Er(48Ti, X)218Th*, E(cm)=174.8 MeV; 154Sm(64Ni, X)218Th*, E(cm)=200.6 MeV; 174Yb(48Ti, X)222U*, E(cm)=178.1 MeV; 194Pt(32S, X)226Pu*, E(cm)=144.4 MeV; 178Hf(48Ti, X)226Pu*, E(cm)=180.8 MeV; 208Pb(30Si, X)238Cm*, E(cm)=134.7 MeV; 202Hg(32S, X)234Cm*, E(cm)=149.6 MeV; 186W(48Ti, X)234Cm*, E(cm)=186.3 MeV; 170Er(64Ni, X)234Cm*, E(cm)=216.2 MeV; 238U(12C, X)250Cf*, E(cm)=66.3 MeV; 232Th(18O, X)250Cf*, E(cm)=84.9 MeV; 208Pb(32S, X)240Cf*, E(cm)=149.9 MeV; 198Pt(40Ca, X)238Cf*, E(cm)=188.7 MeV; 192Os(48Ti, X)240Cf*, E(cm)=195.0 MeV; 238U(16O, X)254Fm*, E(cm)=103.5 MeV; 196Pt(48Ti, X)244Fm*, E(cm)=193.3 MeV; 208Pb(40Ca, X)248No*, E(cm)=190.2 MeV; 200Hg(48Ti, X)248No*, E(cm)=197.5 MeV; 184W(64Ni, X)248No*, E(cm)=252.3 MeV; 238U(24Mg, X)262Rf*, E(cm)=129.3 MeV; 232Th(30Si, X)262Rf*, E(cm)=144.0 MeV; 208Pb(48Ti, X)256Rf*, E(cm)=210.6 MeV; 192Os(64Ni, X)256Rf*, E(cm)=239.2 MeV; 238U(28Si, X)266Sg*, E(cm)=150.7 MeV; 232Th(34S, X)266Sg*, E(cm)=166.7 MeV; 198Pt(64Ni, X)262Sg*, E(cm)=241.7 MeV; 232Th(40Ca, X)272Ds*, E(cm)=211.5 MeV; 208Pb(64Ni, X)272Ds*, E(cm)=259.5 MeV; 238U(40Ca, X)278Cn*, E(cm)=210.7 MeV; 238U(48Ti, X)286Fl*, E(cm)=214.6 MeV; measured reaction products using CUBE spectrometer of multiwire proportional counters (MWPCs), mass-angle distributions (MAD) at ANU's Heavy Ion accelerator facility; deduced systematic dependence of quasifission characteristics as a function of identity of colliding nuclei, entrance channel and compound nucleus fissilities, effects of nuclear structure at lower beam energies. Relevance to formation of superheavy elements.

doi: 10.1103/PhysRevC.88.054618
Citations: PlumX Metrics

2013SI21      Phys.Rev. C 88, 024617 (2013)

C.Simenel, R.Keser, A.S.Umar, V.E.Oberacker

Microscopic study of 16O+16O fusion

NUCLEAR REACTIONS 16O(16O, X), E(cm)=6-40 MeV; calculated fusion σ(E) using three dimensional time-dependent Hartree-Fock (TDHF), and density-constrained time-dependent Hartree Fock (DC-TDHF) calculations. 16O(16O, X), E(cm)=6-13 MeV; calculated fusion σ(E) with no coupling and couplings to first 3- states in one or both nuclei using coupled-channel approach (CCFULL computer code). Discussed role of coupling to low-lying octupole states. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.024617
Citations: PlumX Metrics

2013SI33      Phys.Rev. C 88, 064604 (2013)

C.Simenel, M.Dasgupta, D.J.Hinde, E.Williams

Microscopic approach to coupled-channels effects on fusion

NUCLEAR REACTIONS 40Ca(40Ca, X), E(cm)=49-61 MeV; 56Ni(56Ni, X), E(cm)=97-110 MeV; calculated differential σ(θ, E), σ(E)(fusion), strength functions for giant resonances (GMR and GQR), energies and deformations of first 2+, first 3- states and GQR, quadrupole phonon couplings, isodensity contours; deduced effect of collective vibrations on fusion cross sections, lowering of barrier heights. Coupled-channel (CC) calculations using Hartree-Fock (HF) theory, and frozen HF method, together with TDHF computation of properties of low-lying vibrational states and giant resonances.

doi: 10.1103/PhysRevC.88.064604
Citations: PlumX Metrics

2012LE04      Phys.Rev. C 85, 034333 (2012)

