NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = K.Stiefel

Found 10 matches.

Back to query form



2022KU08      Phys.Rev. C 105, 034314 (2022)

A.N.Kuchera, D.Bazin, T.Phan, J.A.Tostevin, M.Babo, T.Baumann, P.C.Bender, M.Bowry, J.Bradt, J.Brown, P.A.DeYoung, B.Elman, J.E.Finck, A.Gade, G.F.Grinyer, M.D.Jones, B.Longfellow, E.Lunderberg, T.H.Redpath, W.F.Rogers, K.Stiefel, M.Thoennessen, D.Votaw, D.Weisshaar, K.Whitmore, R.B.Wiringa

Mirror nucleon removal reactions in p-shell nuclei

NUCLEAR REACTIONS 9Be(7Li, 6He), (7Li, 6Li), (9Li, 8Li), (10Be, 9Li) E=80 MeV/nucleon; measured reaction products, Eγ, Iγ; deduced partial σ to the individual final states of the daughter nuclei. Comparison to fully microscopic variational Monte Carlo (VMC) model calculations. Systematics of partial σ for nucleon removal reactions in mirror pairs. CAESAR array of 170 CsI(Te) scintillators. Secondaries beam produced in 9Be(16O, X), E=150 MeV/nucleon reaction and delivered to the target via A1900 fragment separator (NSCL-MSU).

doi: 10.1103/PhysRevC.105.034314
Citations: PlumX Metrics


2021CH47      Phys.Rev. C 104, 034313 (2021)

D.Chrisman, A.N.Kuchera, T.Baumann, A.Blake, B.A.Brown, J.Brown, C.Cochran, P.A.DeYoung, J.E.Finck, N.Frank, P.Gueye, H.Karrick, H.Liu, J.McDonaugh, T.Mix, B.Monteagudo, T.H.Redpath, W.F.Rogers, R.Seaton-Todd, A.Spyrou, K.Stiefel, M.Thoennessen, J.A.Tostevin, D.Votaw

Neutron-unbound states in 31Ne

NUCLEAR REACTIONS 9Be(33Mg, X)31Ne, E=89 MeV/nucleon; measured reaction fragments and neutrons detected by the MoNa-LISA-Sweeper array at NSCL-MSU cyclotron facility; reconstructed decay energy for 30Ne+n from invariant mass spectroscopy. 31Ne; deduced levels, neutron-unbound states from the two-body decay-energy spectrum. Comparison with shell-model calculations using FSU interaction within the NUSHELLX code, combined with two-proton knockout cross-section calculations using the eikonal reaction theory. Relevance to 31Ne being a prime example of a halo nucleus in the island of inversion.

doi: 10.1103/PhysRevC.104.034313
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2020VO08      Phys.Rev. C 102, 014325 (2020)

D.Votaw, P.A.DeYoung, T.Baumann, A.Blake, J.Boone, J.Brown, D.Chrisman, J.E.Finck, N.Frank, J.Gombas, P.Gueye, J.Hinnefeld, H.Karrick, A.N.Kuchera, H.Liu, B.Luther, F.Ndayisabye, M.Neal, J.Owens-Fryar, J.Pereira, C.Persch, T.Phan, T.Redpath, W.F.Rogers, S.Stephenson, K.Stiefel, C.Sword, A.Wantz, M.Thoennessen

Low-lying level structure of the neutron-unbound N=7 isotones

NUCLEAR REACTIONS 9Be(11Be, 8He), (11Be, 9Li), E=44 MeV/nucleon; 9Be(12B, 8He), (12B, 9Li), E=45 MeV/nucleon, [secondary 11Be and 12B beams from 9Be(16O, X), E=120 MeV/nucleon, followed by separation of ions of interest using A1900 Fragment Separator at the Coupled Cyclotron Facility of NSCL-MSU]; measured E(n), I(n), charged-particles, (particle)n-coin using the MoNA-LISA detector array for neutron detection and cathode readout drift chambers (CRDCs) for charged particles; deduced decay energy spectra of 9He and 10Li and neutron-unbound states. 9He, 10Li; deduced levels, resonances, widths, J, π, l-values of neutrons from the resonances in 9He and 10Li. Comparison with previous experimental results.

doi: 10.1103/PhysRevC.102.014325
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2019HA17      Phys.Rev. C 99, 054621 (2019)

K.Hammerton, D.J.Morrissey, Z.Kohley, D.J.Hinde, M.Dasgupta, A.Wakhle, E.Williams, I.P.Carter, K.J.Cook, J.Greene, D.Y.Jeung, D.H.Luong, S.D.McNeil, C.Palshetkar, D.C.Rafferty, C.Simenel, K.Stiefel

