NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = P.Ring

Found 337 matches.

    Showing 1 to 100.


Back to query form

2024LI08      At.Data Nucl.Data Tables 156, 101635 (2024)

Z.X.Liu, Y.H.Lam, N.Lu, P.Ring

Nuclear ground-state properties probed by the relativistic Hartree–Bogoliubov approach

NUCLEAR STRUCTURE Z=8-110; analyzed available data; deduced ground-state properties of all isotopic chains from oxygen to darmstadtium, binding energies, one- and two-neutron separation energies, root-mean-square radii of matter, neutron, proton and charge distributions, Fermi surfaces, J, π using the relativistic Hartree–Bogoliubov approach with separable pairing force coupled with the latest point-coupling and meson-exchange covariant density functionals, i.e., PC-L3R, PC-X, DD-MEX, and DD-PCX.

doi: 10.1016/j.adt.2023.101635
Citations: PlumX Metrics

2023DI09      Phys.Rev. C 108, 054304 (2023)

C.R.Ding, X.Zhang, J.M.Yao, P.Ring, J.Meng

Impact of isovector pairing fluctuations on neutrinoless double-β decay in multireference covariant density functional theory

doi: 10.1103/PhysRevC.108.054304
Citations: PlumX Metrics

2023WA29      Phys.Rev. C 108, L031303 (2023)

S.Wang, H.Tong, Q.Zhao, C.Wang, P.Ring, J.Meng

Neutron-proton effective mass splitting in neutron-rich matter

doi: 10.1103/PhysRevC.108.L031303
Citations: PlumX Metrics

2022WA27      Phys.Rev. C 106, L021305 (2022)

S.Wang, H.Tong, Q.Zhao, C.Wang, P.Ring, J.Meng

Asymmetric nuclear matter and neutron star properties in relativistic ab initio theory in the full Dirac space

doi: 10.1103/PhysRevC.106.L021305
Citations: PlumX Metrics

2022YA24      Prog.Part.Nucl.Phys. 126, 103965 (2022)

J.M.Yao, J.Meng, Y.F.Niu, P.Ring

Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn, 130Te, 136Xe, 148,150Nd, 160Gd, 232Th, 238U(2β-); analyzed available data; calculated nuclear matrix elements using beyond-mean-field approaches. Comparison with available data.

doi: 10.1016/j.ppnp.2022.103965
Citations: PlumX Metrics

2022ZH19      Phys.Rev. C 105, 044326 (2022)

Y.Zhang, A.Bjelcic, T.Niksic, E.Litvinova, P.Ring, P.Schuck

Many-body approach to superfluid nuclei in axial geometry

NUCLEAR STRUCTURE 28Si; calculated single-particle energies, Nilsson diagram, strength of the neutron states, low-energy isoscalar strength functions for varying quadrupole deformation, deformation parameters. 250Cf; calculated deformation parameters. 249,251Cf; calculated single-quasiparticle neutron states. Finite amplitude quasiparticle random phase approximation method. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.044326
Citations: PlumX Metrics

2021DA01      Phys.Rev.Lett. 126, 032502 (2021)

T.Day Goodacre, A.V.Afanasjev, A.E.Barzakh, B.A.Marsh, S.Sels, P.Ring, H.Nakada, A.N.Andreyev, P.Van Duppen, N.A.Althubiti, B.Andel, D.Atanasov, J.Billowes, K.Blaum, T.E.Cocolios, J.G.Cubiss, G.J.Farooq-Smith, D.V.Fedorov, V.N.Fedosseev, K.T.Flanagan, L.P.Gaffney, L.Ghys, M.Huyse, S.Kreim, D.Lunney, K.M.Lynch, V.Manea, Y.Martinez Palenzuela, P.L.Molkanov, M.Rosenbusch, R.E.Rossel, S.Rothe, L.Schweikhard, M.D.Seliverstov, P.Spagnoletti, C.Van Beveren, M.Veinhard, E.Verstraelen, A.Welker, K.Wendt, F.Wienholtz, R.N.Wolf, A.Zadvornaya, K.Zuber

