NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 23, 2024.

Search: Author = P.Finelli

Found 29 matches.

Back to query form

2024VO02      Phys.Rev. C 109, 034613 (2024)

M.Vorabbi, C.Barbieri, V.Soma, P.Finelli, C.Giusti

Microscopic optical potentials for medium-mass isotopes derived at the first order of Watson multiple-scattering theory

doi: 10.1103/PhysRevC.109.034613
Citations: PlumX Metrics

2024VO04      Few-Body Systems 65, 47 (2024)

M.Vorabbi, P.Finelli, C.Giusti

Determination of Nuclear Matter Radii by Means of Microscopic Optical Potentials: The Case of 78Kr

NUCLEAR REACTIONS 78Kr(p, p), E=153 MeV; analyzed available data; deduced σ(θ), the matter radius and estimating the neutron skin, quantities that are both needed to determine the slope parameter L of the nuclear symmetry energy with microscopic Nucleon–Nucleus Optical Potentials (OP).

doi: 10.1007/s00601-024-01919-z
Citations: PlumX Metrics

2022AT03      Phys.Rev. C 105, 055503 (2022)

M.Atzori Corona, M.Cadeddu, N.Cargioli, P.Finelli, M.Vorabbi

Incorporating the weak mixing angle dependence to reconcile the neutron skin measurement on 208Pb by PREX-II

NUCLEAR REACTIONS 208Pb(polarized e-, e-), E=953 MeV; analyzed experimental results of PREX-II experiment reported by 2021Ad10 by fixing the weak mixing angle to its standard model, and using atomic parity violation (APV) experimental results on 208Pb in order to explain the disagreement between PREX-II result and the theoretical nuclear-model predictions, as well as several previous experimental measurements of neutron skin thickness of 208Pb; calculated asymmetry and σ values under the DWBA using modified DREPHA code; deduced neutron skin thickness. Relevance to upcoming P2, MOLLER, MREX, and CREX experiments for resolution of disagreements in results.

doi: 10.1103/PhysRevC.105.055503
Citations: PlumX Metrics

2022VO02      Phys.Rev. C 105, 014621 (2022)

M.Vorabbi, M.Gennari, P.Finelli, C.Giusti, P.Navratil, R.Machleidt

Elastic proton scattering off nonzero spin nuclei

NUCLEAR REACTIONS 6,7Li, 13C(polarized p, p), E=200 MeV; 10B(polarized p, p), E=197 MeV; 1H(9C, p), E=290 MeV; calculated σ(θ) and analyzing powers Ay(θ) using microscopic optical potential (OP) and chiral theories for the nucleon-nucleon (NN) interaction, extended to include the spin of the target nucleus. Comparison with experimental data.

doi: 10.1103/PhysRevC.105.014621
Citations: PlumX Metrics

2021VO03      Phys.Rev. C 103, 024604 (2021)

M.Vorabbi, M.Gennari, P.Finelli, C.Giusti, P.Navratil, R.Machleidt

Impact of three-body forces on elastic nucleon-nucleus scattering observables

NUCLEAR REACTIONS 12C(polarized p, p), E=122, 160, 200, 300 MeV; 16O(p, p), (polarized p, p), E=100, 135, 200, 318 MeV; 12C(n, n), E=108, 128, 155, 185, 225 MeV; calculated differential σ(E, θ), and analyzing power Ay(Ε, θ) using nonrelativistic optical model potentials obtained from the no-core shell model densities using two- and three-nucleon chiral interactions; deduced that contribution of the 3N force in the tNN matrix is small for the differential cross section and sizable for the spin observables such as analyzing power. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.024604
Citations: PlumX Metrics

2020AR13      Phys.Rev.Lett. 125, 182501 (2020)

P.Arthuis, C.Barbieri, M.Vorabbi, P.Finelli

Ab Initio Computation of Charge Densities for Sn and Xe Isotopes

NUCLEAR STRUCTURE 100,132Sn, 132,136,138Xe; calculated charge density distributions, neutron skins using self-consistent Green's function theory. Comparison with available data.

doi: 10.1103/PhysRevLett.125.182501
Citations: PlumX Metrics

2020VO04      Phys.Rev.Lett. 124, 162501 (2020)

M.Vorabbi, M.Gennari, P.Finelli, C.Giusti, P.Navratil

Elastic Antiproton-Nucleus Scattering from Chiral Forces

doi: 10.1103/PhysRevLett.124.162501
Citations: PlumX Metrics

2020WI10      Phys.Rev. C 102, 054321 (2020)

H.Wibowo, E.Litvinova, Y.Zhang, P.Finelli

Temperature evolution of the nuclear shell structure and the dynamical nucleon effective mass