D.Lebhertz, S.Courtin, F.Haas, D.G.Jenkins, C.Simenel, M.-D.Salsac, D.A.Hutcheon, C.Beck, J.Cseh, J.Darai, C.Davis, R.G.Glover, A.Goasduff, P.E.Kent, G.Levai, P.L.Marley, A.Michalon, J.E.Pearson, M.Rousseau, N.Rowley, C.Ruiz

12C(16O, γ)28Si radiative capture: Structural and statistical aspects of the γ decay

NUCLEAR REACTIONS 12C(16O, γ)28Si, E=19.8, 20.5, 21.0 MeV; measured measured energy loss, time of flight, E(28Si recoils), Eγ, Iγ, γ(recoil)-coin, γ(θ), angular momentum distribution using DRAGON spectrometer at TRIUMF; deduced levels, J, π, total and partial radiative capture cross section, dinuclear lifetimes as function of mean angular momentum. Coupled-channel analysis for momentum distributions. GEANT3 simulations. Discussed statistical and structural aspects.

doi: 10.1103/PhysRevC.85.034333
Citations: PlumX Metrics

2012MO29      Phys.Lett. B 718, 441 (2012)

X.Mougeot, V.Lapoux, W.Mittig, N.Alamanos, F.Auger, B.Avez, D.Beaumel, Y.Blumenfeld, R.Dayras, A.Drouart, C.Force, L.Gaudefroy, A.Gillibert, J.Guillot, H.Iwasaki, T.Al Kalanee, N.Keeley, L.Nalpas, E.C.Pollacco, T.Roger, P.Roussel-Chomaz, D.Suzuki, K.W.Kemper, T.J.Mertzimekis, A.Pakou, K.Rusek, J.-A.Scarpaci, C.Simenel, I.Strojek, R.Wolski

New excited states in the halo nucleus 6He

NUCLEAR REACTIONS 1H(8He, t)6He, E=15.4 MeV/nucleon; measured reaction products, Et, It; deduced σ(θ), energy levels, J, π, resonances. Comparison with available data.

doi: 10.1016/j.physletb.2012.10.054
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2122. Data from this article have been entered in the XUNDL database. For more information, click here.

2012SI22      Eur.Phys.J. A 48, 152 (2012)


Nuclear quantum many-body dynamics - From collective vibrations to heavy-ion collisions

doi: 10.1140/epja/i2012-12152-0
Citations: PlumX Metrics

2011EV01      Phys.Rev. C 84, 054614 (2011)

M.Evers, M.Dasgupta, D.J.Hinde, D.H.Luong, R.Rafiei, R.du Rietz, C.Simenel

Cluster transfer in the reaction 16O + 208Pb at energies well below the fusion barrier: A possible doorway to energy dissipation

NUCLEAR REACTIONS 208Pb(16O, X), E(c.m.)=73.28 MeV; 181Ta(12C, X), E=53.79 MeV; measured particle spectra of projectile-like fragments, transfer probabilities for 1p, 2p and α particle transfers. Comparison with TDHF calculations.

doi: 10.1103/PhysRevC.84.054614
Citations: PlumX Metrics

2011LE03      Phys.Lett. B 697, 454 (2011)

A.Lemasson, A.Navin, M.Rejmund, N.Keeley, V.Zelevinsky, S.Bhattacharyya, A.Shrivastava, D.Bazin, D.Beaumel, Y.Blumenfeld, A.Chatterjee, D.Gupta, G.de France, B.Jacquot, M.Labiche, R.Lemmon, V.Nanal, J.Nyberg, R.G.Pillay, R.Raabe, K.Ramachandran, J.A.Scarpaci, C.Schmitt, C.Simenel, I.Stefan, C.N.Timis

Pair and single neutron transfer with Borromean 8He

NUCLEAR REACTIONS 197Au(8He, X)199Au, 65Cu(8He, X), E=19.9 MeV; measured reaction products, Eγ, Iγ; deduced 2n-transfer σ, model-independent ratio of 2n to 1n transfer reactions, absence of 67Cu nuclei.

doi: 10.1016/j.physletb.2011.02.038
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1901.