Laser Spectroscopy of Neutron-Rich 207, 208Hg Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N = 126 Shell Closure

NUCLEAR MOMENTS 202,203,206,207,208Hg; measured frequencies; deduced hyperfine spectra, mean-square charge radii. Comparison with relativistic Hartree-Bogoliubov and nonrelativistic Hartree-Fock-Bogoliubov approaches, available data.

doi: 10.1103/PhysRevLett.126.032502
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2021DA16      Phys.Rev. C 104, 054322 (2021)

T.Day Goodacre, A.V.Afanasjev, A.E.Barzakh, L.Nies, B.A.Marsh, S.Sels, U.C.Perera, P.Ring, F.Wienholtz, A.N.Andreyev, P.Van Duppen, N.A.Althubiti, B.Andel, D.Atanasov, R.S.Augusto, J.Billowes, K.Blaum, T.E.Cocolios, J.G.Cubiss, G.J.Farooq-Smith, D.V.Fedorov, V.N.Fedosseev, K.T.Flanagan, L.P.Gaffney, L.Ghys, A.Gottberg, M.Huyse, S.Kreim, P.Kunz, D.Lunney, K.M.Lynch, V.Manea, Y.Martinez Palenzuela, T.M.Medonca, P.L.Molkanov, M.Mougeot, J.P.Ramos, M.Rosenbusch, R.E.Rossel, S.Rothe, L.Schweikhard, M.D.Seliverstov, P.Spagnoletti, C.Van Beveren, M.Veinhard, E.Verstraelen, A.Welker, K.Wendt, R.N.Wolf, A.Zadvornaya, K.Zuber

Charge radii, moments, and masses of mercury isotopes across the N=126 shell closure

NUCLEAR MOMENTS 198,202,203,206,207,208Hg; measured hyperfine structure spectra using Versatile Arc Discharge and Laser Ion Source (VADLIS) in CERN-ISOLDE Resonance Ionization Laser Ion Source (RILIS) mode; deduced isotope shifts (δν) and charge radii (δ<r2) with respect to 198Hg, hyperfine factors a and b, static magnetic dipole (μ) and electric quadrupole (Q) moments for the ground states of 203Hg and 207Hg, Comparison of g factors with Schmidt values for 207Hg, 209Pb, 210Bi and 211Po, and charge radii, and odd-even staggering (OES) of the mean square charge radii with relativistic Hartree-Bogoliubov (RHB) calculations using DD-ME2, DD-MEδ, DD-PC1 and NL3* covariant energy-density functionals for 197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214Pb, 201,202,203,204,205,206,207,208,209,210Hg. Source of Hg isotopes were produced in Pb(p, X), E=1.4 GeV reaction, and using VADLIS+RILIS ion source, followed by separation of fragments using ISOLDE General Purpose Separator. 183,184,185,202,203,206,207,208Hg; measured ionization and release efficiency as a function of the half-life of mercury isotopes from a molten lead target, and compared with ABRABLA, FLUKA, and GEANT4 simulations.

ATOMIC MASSES 206,207,208Hg, 208Pb; measured time-of-flight ion-cyclotron resonances, with reference to 208Pb using the RILIS+VADIS ion source and ISOLTRAP MR-ToF mass spectrometer (MS) at CERN-ISOLDE; deduced mass excesses for 206,207,208Hg, and compared with AME2020 values.

doi: 10.1103/PhysRevC.104.054322
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2021PE14      Phys.Rev. C 104, 064313 (2021)

