NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = M.Anguiano

Found 42 matches.

Back to query form



2022BA29      Phys.Rev. C 106, 024313 (2022)

P.Bano, X.Vinas, T.R.Routray, M.Centelles, M.Anguiano, L.M.Robledo

Finite-range simple effective interaction including tensor terms

NUCLEAR STRUCTURE 68,70,72,74,76,78Ni; calculated ground-state energies, neutron and proton single-particle levels around the Fermi level. 58,59,60,61,62,63,64,65,66,67,68,69,70Ni; calculated rms charge radii, isotope shifts. 69,71,73,75,77,79Cu; calculated ground-state energies. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated energy differences between 1h11/2 and 1g7/2 proton orbitals, single-particle neutron energies and their occupation probabilities. 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er; calculated energy differences between 1i13/2 and 1h9/2 neutron single-particle levels, and single-particle proton energies and their occupation probabilities in N=82 isotones. 91Zr, 93Mo, 95Ru, 97Pd, 99Cd, 101Sn; calculated neutron single-particle levels in N=51 isotones relative to the 2d5/2 level. Calculations based on simple effective interaction (SEI) with and without the addition of a short-range tensor force to SEI and SIII-T, SLy5-T, SAMi-T Skyrme and D1MTd Gogny effective interaction. Comparison with available experimental data.

doi: 10.1103/PhysRevC.106.024313
Citations: PlumX Metrics


2022CO05      Phys.Rev. C 105, 034320 (2022)

G.Co, M.Anguiano, A.M.Lallena

Charge radii of Ca isotopes and correlations

NUCLEAR STRUCTURE 34,36,38,40,42,44,46,48,50,52,54,56,58,60Ca; calculated binding energies, isotope shifts, charge radii. Independent particle model based on Hartree-Fock plus Bardeen-Cooper-Schrieffer (HF+BCS) approach with inclusion of short- and long-range correlations. Comparison to experimental data and other model calculations.

doi: 10.1103/PhysRevC.105.034320
Citations: PlumX Metrics


2022CO07      Phys.Rev. C 105, 064316 (2022)

G.Co, M.Anguiano, A.M.Lallena

Effect of short- and long-range correlations on neutron skins of various neutron-rich doubly magic nuclei

NUCLEAR STRUCTURE 48Ca, 68Ni, 90Zr, 132Sn, 208Pb; calculated binding energies per nucleon, rms charge radii and neutron skins using independent particle model (IPM) with the D1S and D1M interactions. 208Pb; calculated levels, J, π, single-particle levels close to Fermi surface using self-consistent RPA with the D1S and D1M interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.105.064316
Citations: PlumX Metrics


2021CO08      Phys.Rev. C 104, 014313 (2021)

G.Co, M.Anguiano, A.M.Lallena

Tensor force and deformation in even-even nuclei

NUCLEAR STRUCTURE 64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94Se; 52Ar, 54Ca, 56Ti, 58Cr, 60Fe, 62Ni, 64Zn, 66Ge, 68Se, 70Kr; calculated total energies per nucleon for the prolate and oblate solutions, deformation parameters β2, charge radii and charge densities, splittings between centroid energies of spin-orbit partner multiplets, proton and neutron single-particle spectra of 60Fe and 90Se. HFBCS calculations for Z=34 isotopes and N=34 isotones based on the variational principle, using Slater determinants built with single-particle wave functions from Hartree-Fock (HF) method with pairing effects solved by BCS method, including Gogny type D1S and D1ST2a interactions containing tensor terms. Comparison with experimental data. 65,67,69,71,73,75,77,79,81,83,85,87,89,91,93Se, 51Cl, 53K, 55Sc, 57V, 59Mn, 61Co, 63Cu, 65Ga, 67As, 69Br; calculated J, π for the ground stated of odd-A Z=34 isotopes and N=34 isotones using Koopman's theorem with D1S and D1ST2a Gogny interactions. Comparison with experimental values. Discussed effects of tensor force on binding energies, charge radii, and distributions.

doi: 10.1103/PhysRevC.104.014313
Citations: PlumX Metrics


2021RO19      Phys.Rev. C 104, L011302 (2021)

