NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = R.Bernard

Found 19 matches.

Back to query form



2023BE02      Eur.Phys.J. A 59, 51 (2023)

R.N.Bernard, C.Simenel, G.Blanchon

Hartree-Fock-Bogoliubov study of quantum shell effects on the path to fission in 180Hg, 236U and 256Fm

NUCLEAR STRUCTURE 180Hg, 236U, 256Fm; calculated potential energy surfaces, occupation numbers, density distributions of the nuclei on their fission path just before scission; deduced shell effect impacts. Hartree-Fock-Bogoliubov calculations using the D1S parametrisation of the Gogny interaction, Strutinsky shell energy correction and single-particle energy level density near the Fermi surface.

doi: 10.1140/epja/s10050-023-00964-2
Citations: PlumX Metrics


2022LA02      Phys.Rev. C 105, 034617 (2022)

N.-W.T.Lau, R.N.Bernard, C.Simenel

Smoothing of one- and two-dimensional discontinuities in potential energy surfaces

NUCLEAR STRUCTURE 252Cf, 222Th, 218Ra; calculated one-dimensional fission paths in Q20 direction, two-dimensional potential energy surfaces (PESs) in (Q20, Q30) plane. Axially symmetric calculations using self-consistent Hartree-Fock-Bogoliubov model with Gogny D1S interaction. Smoothing of discontinuities using optimised tree search algorithms to explore higher-dimensional potential energy surfaces.

doi: 10.1103/PhysRevC.105.034617
Citations: PlumX Metrics


2021BL03      Eur.Phys.J. A 57, 13 (2021)

G.Blanchon, M.Dupuis, H.F.Arellano, R.N.Bernard, B.Morillon, P.Romain

Diving into Raynal's DWBA code

doi: 10.1140/epja/s10050-020-00331-5
Citations: PlumX Metrics


2020BE09      Phys.Rev. C 101, 044615 (2020)

R.N.Bernard, N.Pillet, L.M.Robledo, M.Anguiano

Description of the asymmetric to symmetric fission transition in the neutron-deficient thorium isotopes: Role of the tensor force

RADIOACTIVITY 216,222,226,230Th, 236U, 240Pu(SF); calculated energy differences for Hartree-Fock-Bogoliubov (HFB), mean field, and pairing energies for spherical, ground-state, first barrier and second well configurations. 216,222,226,230Th; calculated potential energy surfaces (PESs) in (Q20, Q30) and (Q20, Q40) planes, symmetric and asymmetric fission paths, fission valleys, energy differences for HFB, mean field, pairing energy, tensor energy, HFB with respect to the ground state, total tensor energy, proton and neutron pairing components as a function of Q40, total kinetic energy (TKE) and total excitation energy (TXE) at the exit point in the symmetric valley, mean neutron kinetic energy. 216,218,220,222,224,226,228,230,232Th, 236U, 240Pu; calculated barrier heights for symmetric and asymmetric paths. 106,107,108,109,110,111,112,113,114,115Rh; calculated S(n). Hartree-Fock-Bogoliubov (HFB) approach with D1ST2a Gogny plus tensor term. Comparison with results from standard D1S Gogny interaction, and with experimental data.

doi: 10.1103/PhysRevC.101.044615
Citations: PlumX Metrics


2020BE28      J.Phys.(London) G47, 113002 (2020)

M.Bender, R.Bernard, G.Bertsch, S.Chiba, J.Dobaczewski, N.Dubray, S.A.Giuliani, K.Hagino, D.Lacroix, Z.Li, P.Magierski, J.Maruhn, W.Nazarewicz, J.Pei, S.Peru, N.Pillet, J.Randrup, D.Regnier, P.G.Reinhard, L.M.Robledo, W.Ryssens, J.Sadhukhan, G.Scamps, N.Schunck, C.Simenel, J.Skalski, I.Stetcu, P.Stevenson, S.Umar, M.Verriere, D.Vretenar, M.Warda, S.Aberg