U.C.Perera, A.V.Afanasjev, P.Ring

Charge radii in covariant density functional theory: A global view

NUCLEAR STRUCTURE 208Pb, 132Sn, 40,48Ca; calculated neutron and proton single-particle states at spherical shape, charge radius, neutron skin, neutron single-particle rms radii without pairing, using DDME2, DDMEδ, DDPC1, NL3*, and PCPK1 interactions. 134Sn; calculated occupation probabilities of the neutron orbitals located above the N=82 shell closure. 198,200,202,204,206,208,210,212,214,216Pb; 176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Pb; calculated rms charge radii without and with pairing, the latter using RHB approach, using DDME2, DDMEδ, DDPC1, NL3*, and PCPK1 interactions and for all the even-even Pb isotopes located between the two-proton and two-neutron drip lines, compared to available experimental data. Z=78, 80, 82, 84, 86, N=104-136 (even); Z=50, 52, 54, 56, 58, 60, 62, 64, N=50-100 (even); Z=36, 38, 42, N=32-70 (even); Z=18, 20, 22, 24, 26, N=12-38 (even); 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108Sr, 34,36,38,40,42,44,46,48,50,52,54,56,58,60Ca; calculated charge radii δ(r2) for even-even nuclei as function of neutron number using DDME2, DDMEδ, DDPC1, NL3*, and PCPK1 interactions, and compared with available experimental data. Z=10, N=9-15; Z=18, N=15-25; Z=20, N=17-31; Z=22, N=23-27; Z=36, N=39-59; Z=38, N=40-61; Z=48, N=55-69; Z=50, N=59-81; Z=54, N=83-89; Z=56, N=65-89; Z=60, N=75-85; Z=62, N=77-91; Z=66, N=83-97; Z=70, N=85-105; Z=72, N=99-107; Z=78, N=101-117; Z=80, N=98-125; Z=82, N=101-129; Z=84, N=108-126; Z=86, N=119-125, 133-135; Z=88, N=121-125, 133-141; Z=90, N=138-139; Z=92, N=142-143; Z=94, N=145-147; compiled odd-even staggering (OES) of experimental charge radii of even-Z nuclei. 30,32,34,36,38,40,42,44,46,48,50Ar, 32,34,36,38,40,42,44,46,48,50,52Ca, 38,40,42,44,46,48,50,52,54,56,58Ti, 44,46,48,50,52,54,56,58,60,62,64Cr, 46,48,50,52,54,56,58,60,62,64Fe, 68,70,72,74,76,78,80,82,84,86,88Kr, 72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Sr, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108Mo, 94,96,98,100,102,104,106,108,110,112,114Cd, 100,102,104,106,108,110,112,114,116,118,120Sn, 108,110,112,114,116,118,120,122,124,126,128Te, 110,112,114,116,118,120,122,124,126,128,130Xe, 114,116,118,120,122,124,126,128,130,132,134Ba, 118,120,122,124,126,128,130,132,134,136,138Ce, 122,124,126,128,130,132,134,136,138,140,142Nd, 128,130,132,134,136,138,140,142,144,146,148Sm, 132,134,136,138,140,142,144,146,148,150,152Gd, 178,180,182,184,186,188,190,192,194,196,198Pt, 184,186,188,190,192,194,196,198,200,202,204Po, 186,188,190,192,194,196,198,200,202,204,206Rn; calculated potential energy curves as function of deformation parameter β2 obtained with constrained axial RHB calculations using DDME2, DDMEδ, DDPC1, NL3*, and PCPK1 covariant energy density functionals; deduced β2 parameters in different mass regions. These data are from Supplemental Material of the paper. Detailed systematic global investigation of differential charge radii within the covariant density functional theory (CDFT) framework.

doi: 10.1103/PhysRevC.104.064313
Citations: PlumX Metrics

2021RA30      Phys.Rev. C 104, 064302 (2021)

A.Ravlic, Y.F.Niu, T.Niksic, N.Paar, P.Ring

Finite-temperature linear response theory based on relativistic Hartree Bogoliubov model with point-coupling interaction