T.R.Routray, P.Bano, M.Anguiano, M.Centelles, X.Vinas, L.M.Robledo

Reexamination of the N=50 and Z=28 shell closure

NUCLEAR STRUCTURE 68,70,72,74,76,78Ni; calculated proton single-particle levels around the Fermi level. 69,71,73,75,77,79Cu; calculated energies and spins of the ground states, and energies of the first excited states. Quasilocal density functional theory (QLDFT) using Skyrme forces SAMi-T and SLy5 with the tensor part, D1M Gogny force, and simple effective interaction (SEI) model. Comparison with HFB calculations, and with experimental energies and spins of the first excited states.

doi: 10.1103/PhysRevC.104.L011302
Citations: PlumX Metrics


2020BE09      Phys.Rev. C 101, 044615 (2020)

R.N.Bernard, N.Pillet, L.M.Robledo, M.Anguiano

Description of the asymmetric to symmetric fission transition in the neutron-deficient thorium isotopes: Role of the tensor force

RADIOACTIVITY 216,222,226,230Th, 236U, 240Pu(SF); calculated energy differences for Hartree-Fock-Bogoliubov (HFB), mean field, and pairing energies for spherical, ground-state, first barrier and second well configurations. 216,222,226,230Th; calculated potential energy surfaces (PESs) in (Q20, Q30) and (Q20, Q40) planes, symmetric and asymmetric fission paths, fission valleys, energy differences for HFB, mean field, pairing energy, tensor energy, HFB with respect to the ground state, total tensor energy, proton and neutron pairing components as a function of Q40, total kinetic energy (TKE) and total excitation energy (TXE) at the exit point in the symmetric valley, mean neutron kinetic energy. 216,218,220,222,224,226,228,230,232Th, 236U, 240Pu; calculated barrier heights for symmetric and asymmetric paths. 106,107,108,109,110,111,112,113,114,115Rh; calculated S(n). Hartree-Fock-Bogoliubov (HFB) approach with D1ST2a Gogny plus tensor term. Comparison with results from standard D1S Gogny interaction, and with experimental data.

doi: 10.1103/PhysRevC.101.044615
Citations: PlumX Metrics


2019AN08      Phys.Rev. C 99, 034302 (2019)

M.Anguiano, A.M.Lallena, R.Bernard, G.Co

Neutron gas and pairing

NUCLEAR STRUCTURE 22O, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90Ni, 140,142,144,146,150,160,164,166,168,170,172Sn; calculated neutron rms radii, wave functions of neutron single particle states in 90Ni, neutron density distributions in 90Ni and 150Sn, and Hartree-Fock single particle energies and BCS occupation probabilities of single particle states in 86,88,90Ni. Hartree-Fock plus Bardeen-Cooper-Schrieffer (HF+BCS) calculations using D1S interaction. Discussed neutron gas effects in the description of nuclei with large neutron excess.

doi: 10.1103/PhysRevC.99.034302
Citations: PlumX Metrics


2019CO11      Int.J.Mod.Phys. E28, 1950054 (2019)

G.Co, M.Anguiano, A.M.Lallena

Shell closure at N=34 and the 48Si nucleus

NUCLEAR STRUCTURE 32,34,36,38,40,42,44,46,48Si; analyzed available data; deduced N=34 as a new magic number using Hartree-Fock plus Bardeen-Cooper-Schrieffer and Quasi-particle Random Phase Approximation calculations by consistently using the same finite-range interaction in all the three steps of our approach.

doi: 10.1142/S021830131950054X
Citations: PlumX Metrics


2018CO03      Phys.Rev. C 97, 034313 (2018)