NUCLEAR STRUCTURE 56Fe, 68Ni; calculated single-particle states, and dominant fragments of the single-particle states at zero and finite temperatures in the RMF approximation, temperature evolution of the neutron pairing gap and the neutron and proton single-quasiparticle states around the Fermi surface, neutron and proton dynamical effective masses. 56Ni; calculated temperature evolution of the nucleon dynamical effective mass. Single fermion Dyson equation with the dynamical kernel of the particle-vibration-coupling (PVC) using the grand canonical potential with the meson-nucleon covariant energy density functional. Possible relevance to astrophysical modeling of various stages of stellar evolution.

doi: 10.1103/PhysRevC.102.054321
Citations: PlumX Metrics

2018VO16      Phys.Rev. C 98, 064602 (2018)

M.Vorabbi, P.Finelli, C.Giusti

Proton-nucleus elastic scattering: Comparison between phenomenological and microscopic optical potentials

NUCLEAR REACTIONS 16O, 40,42,44,48Ca(p, p), (polarized p, p), E=200, 318 MeV; 58Ni(p, p), (polarized p, p), E=192, 295, 333 MeV; 60Ni(p, p), (polarized p, p), E=178 MeV; 62Ni(p, p), E=156 MeV; 116,118,120,122,124Sn(p, p), (polarized p, p), E=295 MeV; 120Sn, 208Pb(p, p), (polarized p, p), E=200 MeV; 204,206,208Pb(p, p), E=295 MeV; 56Ni(p, p), E(cm)=400 MeV/nucleon; calculated differential σ(θ) relative to Rutherford σ, and analyzing power Ay using nonrelativistic optical model potentials, and compared with experimental data.

doi: 10.1103/PhysRevC.98.064602
Citations: PlumX Metrics

2017VO09      Phys.Rev. C 96, 044001 (2017)

M.Vorabbi, P.Finelli, C.Giusti

Optical potentials derived from nucleon-nucleon chiral potentials at N4 LO

NUCLEAR REACTIONS 12C, 16O, 40Ca(p, p), (polarized p, p), E=200 MeV; calculated pp and np Wolfenstein amplitudes, cross sections, analyzing powers, and spin rotations; deduced Optical potentials using use NN chiral potentials at fifth order (N4LO). Comparison with experimental data.

doi: 10.1103/PhysRevC.96.044001
Citations: PlumX Metrics

2016VO02      Phys.Rev. C 93, 034619 (2016)

M.Vorabbi, P.Finelli, C.Giusti

Theoretical optical potential derived from nucleon-nucleon chiral potentials

NUCLEAR REACTIONS 16O(p, p), (polarized p, p), E=100, 200, 450-600 MeV; calculated real and imaginary parts of pp and pn Wolfenstein amplitudes using two different chiral potentials (EM and EGM), σ(θ) and analyzing powers Ay(θ); deduced new microscopic optical potential for elastic proton-nucleus scattering. Chiral perturbation theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.034619
Citations: PlumX Metrics

2014MA80      Phys.Rev. C 90, 044003 (2014)

S.Maurizio, J.W.Holt, P.Finelli

Nuclear pairing from microscopic forces: Singlet channels and higher-partial waves

doi: 10.1103/PhysRevC.90.044003
Citations: PlumX Metrics

2014ME03      Phys.Rev. C 89, 034604 (2014)

A.Meucci, M.Vorabbi, C.Giusti, F.D.Pacati, P.Finelli

Elastic and quasi-elastic electron scattering on the N=14, 20, and 28 isotonic chains

NUCLEAR REACTIONS 22,28O, 24,30Ne, 26,32,40Mg, 28,34,42Si, 30,36,44S, 32,38,46Ar, 34,40,42,44,48Ca, 42,48,50Ti, 44,50,52,54Cr, 46,54Fe, 56Ni(e, e), (e, e'), E=250, 850, 1080 MeV; calculated differential σ(θ) for elastic and quasi-elastic scattering, proton and neutron density distributions, parity-violating asymmetry parameter, differential RPWIA and RGF σ for (e, e') for selected isotones of N=14, 20 and 28. Distorted-wave Born approximation (DWBA) and relativistic Hartree-Bogoliubov (RHB) approach with density dependent meson-exchange interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.034604
Citations: PlumX Metrics

2014ME12      Phys.Rev. C 90, 027301 (2014)

A.Meucci, M.Vorabbi, C.Giusti, P.Finelli

Neutron density distribution and neutron skin thickness of 208Pb

NUCLEAR STRUCTURE 208Pb; calculated neutron density distribution and neutron thickness using various nonrelativistic and relativistic mean-field models. Comparison with experimental data from (γ, π0) at Mainz, and parity-violating asymmetry parameter for elastic electron scattering and neutron thickeners data for PREX experiment at JLab.

doi: 10.1103/PhysRevC.90.027301
Citations: PlumX Metrics

2013ME06      Phys.Rev. C 87, 054620 (2013)