2011SI03      Phys.Rev.Lett. 106, 112502 (2011)


Particle-Number Fluctuations and Correlations in Transfer Reactions Obtained Using the Balian-Veneroni Variational Principle

NUCLEAR REACTIONS 40Ca(40Ca, X), E(cm) = 128 MeV; 90Zr(80Kr, X), (92Kr, X), E=8.5 MeV/nucleon; calculated fragment σ above the fusion barrier, total kinetic energy loss. Time-dependent Hartree-Fock code.

doi: 10.1103/PhysRevLett.106.112502
Citations: PlumX Metrics

2010KE02      Phys.Rev. C 81, 044613 (2010)

D.J.Kedziora, C.Simenel

New inverse quasifission mechanism to produce neutron-rich transfermium nuclei

NUCLEAR REACTIONS 232Th(250Cf, X), E(cm)=600-1200 MeV; calculated nucleon density contours, relative orientations of nuclei, number of neutrons and protons evaporated as function of impact parameter, and collision times using time-dependent Hartree-Fock calculations. Multinucleon transfers and and production of neutron-rich transfermium nuclei.

doi: 10.1103/PhysRevC.81.044613
Citations: PlumX Metrics

2010LE19      Phys.Rev. C 82, 044617 (2010)

A.Lemasson, A.Navin, N.Keeley, M.Rejmund, S.Bhattacharyya, A.Shrivastava, D.Bazin, D.Beaumel, Y.Blumenfeld, A.Chatterjee, D.Gupta, G.de France, B.Jacquot, M.Labiche, R.Lemmon, V.Nanal, J.Nyberg, R.G.Pillay, R.Raabe, K.Ramachandran, J.A.Scarpaci, C.Simenel, I.Stefan, C.N.Timis

Reactions with the double-Borromean nucleus 8He

NUCLEAR REACTIONS 65Cu(8He, X)65Cu/66Cu/67Cu/68Zn/69Zn/68Ga/69Ga/70Ga, [8He secondary beam from C(13C, X), E=75 MeV/nucleon primary reaction], E=19.9, 30.6 MeV; measured Eγ, Iγ, neutron spectra, (particle)γ-, (particle)nγ-, γγ-coin, residue σ for fusion and neutron transfer, σ(θ) for 4He, 6He and 8He using EXOGAM array and neutron wall. Coupled reaction channel calculations. CASCADE code used for statistical model calculation.

RADIOACTIVITY 8He(β-)[from 65Cu(8He, 8He), E=19.9, 30.6 MeV]; measured Eγ.

doi: 10.1103/PhysRevC.82.044617
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1869.

2010SI20      Phys.Rev.Lett. 105, 192701 (2010)


Particle Transfer Reactions with the Time-Dependent Hartree-Fock Theory Using a Particle Number Projection Technique

NUCLEAR REACTIONS 208Pb(16O, X), E(cm)65, 74.44 MeV; calculated density evolutions, probabilities, pairing correlations, fragment mass and charge distributions. TDHF-Bogolyubov theory.

doi: 10.1103/PhysRevLett.105.192701
Citations: PlumX Metrics

2009AV05      Int.J.Mod.Phys. E18, 2103 (2009)

B.Avez, C.Simenel, Ph.Chomaz

Pairing vibrations study from time-dependent Hartree-Fock-Bogoliubov formalism

NUCLEAR STRUCTURE 18,20,22O, 42,44,46Ca; calculated strength distributions of the two-neutron transfer, energies and main quasiparticle contributions of the pairing vibrations; deduced transitions to low energy states and to continuum, Giant Pairing Vibrations for Oxygen isotopes.

doi: 10.1142/S0218301309014378
Citations: PlumX Metrics

2009GO17      Phys.Rev.Lett. 103, 042701 (2009)

C.Golabek, C.Simenel

Collision Dynamics of Two 238U Atomic Nuclei

doi: 10.1103/PhysRevLett.103.042701
Citations: PlumX Metrics

2009SI33      Phys.Rev. C 80, 064309 (2009)

C.Simenel, Ph.Chomaz

Couplings between dipole and quadrupole vibrations in tin isotopes

NUCLEAR STRUCTURE A=100-140, Z=50; calculated isovector giant dipole (GDR) and isoscalar giant quadrupole (GQR) resonance energies and transition probabilities using time-dependent Hartree-Fock theory with a Skyrme energy density functional. 132Sn; calculated TDHF energy and static quadrupole moment. Interpretation within the Goldhaber-Teller macroscopic model.

doi: 10.1103/PhysRevC.80.064309
Citations: PlumX Metrics

2008AV06      Phys.Rev. C 78, 044318 (2008)

B.Avez, C.Simenel, Ph.Chomaz

Pairing vibrations study with the time-dependent Hartree-Fock-Bogoliubov theory

NUCLEAR STRUCTURE 18,20,22O, 42,44,46Ca; calculated pairing vibration strength distributions. Time-dependent Hartree-Fock-Bogoliubov calculations.