G.Co, M.Anguiano, V.De Donno, A.M.Lallena

Matter distribution and spin-orbit force in spherical nuclei

NUCLEAR STRUCTURE 16,18,20,22,24O, 26,28,30Ne, 28,30,32Mg, 30,32,34Si, 30,32,34,36S, 38,40Ar, 34,36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 42Ti, 44Cr, 46Fe; calculated binding energies per nucleon, charge root-mean-square radii, depletion fraction for proton and neutron density distributions, proton, neutron, and matter density distributions, charge distributions, spin orbit splitting. 34Si, 36S, 34,36Ca; calculated levels, J, π. 30,32,34Si, 30,32,34,36S, 34,36Ca; calculated energies of 4+ levels, and QRPA amplitudes of main configurations. 30Si; calculated elastic electron scattering σ(θ) for 300 MeV incident electron energy. Hartree-Fock plus Bardeen-Cooper-Schrieffer (HF+BCS) approach, with excited states from quasiparticle random phase approximation (QRPA), and using D1M, D1S, D1MTd, and D1ST2a interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.97.034313
Citations: PlumX Metrics


2017DE15      Phys.Rev. C 95, 054329 (2017)

V.De Donno, G.Co, M.Anguiano, A.M.Lallena

Pairing in spherical nuclei: Quasiparticle random-phase approximation calculations with the Gogny interaction

NUCLEAR STRUCTURE 16,18,20,22,24,26O, 40,42,44,46,48,50,52,54,56,58,60,62Ca, 30Ne, 32Mg, 34Si, 36S, 38Ar, 40Ca, 42Ti, 44Cr, 46Fe; calculated energies of 1-, 2+ and 3- levels, B(E2) for the first 2+ states, B(M1) values of 1+ states, occupation probabilities for 36S, 38Ar, 54,56Ca, energies and B(E1) of first three 1- states in 18O. 20O, 50Ca; calculated B(E1) and transition densities for the states identified as pygmy dipole resonances (PDR). Hartree-Fock, Bardeen, Cooper, and Schrieffer, and quasiparticle random-phase-approximation (HF+BCS+QRPA and QRPA(F)) calculations with finite-range interaction of Gogny type . Comparison with experimental data.

doi: 10.1103/PhysRevC.95.054329
Citations: PlumX Metrics


2016AN12      Eur.Phys.J. A 52, 183 (2016)

M.Anguiano, A.M.Lallena, G.Co, V.De Donno, M.Grasso, R.N.Bernard

Gogny interactions with tensor terms

NUCLEAR STRUCTURE 12C, 16O, 40Ca, 48Ca, 208Pb; calculated first 0- using DRPA with D1S, D1ST, D1M, D1MT interactions. 48,52Ca; calculated B(M1) strength energy distribution, energy gaps between neutron 1f7/2 and 2p3/2 states. 34Si, 36S, 40Ca; calculated energy differences between neutron 2p1/2 and 2p3/2 states. 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb; calculated proton sp state energy 2d5/2 and 1g7/2. DRPA (Discrete set of sp wavefunction RPA) with D1S, D1ST, D1M, D1MT, D1MT2a, D1MT2c interactions. Calculations compared with data.

NUCLEAR REACTIONS 48Ca, 90Zr, 208Pb(p, n), E not given; calculated energy distributions of GT strengths. DRPA (Discrete set of sp wavefunction RPA) with D1MT, D1MT2a, D1MT2c forces. Calculations compared to data.

doi: 10.1140/epja/i2016-16183-1
Citations: PlumX Metrics


2016AN13      Nucl.Phys. A955, 181 (2016)

M.Anguiano, R.N.Bernard, A.M.Lallena, G.Co, V.De Donno

Interplay between pairing and tensor effects in the N = 82 even-even isotone chain

NUCLEAR STRUCTURE 116Se, 118Kr, 120Sr, 122Zr, 124Mo, 126Ru, 128Pd, 130Cd, 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf; calculated binding energy, mass excess, mass and charge radii, occupation numbers using mean field (D1S and DIST2a Gogny forces). Compared with available data.

doi: 10.1016/j.nuclphysa.2016.06.013
Citations: PlumX Metrics


2016BE15      Nucl.Phys. A953, 32 (2016)

R.N.Bernard, M.Anguiano

Interplay between tensor force and deformation in even-even nuclei

NUCLEAR STRUCTURE Mg, Si, S, Ar, Sr, Zr; calculated tensor energy contribution to mass excess for spherical nuclei (36Ar-108Zr) using HFB theory with Gogny forces; deduced parameters; calculated potential energy surface, deformation, quadrupole moment, gs neutron, proton density, radius for given isotopes.