A.Meucci, M.Vorabbi, C.Giusti, F.D.Pacati, P.Finelli

Elastic and quasi-elastic electron scattering off nuclei with neutron excess

NUCLEAR REACTIONS 14,16,18,20,22,24,26,28O(e, e), (e, e'), E=374.5, 850, 1080 MeV; 36,38,40,42,44,46,48,50,52,54,56Ca(e, e), (e, e'), E=496.8, 560, 850 MeV; 48Ca(e, e), E=2.2 GeV; calculated differential σ(θ, ω), differential RPWIA and RGF σ(ω), parity-violating asymmetry parameters for elastic and inelastic scattering. 208Pb(e, e), (e, e'), E=1.063 GeV; calculated weak charge density and asymmetry parameter compared with measurements by PREX Collaboration. Distorted-wave Born approximation approach with proton and neutron density distributions from relativistic Dirac-Hartree model. Comparison with experimental data.

NUCLEAR STRUCTURE 14,16,18,20,22,24,26,28O, 36,38,40,42,44,46,48,50,52,54,56Ca; evaluated neutron and proton distributions using relativistic Dirac-Hartree model.

doi: 10.1103/PhysRevC.87.054620
Citations: PlumX Metrics

2012CO04      Phys.Rev. C 85, 024322 (2012)

G.Co, V.De Donno, P.Finelli, M.Grasso, M.Anguiano, A.M.Lallena, C.Giusti, A.Meucci, F.D.Pacati

Mean-field calculations of the ground states of exotic nuclei

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,52,60Ca, 48,56,68,78Ni, 100,114,116,132Sn; calculated binding energies, single particle energies, rms charge radii, neutron skin thickness. Mean-field approach, nonrelativistic Hartree-Fock, relativistic Hartree calculations. Comparison with experimental data.

NUCLEAR REACTIONS 40,48,52,60Ca(e, e'p), (e, e), E=483.2 MeV; calculated reduced cross sections, elastic scattering cross sections, neutron, proton and matter distributions, Mean-field approach, nonrelativistic Hartree-Fock, relativistic Hartree calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024322
Citations: PlumX Metrics

2012FI09      Phys.Rev. C 86, 034327 (2012)

P.Finelli, T.Niksic, D.Vretenar

Nuclear pairing from chiral pion-nucleon dynamics: Applications to finite nuclei

NUCLEAR STRUCTURE Z=28, N=24-50; Z=50, N=50-86; Z=82, N=96-132; N=28, Z=20-34; N=50, Z=26-50; N=82, Z=48-72; calculated average neutron pairing gaps for even-even nuclei using a chiral nucleon-nucleon potential at the N3LO and N2LO orders in the two-body and three-body sectors, respectively. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.034327
Citations: PlumX Metrics

2012FI10      Prog.Theor.Phys.(Kyoto), Suppl. 196, 421 (2012)


Nuclear Pairing from Chiral Pion-Nucleon Dynamics: Latest Results and Relevant Issues

NUCLEAR STRUCTURE Z=28, 50, 82; calculated average neutron pairing gaps. Microscopic approach calculations, chiral nucleon-nucleon potential at the N3LO order, comparison with available data.

doi: 10.1143/PTPS.196.421
Citations: PlumX Metrics

2010FI08      Nucl.Phys. A835, 418c (2010)


Hypernuclear spectra from in-medium chiral dynamics: a refined fit analysis

NUCLEAR STRUCTURE 16O, 208Pb; calculated Λ hypernuclei levels, J, π, Λ binding energy using relativistic energy density functional. Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.233
Citations: PlumX Metrics

2009FI04      Acta Phys.Pol. B40, 665 (2009)


Applications of In-Medium Chiral Dynamics to Nuclear Structure

2009FI08      Nucl.Phys. A831, 163 (2009)

P.Finelli, N.Kaiser, D.Vretenar, W.Weise

Hypernuclear single particle spectra based on in-medium chiral SU(3) dynamics

NUCLEAR STRUCTURE 13C, 16O, 40Ca, 89Y, 139La, 208Pb; calculated binding energies for hypernuclei using a relativistic nuclear energy density functional method. Comparison with data and other methods.

doi: 10.1016/j.nuclphysa.2009.10.083
Citations: PlumX Metrics

2007FI10      Nucl.Phys. A791, 57 (2007)

P.Finelli, N.Kaiser, D.Vretenar, W.Weise

Chiral pion-nucleon dynamics in finite nuclei: Spin-isospin excitations

doi: 10.1016/j.nuclphysa.2007.04.007
Citations: PlumX Metrics

2007FI11      Nucl.Phys. A788, 284c (2007)


Description of spin and isospin collective excitations with a nuclear energy density functional constrained by low-energy QCD