doi: 10.1103/PhysRevC.78.044318
Citations: PlumX Metrics

2008CH18      Phys.Rev.Lett. 101, 032701 (2008)

A.Chatterjee, A.Navin, A.Shrivastava, S.Bhattacharyya, M.Rejmund, N.Keeley, V.Nanal, J.Nyberg, R.G.Pillay, K.Ramachandran, I.Stefan, D.Bazin, D.Beaumel, Y.Blumenfeld, G.de France, D.Gupta, M.Labiche, A.Lemasson, R.Lemmon, R.Raabe, J.A.Scarpaci, C.Simenel, C.Timis

1n and 2n Transfer With the Borromean Nucleus 6He Near the Coulomb Barrier

NUCLEAR REACTIONS 65Cu(6He, 5He), (6He, α), E=22.6 MeV; measured Eα, Iα, Eγ, Iγ, nαγ-coin, 1n, 2n transfer σ(θ). Coupled channel analysis.

doi: 10.1103/PhysRevLett.101.032701
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1668.

2008HO10      Phys.Rev. C 78, 047302 (2008)

M.E.Howard, R.G.T.Zegers, Sam M.Austin, D.Bazin, B.A.Brown, A.L.Cole, B.Davids, M.Famiano, Y.Fujita, A.Gade, D.Galaviz, G.W.Hitt, M.Matos, S.D.Reitzner, C.Samanta, L.J.Schradin, Y.Shimbara, E.E.Smith, C.Simenel

Gamow-Teller strengths in 24Na using the 24Mg(t, 3He) reaction at 115A MeV

NUCLEAR REACTIONS 24Mg(t, 3He), E=115 MeV/nucleon; measured particle spectra, σ(θ); deduced levels, B(GT). Comparisons of GT values with 24Mg(3He, t), (d, 2He) reactions and USDA, USDB calculations.

doi: 10.1103/PhysRevC.78.047302
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1663. Data from this article have been entered in the XUNDL database. For more information, click here.

2008SI11      Int.J.Mod.Phys. E17, 31 (2008)

C.Simenel, A.Benoit

Time-dependent Hartree-Fock description of heavy ions fusions

NUCLEAR REACTIONS 208Pb(16O, X), E(cm)=74-110 MeV; 154Sm, 238U(16O, X), E(cm)=56-95 MeV; calculated fusion barriers, deformation parameters, and fusion cross sections using Time-Dependent Hartree-Fock theory. Comparison with experimental data.

doi: 10.1142/S0218301308009525
Citations: PlumX Metrics

2007SI22      Phys.Rev. C 76, 024609 (2007)

C.Simenel, Ph.Chomaz, G.de France

Fusion process studied with a preequilibrium giant dipole resonance in time-dependent Hartree-Fock theory

doi: 10.1103/PhysRevC.76.024609
Citations: PlumX Metrics

2007ZE06      Phys.Rev.Lett. 99, 202501 (2007)

R.G.Zegers, T.Adachi, H.Akimune, S.M.Austin, A.M.van den Berg, B.A.Brown, Y.Fujita, M.Fujiwara, S.Gales, C.J.Guess, M.N.Harakeh, H.Hashimoto, K.Hatanaka, R.Hayami, G.W.Hitt, M.E.Howard, M.Itoh, T.Kawabata, K.Kawase, M.Kinoshita, M.Matsubara, K.Nakanishi, S.Nakayama, S.Okumura, T.Ohta, Y.Sakemi, Y.Shimbara, Y.Shimizu, C.Scholl, C.Simenel, Y.Tameshige, A.Tamii, M.Uchida, T.Yamagata, M.Yosoi

Extraction of Weak Transition Strengths via the (3He, t) Reaction at 420 MeV

NUCLEAR REACTIONS 12,13C, 18O, 26Mg, 58Ni, 60Ni, 90Zr, 118Sn, 208Pb(3He, t), E=420 MeV; measured triton spectra and cross sections. Deduced B(GT).

doi: 10.1103/PhysRevLett.99.202501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2088.