doi: 10.1016/j.nuclphysa.2016.03.017
Citations: PlumX Metrics


2016CO08      Eur.Phys.J. A 52, 145 (2016)

G.Co, V.De Donno, M.Anguiano, A.M.Lallena

Continuum Random Phase Approximation with finite-range interactions

NUCLEAR REACTIONS 16O(γ, x), E=0-120 MeV; calculated σ, 1-, 2+ multipole excitations contribution to σ. 4He(γ, x), E=5-150 MeV; calculated σ. Compared to data. 4He(e, e'), E not given (momentum transfer 200, 300, 400, 500 MeV/c); calculated longitudinal and transverse responses. Compared to data. 16O(ν, e-), E=60, 600 MeV; calculated charge-exchange σ(E, θ) and its components. Reformulated RPA (DFRPA and CRPA) with two different parameterization of Gogny interaction and using IPM (Independent Particle Model). When available, also results of Gazit et al. (2006) are presented.

NUCLEAR STRUCTURE 24O; calculated neutron-proton spin-dipole excitation strength using reformulated RPA (DFRPA and CRPA) and IPM (Independent Particle Model).

doi: 10.1140/epja/i2016-16145-7
Citations: PlumX Metrics


2016DE06      Phys.Rev. C 93, 034320 (2016)

V.De Donno, G.Co, M.Anguiano, A.M.Lallena

Self-consistent continuum random-phase approximation with finite-range interactions for charge-exchange excitations

NUCLEAR STRUCTURE 12C, 16,22,24O, 40,48Ca, 56,68Ni; calculated energy distributions of spin dipole (T-SD) response for 12C to 12N, 16,22,24O to 16,22,24F, 40,48Ca to 40,48Sc, 56,68Ni to 56,68Cu systems and T-GT strengths for 48Ca to 48Sc, 56Ni to 56C systems, T-F response for 12C to 12N, 16O to 16F, 40Ca to 40Sc and 56Ni 0to 56Cu systems, SD sum rule exhaustion for 22O to 22F and 22O to 22N. Calculations for charge-exchange excitations induced by Fermi (F), Gamow-Teller (GT) and spin-dipole (SD) operators. 16F; calculated levels, J, π relative to g.s. of 16O using D1M and D1MT2c interactions. Self-consistent continuum random-phase approximation (CRPA) theory extended to include charge-exchange excitations, with finite-range interaction in Hartree-Fock calculations. Comparison of CRPA results with those from discrete random-phase approximation (DRPA) calculations. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.034320
Citations: PlumX Metrics


2015CO12      Phys.Rev. C 92, 024314 (2015)

G.Co, V.De Donno, M.Anguiano, R.N.Bernard, A.M.Lallena

Electric quadrupole and magnetic dipole moments of odd nuclei near the magic ones in a self-consistent approach

NUCLEAR STRUCTURE 16,22,24O, 40,48,60Ca, 90Zr, 100,132Sn, 208Pb; calculated energies and B(E2) of first 2+ states, energies and B(M1) of low-lying 1+ states using D1M and D1S Gogny interactions, and comparison with experimental data. Hartree-Fock and random phase approximation (RPA) calculations.

NUCLEAR MOMENTS 15,21,23N, 17,23,25F, 15,17,21,23,25O, 39,47,59K, 41,49,61Sc, 39,41,47,49,59,61Ca, 89Y, 91Nb, 89,91Zr, 99,131In, 101,133Sb, 99,101,131,133Sn, 207Tl, 209Bi, 207,209Pb; calculated magnetic dipole and electric quadrupole moments of ground states and in some cases excited states using D1M and D1S Gogny interactions and 16,22,24O, 40,48,60Ca, 90Zr, 100,132Sn, 208Pb as core nuclei and associated single-particle states. Hartree-Fock random phase approximation (RPA), independent particle model (IPM) first-order perturbation theory, and finite Fermi systems (FFS) calculations.