Future of nuclear fission theory

doi: 10.1088/1361-6471/abab4f
Citations: PlumX Metrics


2020PR14      Phys.Lett. B 811, 135941 (2020)

E.Prasad, D.J.Hinde, M.Dasgupta, D.Y.Jeung, A.C.Berriman, B.M.A.Swinton-Bland, C.Simenel, E.C.Simpson, R.Bernard, E.Williams, K.J.Cook, D.C.Rafferty, C.Sengupta, J.F.Smith, K.Vo-Phuoc, J.Walshe

Systematics of the mass-asymmetric fission of excited nuclei from 176Os to 206Pb

NUCLEAR REACTIONS 176Os, 176,180Pt, 192,198Hg, 206Pb(p, F), (12C, F), (32S, F), (40Ca, F), (48Ca, F), E not given; analyzed available data; deduced mass-asymmetric fission systematics, total kinetic energy distributions, fission mass-ratio distributions. Comparison with GEF calculations.

doi: 10.1016/j.physletb.2020.135941
Citations: PlumX Metrics


2019AN08      Phys.Rev. C 99, 034302 (2019)

M.Anguiano, A.M.Lallena, R.Bernard, G.Co

Neutron gas and pairing

NUCLEAR STRUCTURE 22O, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90Ni, 140,142,144,146,150,160,164,166,168,170,172Sn; calculated neutron rms radii, wave functions of neutron single particle states in 90Ni, neutron density distributions in 90Ni and 150Sn, and Hartree-Fock single particle energies and BCS occupation probabilities of single particle states in 86,88,90Ni. Hartree-Fock plus Bardeen-Cooper-Schrieffer (HF+BCS) calculations using D1S interaction. Discussed neutron gas effects in the description of nuclei with large neutron excess.

doi: 10.1103/PhysRevC.99.034302
Citations: PlumX Metrics


2019BE21      Phys.Rev. C 99, 064301 (2019)

R.Bernard, S.A.Giuliani, L.M.Robledo

Role of dynamic pairing correlations in fission dynamics

RADIOACTIVITY 236U, 240Pu, 252Cf(SF); calculated contour plots of Hartree-Fock-Bogoliubov (HFB) energies for different quadrupole moments, potential energies as function of quadrupole moment, particle-particle correlation energies, octupole and hexadecapole moments and neck parameters, spontaneous fission half-lives, fission barrier heights, and fission isomer excitation energies. Restricted variation after projection (RVAP) particle number projection (PNP) method with dynamic pairing correlations, Gogny D1M parametrization, and inertias from adiabatic time dependent Hartree-Fock-Bogoliubov (ATDHFB) theory and the Gaussian overlap approximation (GOA) to the generator coordinate method (GCM).

doi: 10.1103/PhysRevC.99.064301
Citations: PlumX Metrics


2017BE08      Acta Phys.Pol. B48, 249 (2017)

R.N.Bernard, L.M.Robledo, T.R.Rodriguez

Octupole Correlations in a Symmetry Conserving Framework

NUCLEAR STRUCTURE 144Ba; calculated potential surface vs deformation β2 and β3 parameters, mass excess, levels, J, π, potential surface vs deformation β2 and β3 parameters, mass excess for specified states J, π, transition strength matrix elements using microscopic framework involving angular momentum, parity and particle number projected intrinsic HFB states, Gogny D1S interaction; deduce strong octupole collectivity

doi: 10.5506/APhysPolB.48.249
Citations: PlumX Metrics


2017BL05      Eur.Phys.J. A 53, 88 (2017)

G.Blanchon, M.Dupuis, R.N.Bernard, H.F.Arellano

Asymmetry dependence of Gogny-based optical potential

NUCLEAR REACTIONS 40,48Ca(n, n'), (p, p'), E=0-36 MeV; calculated σ(θ), analyzing power, inelastic σ using potentials generated by NSM (Nuclear Structure Method) with Gogny effective interaction. 40,48Ca(p, p), E=0-36 MeV; calculated σ(θ) using Perey-Buck equivalent potential and NSM.