Entrance channel effects on the quasifission reaction channel in Cr + W systems

NUCLEAR REACTIONS 180W(50Cr, X)230Cf*, E(cm)=210.0 MeV; 180W(52Cr, X)232Cf*, E(cm)=214.1; 180W(54Cr, X)234Cf*, E(cm)=215.4 MeV; 182W(54Cr, X)236Cf*, E(cm)=213.8 MeV; 184W(52Cr, X)236Cf*, E(cm)=209.7 MeV; 184W(54Cr, X)238Cf*, E(cm)=211.8 MeV; 186W(50Cr, X)236Cf*, E(cm)=201.3 MeV; 186W(54Cr, X)240Cf*, E(cm)=209.5 MeV; measured fission fragments, mass-angle distributions, mass distribution of fragments using the CUBE detector for charged particle detection at the Heavy Ion Accelerator Facility of the Australian National University; deduced curvature parameter, entrance channel effects, and impact of target deformation effects on the quasifission process.

doi: 10.1103/PhysRevC.99.054621
Citations: PlumX Metrics


2018WA06      Phys.Rev. C 97, 021602 (2018)

A.Wakhle, K.Hammerton, Z.Kohley, D.J.Morrissey, K.Stiefel, J.Yurkon, J.Walshe, K.J.Cook, M.Dasgupta, D.J.Hinde, D.J.Jeung, E.Prasad, D.C.Rafferty, C.Simenel, E.C.Simpson, K.Vo-Phuoc, J.King, W.Loveland, R.Yanez

Capture cross sections for the synthesis of new heavy nuclei using radioactive beams

NUCLEAR REACTIONS 181Ta(39K, X), E=180-210 MeV; 181Ta(46K, X), E=190-215 MeV; measured time of flight and relative position of fission fragments, capture-fission σ(E) from a binary event using 14UD Heavy-ion accelerator facility of Australian National University (ANU), and Coupled Cyclotron Facility (CCF) projectile fragmentation facility at NSCL-MSU, and the Coincident Fission Fragment Detector (CFFD) at the ReA3 facility at NSCL; deduced velocity vectors of the coincident fragments, masses and angular distributions of fission fragments. Comparison with several phenomenological models and microscopic time-dependent Hartree-Fock calculations. Discussed implications for the synthesis of heavy nuclei at radioactive beam facilities. 197Au(31Al, X), E(cm), 248Cm(26Mg, X), E(cm)=110-160 MeV; 248Cm(48Ca, X), E(cm)=195-230 MeV; 154Sm(31Al, X), E(cm)=125-190 MeV; 238U(48Ca, X), E(cm)=185-235 MeV; 238U(64Ni, X), E(cm)=260-300 MeV; compiled theoretical and experimental values of capture fission σ(E). Comparison with several theoretical results.

doi: 10.1103/PhysRevC.97.021602
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2285.


2017JO06      Phys.Rev. C 95, 044323 (2017), Erratum Phys.Rev. C 96, 059902 (2017)

M.D.Jones, T.Baumann, J.Brett, J.Bullaro, P.A.DeYoung, J.E.Finck, N.Frank, K.Hammerton, J.Hinnefeld, Z.Kohley, A.N.Kuchera, J.Pereira, A.Rabeh, J.K.Smith, A.Spyrou, S.L.Stephenson, K.Stiefel, M.Tuttle-Timm, R.G.T.Zegers, M.Thoennessen

Neutron-unbound excited states of 23N

NUCLEAR REACTIONS 2H(24O, p)23N, E=83.4 MeV/nucleon, [secondary 24O beam from 9Be(48Ca, X), E=140 MeV/nucleon primary reaction at NSCL-MSU accelerator facility]; measured reaction products and identified via ΔE vs. time-of-flight measurement, neutron spectra from the decay of 23N excited states using MONA and LISA arrays of plastic scintillators; analyzed two-body decay energy spectrum for 22N+1n. 23N; deduced levels above S(n), J, π, S(n), S(2n), configurations; calculated levels, J, π using shell-model and several interactions.

doi: 10.1103/PhysRevC.95.044323
Citations: PlumX Metrics


2017JO12      Phys.Rev. C 96, 054322 (2017)

M.D.Jones, K.Fossez, T.Baumann, P.A.DeYoung, J.E.Finck, N.Frank, A.N.Kuchera, N.Michel, W.Nazarewicz, J.Rotureau, J.K.Smith, S.L.Stephenson, K.Stiefel, M.Thoennessen, R.G.T.Zegers