doi: 10.1103/PhysRevC.92.024314
Citations: PlumX Metrics


2015GR15      Phys.Rev. C 92, 054316 (2015)

M.Grasso, M.Anguiano

Neutron 2p and 1f spin-orbit splittings in 40Ca, 36S and 34Si N = 20 isotones: Tensor-induced and pure spin-orbit effects

NUCLEAR STRUCTURE 34Si, 36S, 40Ca; calculated energies of 2p3/2, 2p1/2 and 1f5/2 neutron states relative to the energy of 1f7/2 neutron state, neutron 2p and 1f spin-orbit splittings using mean-field approaches based on Skyrme and Gogny forces and three types of interactions.

doi: 10.1103/PhysRevC.92.054316
Citations: PlumX Metrics


2014DE01      Phys.Rev. C 89, 014309 (2014)

V.De Donno, G.Co, M.Anguiano, A.M.Lallena

Coulomb and spin-orbit interactions in random-phase approximation calculations

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,52,60Ca, 48,56,68,78Ni, 100,114,116,132Sn, 90Zn, 208Pb; calculated difference between the RPA energies and level energies with and without Coulomb interaction, RPA energy differences by considering the spin-orbit interaction only, level energies of first 2+ and 3- states. Role of Coulomb and spin-orbit interactions in RPA calculations. Fully self-consistent framework of Hartree-Fock plus random-phase approximation including the spin-orbit and Coulomb terms of the interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.014309
Citations: PlumX Metrics


2014DE26      Phys.Rev. C 90, 024326 (2014)

V.De Donno, G.Co, M.Anguiano, A.M.Lallena

Charge-exchange excitations with finite-range interactions including tensor terms

NUCLEAR STRUCTURE 48Ca, 90Zr, 208Pb; calculated binding energies per nucleon, neutron-, proton-, and charge-rms radii, energies of single-particle states near the Fermi surfaces. Self-consistent Hartree-Fock plus random phase approximation model with Gogny-like finite-range interactions. Comparison with experimental data.

NUCLEAR REACTIONS 48Ca, 90Zr, 208Pb(p, n); calculated IAS sum rule values, centroids, energy and strength distributions for Fermi (F), Gamow-Teller (GT), spin-dipole (SD) and spin-quadrupole (SQ) excitations. Self-consistent Hartree-Fock plus random phase approximation model with Gogny-like finite-range interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.024326
Citations: PlumX Metrics


2013CO05      Phys.Rev. C 87, 034305 (2013)

G.Co, V.De Donno, M.Anguiano, A.M.Lallena

Pygmy and giant electric dipole responses of medium-heavy nuclei in a self-consistent random-phase approximation approach with a finite-range interaction

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,52,60Ca, 48,56,68,78Ni, 90Zr, 100,114,116,132Sn, 208Pb; calculated photoabsorption σ(E), proton and neutron transition densities, centroids of pygmy dipole and giant dipole resonances (PDR, GDR). Gogny interaction in a self-consistent Hartree-Fock plus random phase approximation method. Comparison with experimental data, and for details of PDR and GDR structures.

doi: 10.1103/PhysRevC.87.034305
Citations: PlumX Metrics


2013GR16      Phys.Rev. C 88, 054328 (2013)

M.Grasso, M.Anguiano

Tensor parameters in Skyrme and Gogny effective interactions: Trends from a ground-state-focused study

NUCLEAR STRUCTURE 40,48Ca, 56Ni; calculated neutron f spin-orbit splittings and tensor parameters. 16O, 40,48Ca, 56Ni, 90Zr, 132Sn; calculated binding energies. Skyrme and Gogny effective interactions including a tensor force. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.054328
Citations: PlumX Metrics


2012AN14      Phys.Rev. C 86, 054302 (2012)

M.Anguiano, M.Grasso, G.Co, V.De Donno, A.M.Lallena

Tensor and tensor-isospin terms in the effective Gogny interaction

NUCLEAR STRUCTURE 16,22O, 40,48Ca, 132,140Sn; calculated neutron energy gap, single particle energies using effective Gogny interaction in mean-field calculations with the inclusion of tensor-isospin terms.