NUCLEAR STRUCTURE 120Cd; calculated strength functions of 1- and 1+ excitations in β- direction; GT- strength B(GT-) of the 1+ state at 13.54 MeV, GT- strength function with respect to the number of oscillator shells, convergence properties of the GT- strength. 112,116,120,124,128Sn; calculated neutron critical temperature and mean pairing gap at zero temperature. 112,114,116,118,120,122Sn; calculated Jπ=0+ strength functions with respect to the excitation energy of the parent nuclei for temperatures T=0, 0.5, 0.9, and 1.5 MeV. 116,120,124,128,132Sn; calculated Gamow-Teller (Jπ=1+) strength functions with respect to the excitation energy of the parent nuclei for temperatures T=0, 0.5, 0.9, and 1.5 MeV. 112Sn; calculated single-particle energy levels in canonical basis for neutrons and protons at T=0 and 0.9 MeV. 112,120,128Sn; calculated spin-dipole excitation strength at temperature T=0, 0.5, 0.9, and 1.5 MeV, spin-dipole centroid energies of 0-, 1-, and 2- multipoles at temperature T=0 and 1.5 MeV. Finite-temperature linear response theory based on finite-temperature relativistic Hartree-Bogoliubov (FT-RHB) model for calculation of IAR, GTR, and spin-dipole resonance (SDR) in tin isotopes at finite-temperatures, with point-coupling relativistic energy-density functionals (EDFs): DD-PC1 and DDPCX for the calculation of mean-field potential in the ground state and the residual ph interaction in finite temperature quasiparticle random-phase approximation (FT-QRPA) approach, based on Bardeen-Cooper-Schrieffer (BCS) basis. Comparison with available experimental data.

doi: 10.1103/PhysRevC.104.064302
Citations: PlumX Metrics

2021SH45      J.Phys.(London) G48, 123001 (2021)

j.A.Sheikh, J.Dobaczewski, P.Ring, L.M.Robledo, C.Yannouleas

Symmetry restoration in mean-field approaches

doi: 10.1088/1361-6471/ac288a
Citations: PlumX Metrics

2021WA28      Phys.Rev. C 103, 054319 (2021)

S.Wang, Q.Zhao, P.Ring, J.Meng

Nuclear matter in relativistic Brueckner-Hartree-Fock theory with Bonn potential in the full Dirac space

doi: 10.1103/PhysRevC.103.054319
Citations: PlumX Metrics

2020KA49      Phys.Rev. C 102, 034311 (2020)

K.E.Karakatsanis, G.A.Lalazissis, V.Prassa, P.Ring

Two-quasiparticle K isomers within the covariant density functional theory

NUCLEAR STRUCTURE 170,172,174,176,178,180,182,184,186Hf, 172,174Er, 174,176Yb, 176,178Hf, 178,180W, 180,182Os, 184Pt, 186Hg, 188,208Pb; calculated Nilsson diagram for neutrons and protons close to the Fermi surface for 176Hf, single-particle energies of neutron and proton states in 208Pb and 176Hf, change in the energies of the 6+ and 8- isomers as function of pairing strength, quasineutron and quasiproton level energies, 6+ 2qp energies in A=170-180 even-even Hf isotopes, and in A=172-180, N=104 even-even isotones, energies of quasineutron levels for Z=172-180, N=104 isotones, energies of quasiproton levels and those of 8- 2qp states in A=170-186 even-A Hf isotopes, energies of 8- 2qp states in A=174-188, N=106 even-A isotones. Self-consistent mean-field approach within the relativistic Hartree-Bogoliubov framework, based on relativistic energy density functionals DD-ME2, DD-PC1, and DD-PC1 currents. Comparison with experimental data for 6+ and 8- low-energy high-K isomers in Z=68-82, N=98-112 even-A nuclei.

doi: 10.1103/PhysRevC.102.034311
Citations: PlumX Metrics

2020SU04      Phys.Rev. C 101, 014321 (2020)

T.-T.Sun, L.Qian, C.Chen, P.Ring, Z.P.Li

Green's function method for the single-particle resonances in a deformed Dirac equation

NUCLEAR STRUCTURE 37Mg; calculated Nilsson levels for bound and resonant orbitals in the halo candidate nucleus, density of states, energies of the single-neutron resonant states, single-neutron levels using Green's function (GF) method to solve the coupled-channel Dirac equation with quadrupole-deformed Woods-Saxon potentials. Comparison with other theoretical approaches.