NUCLEAR REACTIONS 48Ca(p, n), E=7.2, 10.5 MeV; 90Zr(p, n), E=12.0, 15.6 MeV; 208Pb(p, n), E=18.8, 19.2 MeV; analyzed isobaric analog and Gamow-Teller states strength distributions, energies.

doi: 10.1016/j.nuclphysa.2007.01.014
Citations: PlumX Metrics

2006FI03      Nucl.Phys. A770, 1 (2006)

P.Finelli, N.Kaiser, D.Vretenar, W.Weise

Relativistic nuclear energy density functional constrained by low-energy QCD

NUCLEAR STRUCTURE 16O, 40,48Ca, 72Ni, 90Zr, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 130,132,134,136,138,140,142,144,146,148,150,152,154,156Nd, 136,138,140,142,144,146,148,150,152,154,156,158Sm, 140,142,144,146,148,150,152,154,156,158,160,162Gd, 144,146,148,150,152,154,156,158,160,162,164,166,168Dy, 150,152,154,156,158,160,162,164,166,168,170,172Er, 152,154,156,158,160,162,164,166,168,170,172,174,176,178Yb, 156,158,160,162,164,166,168,170,172,174,176,178,180,182,184Hf, 160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190W, 168,170,172,174,176,178,180,182,184,186,188,190,192,194,196Os, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 210Po; calculated binding energies, charge radii, deformation parameters. 48Ca, 90,94Zr, 92Mo, 144Sm, 208Pb; calculated form factors. Relativistic Hartree-Bogoliubov model.

doi: 10.1016/j.nuclphysa.2006.02.007
Citations: PlumX Metrics

2004FI03      Nucl.Phys. A735, 449 (2004)

P.Finelli, N.Kaiser, D.Vretenar, W.Weise

Relativistic nuclear model with point-couplings constrained by QCD and chiral symmetry

NUCLEAR STRUCTURE 16O, 40Ca, 56Ni; calculated single-particle level energies. 16O, 40,42,48Ca, 42,50Ti, 52Cr, 58,64Ni, 88Sr, 90Zr; calculated binding energies, charge radii. Microscopic relativistic point-coupling model.

doi: 10.1016/j.nuclphysa.2004.02.001
Citations: PlumX Metrics

2004VR02      Eur.Phys.J. A 20, 75 (2004)

D.Vretenar, T.Niksic, P.Ring, N.Paar, G.A.Lalazissis, P.Finelli

Relativistic Hartree-Bogoliubov and QRPA description of exotic nuclear structure

NUCLEAR STRUCTURE 22O; calculated dipole and quadrupole strength distributions.pairing contributions.

doi: 10.1140/epja/i2002-10325-0
Citations: PlumX Metrics

2003FI08      Eur.Phys.J. A 17, 573 (2003)

P.Finelli, N.Kaiser, D.Vretenar, W.Weise

Nuclear many-body dynamics constrained by QCD and chiral symmetry

NUCLEAR STRUCTURE 16O, 40Ca; calculated binding energies, radii, single-particle energies, QCD sum rule constraints.

doi: 10.1140/epja/i2003-10004-8
Citations: PlumX Metrics

2002NI04      Phys.Rev. C66, 024306 (2002)

T.Niksic, D.Vretenar, P.Finelli, P.Ring

Relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 112,116,124,132Sn, 204,208,214Pb, 210Po; calculated binding energies, radii, spin-orbit splitting. Relativistic Hartree-Bogoliubov model.

NUCLEAR REACTIONS 116,118,120,122,124Sn, 208Pb(e, e), E=850 MeV; calculated parity-violating asymmetry parameters, neutron densities vs momentum transfer. Relativistic Hartree-Bogoliubov model.

doi: 10.1103/PhysRevC.66.024306
Citations: PlumX Metrics

2000VR02      Phys.Rev. C61, 064307 (2000)

D.Vretenar, P.Finelli, A.Ventura, G.A.Lalazissis, P.Ring

Parity Violating Elastic Electron Scattering and Neutron Density Distributions in the Relativistic Hartree-Bogoliubov Model

NUCLEAR STRUCTURE 106,108,110,112,114,116,118,120,122,124Sn, 23,24,25,26,27,28,29,30,31,32Na, 30,32,34Ne, 58,60,62,64,66,68,70,72,74,76Ni; calculated neutron density distributions, radii. Relativistic Hartree-Bogloliubov model.

NUCLEAR REACTIONS 106,108,110,112,114,116,118,120,122,124Sn, 23,24,25,26,27,28,29,30,31,32Na, 30,32,34Ne(e, e), E=850 MeV; 58,60,62,64,66,68,70,72,74,76Ni(e, e), E=500, 850 MeV; calculated parity violating asymmetry parameters vs momentum transfer, θ. Relativistic Hartree-Bogloliubov model.

doi: 10.1103/PhysRevC.61.064307
Citations: PlumX Metrics

Back to query form