doi: 10.1103/PhysRevC.86.054302
Citations: PlumX Metrics


2012CO04      Phys.Rev. C 85, 024322 (2012)

G.Co, V.De Donno, P.Finelli, M.Grasso, M.Anguiano, A.M.Lallena, C.Giusti, A.Meucci, F.D.Pacati

Mean-field calculations of the ground states of exotic nuclei

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,52,60Ca, 48,56,68,78Ni, 100,114,116,132Sn; calculated binding energies, single particle energies, rms charge radii, neutron skin thickness. Mean-field approach, nonrelativistic Hartree-Fock, relativistic Hartree calculations. Comparison with experimental data.

NUCLEAR REACTIONS 40,48,52,60Ca(e, e'p), (e, e), E=483.2 MeV; calculated reduced cross sections, elastic scattering cross sections, neutron, proton and matter distributions, Mean-field approach, nonrelativistic Hartree-Fock, relativistic Hartree calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024322
Citations: PlumX Metrics


2012CO06      Phys.Rev. C 85, 034323 (2012)

G.Co, V.De Donno, M.Anguiano, A.M.Lallena

Magnetic excitations in nuclei with neutron excess

NUCLEAR REACTIONS 16,22,24,28O, 40,48,52,60Ca(e, e'), E not given; calculated B(M1), B(M2), B(M3) strengths as function of energy, transverse response of inelastic scattering for 1+ state. Investigated collective effects, and role of the tensor force. Self-consistent continuum and discrete random-phase approximation (CRPA and DRPA) calculations with finite-range interactions of Gogny type containing tensor-isospin terms.

doi: 10.1103/PhysRevC.85.034323
Citations: PlumX Metrics


2011AN17      Phys.Rev. C 83, 064306 (2011)

M.Anguiano, G.Co, V.De Donno, A.M.Lallena

Tensor effective interaction in self-consistent random-phase approximation calculations

NUCLEAR STRUCTURE 12C, 14,16,22,24,28O, 40,48,52,60Ca, 48,56,68,78Ni, 90Zr, 100,114,116,132Sn, 208Pb; calculated energies of lowest 0- states, binding energies, neutron and proton rms radii, neutron and proton single-particle energies, neutron and proton energy gaps, single particle levels near the Fermi surface, level energies, J, π for N=Z nuclei with isoscalar and isovector characters. Hartree-Fock and random-phase approximation calculations with finite-range Gogny forces, with and without a tensor-isospin term.

NUCLEAR REACTIONS 12C, 40Ca, 208Pb(e, e'), E not given; calculated transverse response as a function of the effective momentum transfer using RPA wave functions obtained in fully self-consistent approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064306
Citations: PlumX Metrics


2011DE13      Phys.Rev. C 83, 044324 (2011)

V.De Donno, G.Co, M.Anguiano, A.M.Lallena

Self-consistent continuum random-phase approximation calculations with finite-range interactions

NUCLEAR STRUCTURE 16,22,24O, 40,48,52Ca; calculated binding energies, charge and matter density distributions, photoabsorption cross sections, centroid energies for 1- dipole and 2+ quadrupole excitations, isoscalar and isovector strengths for 2+ states using self-consistent continuum random-phase approximation calculations with finite range interactions. Comparison with traditional discrete random phase approximation, continuum independent-particle model, phenomenological random phase approximation approach, and total photoabsorption cross-section experimental data.

doi: 10.1103/PhysRevC.83.044324
Citations: PlumX Metrics


2011DE27      Phys.Rev. C 84, 037306 (2011)

V.De Donno, M.Anguiano, G.Co, A.M.Lallena

Self-consistent continuum random-phase approximation calculations of 4He electromagnetic responses

NUCLEAR STRUCTURE 4He; calculated charge density distributions, total photoabsorption cross sections, proton and neutron separation energies, longitudinal and transverse quasielastic electron-scattering response. Self-consistent continuum random-phase approximation theory with D1S and D1M parameterization of the Gogny interaction and with the B1 interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.037306
Citations: PlumX Metrics