2006CH52      Eur.Phys.J. A 30, 397 (2006)

A.Chatillon, Ch.Theisen, P.T.Greenlees, G.Auger, J.E.Bastin, E.Bouchez, B.Bouriquet, J.M.Casandjian, R.Cee, E.Clement, R.Dayras, G.de France, R.de Tourreil, S.Eeckhaudt, A.Gorgen, T.Grahn, S.Grevy, K.Hauschild, R.-D.Herzberg, P.J.C.Ikin, G.D.Jones, P.Jones, R.Julin, S.Juutinen, H.Kettunen, A.Korichi, W.Korten, Y.Le Coz, M.Leino, A.Lopez-Martens, S.M.Lukyanov, Yu.E.Penionzhkevich, J.Perkowski, A.Pritchard, P.Rahkila, M.Rejmund, J.Saren, C.Scholey, S.Siem, M.G.Saint-Laurent, C.Simenel, Yu.G.Sobolev, Ch.Stodel, J.Uusitalo, A.Villari, M.Bender, P.Bonche, P.-H.Heenen

Spectroscopy and single-particle structure of the odd-Z heavy elements 255Lr, 251Md and 247Es

RADIOACTIVITY 255Lr, 251Md(α) [from 209Bi(48Ca, 2n) and subsequent decay]; measured Eα, Eγ, E(ce), αγ-, α(ce)-coin, Qα, T1/2. 255Lr, 251Md, 247Es deduced levels, J, π, configurations.

doi: 10.1140/epja/i2006-10134-5
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2006HI08      Nucl.Instrum.Methods Phys.Res. A566, 264 (2006)

G.W.Hitt, S.M.Austin, D.Bazin, A.L.Cole, J.Dietrich, A.Gade, M.E.Howard, S.D.Reitzner, B.M.Sherrill, C.Simenel, E.E.Smith, J.Stetson, A.Stolz, R.G.T.Zegers

Development of a secondary triton beam from primary 16, 18O beams for (t, 3He) experiments at intermediate energies

NUCLEAR REACTIONS Be(18O, tX), E=120 MeV/nucleon; Be(16O, tX), E=150 MeV/nucleon; measured triton yields vs energy, target thickness. 24Mg(t, 3He), E=115 MeV/nucleon; measured excitation energy spectra.

doi: 10.1016/j.nima.2006.07.045
Citations: PlumX Metrics

2004CH08      Nucl.Phys. A731, 188 (2004)

Ph.Chomaz, C.Simenel

Coupled collective motion in nuclear reactions

doi: 10.1016/j.nuclphysa.2003.11.031
Citations: PlumX Metrics

2004NA32      Phys.Rev. C 70, 044601 (2004)

A.Navin, V.Tripathi, Y.Blumenfeld, V.Nanal, C.Simenel, J.M.Casandjian, G.de France, R.Raabe, D.Bazin, A.Chatterjee, M.Dasgupta, S.Kailas, R.C.Lemmon, K.Mahata, R.G.Pillay, E.C.Pollacco, K.Ramachandran, M.Rejmund, A.Shrivastava, J.L.Sida, E.Tryggestad

Direct and compound reactions induced by unstable helium beams near the Coulomb barrier

NUCLEAR REACTIONS 63,65Cu, 188,190,192Os(α, X), E=16-34 MeV; 63Cu(6He, X), E=30 MeV; 65Cu(6He, X), E=19.5, 30 MeV; 63Cu(8He, X), E=27 MeV; 188,190,192Os(6He, X), E=30 MeV; measured Eγ, Iγ, particle spectra, fusion, transfer, and evaporation residue σ, σ(θ).

doi: 10.1103/PhysRevC.70.044601
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD6021.

2004SI24      Phys.Rev.Lett. 93, 102701 (2004)

C.Simenel, Ph.Chomaz, G.de France

Quantum Calculations of Coulomb Reorientation for Sub-Barrier Fusion

NUCLEAR REACTIONS 208Pb(24Mg, X), E(cm)=105-120 MeV; calculated fusion barrier distribution, Coulomb reorientation effects.

doi: 10.1103/PhysRevLett.93.102701
Citations: PlumX Metrics

2003SI10      Phys.Rev. C 68, 024302 (2003)

C.Simenel, Ph.Chomaz

Nonlinear vibrations in nuclei

NUCLEAR STRUCTURE 40Ca, 90Zr, 208Pb; calculated giant resonance energies, widths, coupling between one- and two-phonon states. Time-dependent Hartree-Fock calculations.

doi: 10.1103/PhysRevC.68.024302
Citations: PlumX Metrics

2001SI16      Phys.Rev.Lett. 86, 2971 (2001)

C.Simenel, Ph.Chomaz, G.de France

Quantum Calculation of the Dipole Excitation in Fusion Reactions

NUCLEAR REACTIONS 20O(20Mg, X), E(cm)=1 MeV/nucleon; calculated time evolution of pre-equilibrium dipole vibration, deformation features, γ-ray emission. Time-dependent Hartree-Fock approach.

doi: 10.1103/PhysRevLett.86.2971
Citations: PlumX Metrics

Back to query form