doi: 10.1140/epja/i2017-12268-7
Citations: PlumX Metrics


2017BU07      Phys.Rev.Lett. 118, 152504 (2017)

B.Bucher, S.Zhu, C.Y.Wu, R.V.F.Janssens, R.N.Bernard, L.M.Robledo, T.R.Rodriguez, D.Cline, A.B.Hayes, A.D.Ayangeakaa, M.Q.Buckner, C.M.Campbell, M.P.Carpenter, J.A.Clark, H.L.Crawford, H.M.David, C.Dickerson, J.Harker, C.R.Hoffman, B.P.Kay, F.G.Kondev, T.Lauritsen, A.O.Macchiavelli, R.C.Pardo, G.Savard, D.Seweryniak, R.Vondrasek

Direct Evidence for Octupole Deformation in 146Ba and the Origin of Large E1 Moment Variations in Reflection-Asymmetric Nuclei

NUCLEAR REACTIONS 208Pb(146Ba, 146Ba'), E=659 MeV; measured reaction products, Eγ, Iγ. 144,146,148Ba; deduced energy levels, J, π, B(Eλ), quadrupole and octupole deformation parameters. Calculated HFB potential energy surfaces, neutron single-particle energies. Coulomb excitation, comparison with available data.

doi: 10.1103/PhysRevLett.118.152504
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016AN12      Eur.Phys.J. A 52, 183 (2016)

M.Anguiano, A.M.Lallena, G.Co, V.De Donno, M.Grasso, R.N.Bernard

Gogny interactions with tensor terms

NUCLEAR STRUCTURE 12C, 16O, 40Ca, 48Ca, 208Pb; calculated first 0- using DRPA with D1S, D1ST, D1M, D1MT interactions. 48,52Ca; calculated B(M1) strength energy distribution, energy gaps between neutron 1f7/2 and 2p3/2 states. 34Si, 36S, 40Ca; calculated energy differences between neutron 2p1/2 and 2p3/2 states. 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb; calculated proton sp state energy 2d5/2 and 1g7/2. DRPA (Discrete set of sp wavefunction RPA) with D1S, D1ST, D1M, D1MT, D1MT2a, D1MT2c interactions. Calculations compared with data.

NUCLEAR REACTIONS 48Ca, 90Zr, 208Pb(p, n), E not given; calculated energy distributions of GT strengths. DRPA (Discrete set of sp wavefunction RPA) with D1MT, D1MT2a, D1MT2c forces. Calculations compared to data.

doi: 10.1140/epja/i2016-16183-1
Citations: PlumX Metrics


2016AN13      Nucl.Phys. A955, 181 (2016)

M.Anguiano, R.N.Bernard, A.M.Lallena, G.Co, V.De Donno

Interplay between pairing and tensor effects in the N = 82 even-even isotone chain

NUCLEAR STRUCTURE 116Se, 118Kr, 120Sr, 122Zr, 124Mo, 126Ru, 128Pd, 130Cd, 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf; calculated binding energy, mass excess, mass and charge radii, occupation numbers using mean field (D1S and DIST2a Gogny forces). Compared with available data.

doi: 10.1016/j.nuclphysa.2016.06.013
Citations: PlumX Metrics


2016BE15      Nucl.Phys. A953, 32 (2016)

R.N.Bernard, M.Anguiano

Interplay between tensor force and deformation in even-even nuclei

NUCLEAR STRUCTURE Mg, Si, S, Ar, Sr, Zr; calculated tensor energy contribution to mass excess for spherical nuclei (36Ar-108Zr) using HFB theory with Gogny forces; deduced parameters; calculated potential energy surface, deformation, quadrupole moment, gs neutron, proton density, radius for given isotopes.

doi: 10.1016/j.nuclphysa.2016.03.017
Citations: PlumX Metrics


2016BE18      Phys.Rev. C 93, 061302 (2016)