2010MO12      Phys.Rev. C 81, 064327 (2010)

M.Moreno Torres, M.Grasso, H.Liang, V.De Donno, M.Anguiano, N.Van Giai

Tensor effects in shell evolution at Z, N=8, 20, and 28 using nonrelativistic and relativistic mean-field theory

NUCLEAR STRUCTURE 14C, 16,22O, 40,48,52,54Ca, 34,42Si, 36,44S, 56,60,66,68,78Ni; analyzed effects of the tensor force on the neutron and proton gaps. Hartree-Fock calculations with Skyrme and Gogny interactions. Non-relativistic and relativistic mean-field approaches. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.064327
Citations: PlumX Metrics


2009CH74      Physica Medica 25, 51 (2009)

U.Chica, M.Anguiano, A.M.Lallena

Benchmark of PENELOPE for low and medium energy X-rays

NUCLEAR REACTIONS 27Al, Cu(γ, X), E=30-300 keV; calculated X-ray beam attenuation using the Monte Carlo code PENELOPE; deduced half-value layer indexes. Comparison with available data.

doi: 10.1016/j.ejmp.2008.04.001
Citations: PlumX Metrics


2009CO11      Phys.Rev. C 80, 014308 (2009); Publishers note Phys.Rev. C 80, 019910 (2009)

G.Co, V.De Donno, C.Maieron, M.Anguiano, A.M.Lallena

Evolution of the pygmy dipole resonance in nuclei with neutron excess

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,52Ca, 90,98,104,108,110Zr, 108,114,116,128,132Sn, 208Pb; calculated B(E1) strengths, transition densities and collectivity indices for pygmy dipole resonances (PDR) using a random phase approximation phenomenological approach.

doi: 10.1103/PhysRevC.80.014308
Citations: PlumX Metrics


2009DE14      Phys.Rev. C 79, 044311 (2009)

V.De Donno, G.Co, C.Maieron, M.Anguiano, A.M.Lallena, M.Moreno Torres

Low-lying magnetic excitations of doubly-closed-shell nuclei and nucleon-nucleon effective interactions

NUCLEAR STRUCTURE 12C, 16O, 40,48Ca, 208Pb; calculated energies of low-lying unnatural-parity magnetic states and isospin doublets using RPA theory. Test of the validity of the finite-range Gogny D1 interaction. Comparison with experimental data.

NUCLEAR REACTIONS 12C, 16O, 40,48Ca, 208Pb(e, e'), E not given; calculated electromagnetic responses, proton and neutron contributions to transition densities using RPA theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.044311
Citations: PlumX Metrics


2007MA18      Phys.Rev. C 75, 034604 (2007)

M.Martini, G.Co, M.Anguiano, A.M.Lallena

Superscaling in electroweak excitation of nuclei

NUCLEAR REACTIONS 12C, 16O, 40Ca(e, e'), E ≈ 700-1200 MeV; 16O(ν, e), E=300 MeV; calculated σ(E, θ). 16O(ν, e), E=20-300 MeV; calculated total σ. Modified relativistic Fermi gas scaling functions.

doi: 10.1103/PhysRevC.75.034604
Citations: PlumX Metrics


2006AN22      Phys.Rev. C 74, 044603 (2006)

M.Anguiano, G.Co, A.M.Lallena

Proton emission induced by polarized photons

NUCLEAR REACTIONS 12C, 16O, 40Ca(polarized γ, p), E=80, 150 MeV; calculated polarization observables; deduced sensitivity to final-state interactions, meson exchange currents, and short-range correlations.

doi: 10.1103/PhysRevC.74.044603
Citations: PlumX Metrics


2004AN22      Nucl.Phys. A744, 168 (2004)

M.Anguiano, G.Co, A.M.Lallena

Photo-emission of two protons from nuclei

NUCLEAR REACTIONS 16O(γ, 2p), E=100, 215 MeV; 12C, 40Ca(γ, 2p), E=100 MeV; calculated σ(E, θ), short-range correlation effects.

doi: 10.1016/j.nuclphysa.2004.08.011
Citations: PlumX Metrics


2003AN15      J.Phys.(London) G29, 1119 (2003)