Search for excited states in 25O

NUCLEAR REACTIONS 2H(24O, 25O), E=83.4 MeV/nucleon, [secondary 24O beam from 9Be(48Ca, X) primary reaction using A1900 fragment separator at NSCL-MSU facility]; measured 24O particles by a position and energy sensitive charged particle detector and separated based on energy loss and time-of-flight, and neutrons from 25O decay by the MoNA-LISA detector array. 25O; deduced two-body (24O+n) decay energy spectrum by invariant-mass spectroscopy technique, neutron-unbound ground state, L-transfer, asymptotic normalization coefficients, cross section and width of a possible 1/2+ resonance above the ground state. Comparisons with previous experimental results, and with theoretical calculations using complex-energy Gamow Shell Model (GSM) and Density Matrix Renormalization Group (DMRG) method with a finite-range two-body interaction.

NUCLEAR STRUCTURE 23,24,25,26,27,28O; calculated levels, J, π using complex-energy Gamow Shell Model (GSM) and Density Matrix Renormalization Group (DMRG) method with a finite-range two-body interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.054322
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2015HA12      Phys.Rev. C 91, 041602 (2015)

K.Hammerton, Z.Kohley, D.J.Hinde, M.Dasgupta, A.Wakhle, E.Williams, V.E.Oberacker, A.S.Umar, I.P.Carter, K.J.Cook, J.Greene, D.Y.Jeung, D.H.Luong, S.D.McNeil, C.S.Palshetkar, D.C.Rafferty, C.Simenel, K.Stiefel

Reduced quasifission competition in fusion reactions forming neutron-rich heavy elements

NUCLEAR REACTIONS 180W(50Cr, X), E(cm)=222.6 MeV; 180W(52Cr, X), E(cm)=221.2 MeV; 180W(54Cr, X), E(cm)=219.8 MeV; 186W(50Cr, X), E(cm)=221.0 MeV; 184W(52Cr, X), E(cm)=220.1 MeV; 182W(54Cr, X), E(cm)=221.0 MeV; 184W(54Cr, X), E(cm)=218.9 MeV; 186W(54Cr, X), E(cm)=218.3 MeV; measured spectra of neutron-rich fragments from fusion-fission and quasifission in coincidence mode, mass-angle distributions (MADs) using the ANU CUBE detector system at ANU's Heavy-Ion Accelerator Facility; deduced strong dependence on the N/Z of the compound system in quasifission system. Comparison with microscopic time-dependent Hartree-Fock calculations of the quasifission process.

doi: 10.1103/PhysRevC.91.041602
Citations: PlumX Metrics


2015JO14      Phys.Rev. C 92, 051306 (2015)

M.D.Jones, N.Frank, T.Baumann, J.Brett, J.Bullaro, P.A.DeYoung, J.E.Finck, K.Hammerton, J.Hinnefeld, Z.Kohley, A.N.Kuchera, J.Pereira, A.Rabeh, W.F.Rogers, J.K.Smith, A.Spyrou, S.L.Stephenson, K.Stiefel, M.Tuttle-Timm, R.G.T.Zegers, M.Thoennessen

Two-neutron sequential decay of 24O

NUCLEAR REACTIONS 2H(24O, 2n22O), E=83.4 MeV/nucleon, [24O secondary beam from 9Be(48Ca, X), E=140 MeV/nucleon primary reaction at NSCL-MSU]; measured charged-particle spectra using position- and energy-sensitive detectors, E(n) and I(n) using MONA-LISA array, three-body decay energy, angular correlations. 24O; deduced level, resonance, l-transfer, width, evidence for two-neutron sequential decay from resonant state. 23O; deduced intermediate level, J, π through one-neutron decay of 24O resonant state. Comparison with di-neutron and phase-space model calculations for the three-body breakup.

doi: 10.1103/PhysRevC.92.051306
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014ST25      Phys.Rev. C 90, 061605 (2014)

K.Stiefel, Z.Kohley, R.T.deSouza, S.Hudan, K.Hammerton

Symmetry energy dependence of long-timescale isospin transport

NUCLEAR REACTIONS 64Zn(64Zn, X), E=45 MeV/nucleon; analyzed cos(α) distribution, yield of dinuclear breakup events as function of the time of breakup, correlation between the average breakup time of the dinuclear projectile-like fragments (PLF) and cos(α), average lifetimes extracted from the two-component fit, N/Z distributions. Constrained molecular dynamics (CoMD) model. Detailed comparisons with experimental data from FIRST charged particle array at the Cyclotron Institute of Texas A and M University.

doi: 10.1103/PhysRevC.90.061605
Citations: PlumX Metrics


Back to query form