R.N.Bernard, L.M.Robledo, T.R.Rodriguez

Octupole correlations in the 144Ba nucleus described with symmetry-conserving configuration-mixing calculations

NUCLEAR STRUCTURE 144Ba; calculated HFB potential energy surface (PES), particle number, parity, and angular momentum PES in (β2, β3) plane, levels, J, π, B(E1), B(E2), B(E3), collective wave functions for the ground state and first excited negative-parity bands. Symmetry-conserving configuration-mixing method (SCCM) based on a Gogny energy density functional (EDF). Comparison with experimental data.

doi: 10.1103/PhysRevC.93.061302
Citations: PlumX Metrics


2015CO12      Phys.Rev. C 92, 024314 (2015)

G.Co, V.De Donno, M.Anguiano, R.N.Bernard, A.M.Lallena

Electric quadrupole and magnetic dipole moments of odd nuclei near the magic ones in a self-consistent approach

NUCLEAR STRUCTURE 16,22,24O, 40,48,60Ca, 90Zr, 100,132Sn, 208Pb; calculated energies and B(E2) of first 2+ states, energies and B(M1) of low-lying 1+ states using D1M and D1S Gogny interactions, and comparison with experimental data. Hartree-Fock and random phase approximation (RPA) calculations.

NUCLEAR MOMENTS 15,21,23N, 17,23,25F, 15,17,21,23,25O, 39,47,59K, 41,49,61Sc, 39,41,47,49,59,61Ca, 89Y, 91Nb, 89,91Zr, 99,131In, 101,133Sb, 99,101,131,133Sn, 207Tl, 209Bi, 207,209Pb; calculated magnetic dipole and electric quadrupole moments of ground states and in some cases excited states using D1M and D1S Gogny interactions and 16,22,24O, 40,48,60Ca, 90Zr, 100,132Sn, 208Pb as core nuclei and associated single-particle states. Hartree-Fock random phase approximation (RPA), independent particle model (IPM) first-order perturbation theory, and finite Fermi systems (FFS) calculations.

doi: 10.1103/PhysRevC.92.024314
Citations: PlumX Metrics


2014RO03      Phys.Rev. C 89, 021303 (2014)

L.M.Robledo, R.N.Bernard, G.F.Bertsch

Spin constraints on nuclear energy density functionals

NUCLEAR STRUCTURE 164,166,168Ho, 168,170,172Tm, 172,174,176Lu, 180,182,184Ta, 184,186,188Lu; calculated spin splittings of neutron-proton two-quasiparticle configurations for 100-225 doublets for each of the odd-odd nucleus using D1S and D1M interactions. Comparison with Gallagher-Moszkowski (GM) rule for perturbative results for two-body interaction, three-body interaction, and the full interaction. Discussed violation of GM rule, and generalization of the three-body interaction.

doi: 10.1103/PhysRevC.89.021303
Citations: PlumX Metrics


2012RO40      Phys.Rev. C 86, 064313 (2012)

L.M.Robledo, R.Bernard, G.F.Bertsch

Pairing gaps in the Hartree-Fock-Bogoliubov theory with the Gogny D1S interaction

NUCLEAR STRUCTURE Z=8, N=9-19; Z=50, N=49-87; Z=62, N=77-113; Z=82, N=95-133; Z=92, N=131-149; calculated neutron pairing gaps in odd-A nuclei using a new method to find HFB minima. Hartree-Fock-Bogoliubov (HFB) theory with Gogny DIS interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.064313
Citations: PlumX Metrics


2011BE35      Phys.Rev. C 84, 044308 (2011)

R.Bernard, H.Goutte, D.Gogny, W.Younes

Microscopic and nonadiabatic Schrodinger equation derived from the generator coordinate method based on zero- and two-quasiparticle states

NUCLEAR STRUCTURE 236U; calculated intrinsic excitations, collective modes. Generator coordinate method. Nuclear fission. Collective intrinsic Schrodinger model.

doi: 10.1103/PhysRevC.84.044308
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter R.Bernard: , R.N.BERNARD