M.Anguiano, G.Co, A.M.Lallena

A model for two-proton emission induced by electron scattering

NUCLEAR REACTIONS 12C, 16O, 40Ca(e, e'2p), E=800 MeV; calculated σ(E, θ), longitudinal and transverse response, related features.

doi: 10.1088/0954-3899/29/6/314
Citations: PlumX Metrics


2002AN22      Phys.Lett. 545B, 62 (2002)

M.Anguiano, J.L.Egido, L.M.Robledo

Mean-Field Based Approaches to Pairing Correlations in Atomic Nuclei

NUCLEAR STRUCTURE Sn; calculated pairing correlations, binding energies. Gogny interaction, Hartree-Fock-Bogoliubov and Lipkin-Nogami approaches, particle number projection.

doi: 10.1016/S0370-2693(02)02557-1
Citations: PlumX Metrics


2002AN25      Ann.Phys.(New York) 296, 235 (2002)

M.Anguiano, G.Co, A.M.Lallena, S.R.Mokhtar

Short-Range Correlations and Meson Exchange Currents in Photonucleon Emission

NUCLEAR REACTIONS 16O(γ, n), (γ, p), E=60-196 MeV; calculated σ(θ); deduced sensitivity to short-range correlation effects. Comparison with data.

doi: 10.1006/aphy.2002.6228
Citations: PlumX Metrics


2001AN05      Nucl.Phys. A683, 227 (2001)

M.Anguiano, J.L.Egido, L.M.Robledo

Coulomb Exchange and Pairing Contributions in Nuclear Hartree-Fock-Bogoliubov Calculations with the Gogny Force

NUCLEAR STRUCTURE 86Kr, 88Sr, 90Zr, 92Mo, 94Ru, 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 206Hg, 208Pb, 210Po, 212Rn, 214Ra; calculated binding energies, pairing energies. 164,166,168Er, 162,164,166Yb; calculated pairing energy, Eγ, B(E2), deformation vs angular momentum. 190Hg, 240Pu; calculated pairing energy, quadrupole moments, moments of inertia vs angular momentum. 254No, 226Th; calculated binding energy vs deformation. Self-consistent Hartree-Fock-Bogoliubov approach, Gogny force.

doi: 10.1016/S0375-9474(00)00445-0
Citations: PlumX Metrics


2001AN32      J.Phys.(London) G27, 2109 (2001)

M.Anguiano, G.Co

Correlations and Charge Distributions of Medium Heavy Nuclei

NUCLEAR STRUCTURE 15N, 16O, 39K, 40Ca, 205Tl, 207Tl, 206,208Pb; calculated charge density distributions, effects of long- and short-range correlations.

doi: 10.1088/0954-3899/27/10/311
Citations: PlumX Metrics


2001AN36      Nucl.Phys. A696, 467 (2001)

M.Anguiano, J.L.Egido, L.M.Robledo

Particle Number Projection with Effective Forces

NUCLEAR STRUCTURE 48,50Cr, 164Er; calculated transition energies vs angular momentum, related features. Particle-number projection method, non-separable density-dependent forces.

doi: 10.1016/S0375-9474(01)01219-2
Citations: PlumX Metrics


2001MO42      Ann.Phys.(New York) 292, 67 (2001)

S.R.Mokhtar, M.Anguiano, G.Co, A.M.Lallena

Short-Range Correlations in Semi-Exclusive Electron Scattering Experiments

NUCLEAR REACTIONS 16O(e, e'p), E not given; calculated σ(E, θ), response functions; deduced short-range correlation effects. Comparison with data.

doi: 10.1006/aphy.2001.6156
Citations: PlumX Metrics


1996AN07      Phys.Rev. C53, 3155 (1996)

M.Anguiano, A.M.Lallena, G.Co

Mean-Field Calculations of Quasielastic Responses in 4He

NUCLEAR REACTIONS 4He(e, e'X), E not given; calculated longitudinal, transverse response functions. Mean-field model.

doi: 10.1103/PhysRevC.53.3155
Citations: PlumX Metrics


Back to query form