doi: 10.1103/PhysRevC.101.014321
Citations: PlumX Metrics

2019LA22      Eur.Phys.J. A 55, 229 (2019)

G.A.Lalazissis, P.Ring

Giant resonances with time dependent covariant density functional theory

doi: 10.1140/epja/i2019-12869-0
Citations: PlumX Metrics

2019SH41      Prog.Part.Nucl.Phys. 109, 103713 (2019)

S.Shen, H.Liang, W.H.Long, J.Meng, P.Ring

Towards an ab initio covariant density functional theory for nuclear structure

doi: 10.1016/j.ppnp.2019.103713
Citations: PlumX Metrics

2018SH20      Phys.Rev. C 97, 054312 (2018)

S.Shen, H.Liang, J.Meng, P.Ring, S.Zhang

Relativistic Brueckner-Hartree-Fock theory for neutron drops

NUCLEAR STRUCTURE N=4-50; calculated ground-state energies, radii, neutron skin thickness, two-neutron energy difference, density distributions, single-particle energies, and neutron spin-orbit and pseudospin-orbit splittings of neutron drops for even numbers of neutrons from N=4 to N=50 using Relativistic Brueckner-Hartree-Fock (RBHF) theory with bare nucleon-nucleon interaction. Comparison with results from other nonrelativistic ab initio calculations, and from relativistic density functional theory.

doi: 10.1103/PhysRevC.97.054312
Citations: PlumX Metrics

2018TO08      Phys.Rev. C 98, 054302 (2018)

H.Tong, X.-L.Ren, P.Ring, S.-H.Shen, S.-B.Wang, J.Meng

Relativistic Brueckner-Hartree-Fock theory in nuclear matter without the average momentum approximation

doi: 10.1103/PhysRevC.98.054302
Citations: PlumX Metrics

2017AG05      Phys.Rev. C 95, 054324 (2017)

S.E.Agbemava, A.V.Afanasjev, D.Ray, P.Ring

Assessing theoretical uncertainties in fission barriers of superheavy nuclei

NUCLEAR STRUCTURE 276,278,280,282,284,286,288,290,292,294,296Cn, 280,282,284,286,288,294,296,298Fl, 284,286,288,290,292,294,296,298,300Lv, 288,290,294,296,298,300,302,304,306Og, 292,294,296,298,300,302,304,306,308120; calculated heights of inner fission barriers. Z=96-126, N=140-196; calculated heights of inner fission barriers, binding energies of ground states, energies of saddle points. 296Cn; calculated deformation energy curves as function of β2. 284Cn, 300120; calculated potential energy surface contours in (β2cos(γ+30), β2sin(γ+30)) plane, with systematic and statistical uncertainties quantified, and benchmarking of the functionals to the experimental data on fission barriers. Covariant energy density functional (CEDF) theory based on the state-of-the-art functionals NL3*, DD-ME2, DD-MEd, DD-PC1, and PC-PK1, in the axially symmetric and triaxial relativistic Hartree-Bogoliubov (RHB) frameworks.

doi: 10.1103/PhysRevC.95.054324
Citations: PlumX Metrics

2017KA11      Phys.Rev. C 95, 034318 (2017)

K.Karakatsanis, G.A.Lalazissis, P.Ring, E.Litvinova

Spin-orbit splittings of neutron states in N=20 isotones from covariant density functionals and their extensions

NUCLEAR STRUCTURE 40Ca, 38Ar, 36S, 34Si; calculated proton densities with the functional DD-ME2, sizes and relative reductions of neutron p and f splittings using Skyrme SLy5 and Gogny D1S functionals and tensor extensions of these functionals, radial profiles of 2p1/2 and 1f5/2 neutron state for 40Ca and 34Si, spin-orbit splittings and their relative reductions for f and p neutron states without pairing and with TMR pairing, occupation probabilities of 2s1/2 proton state in 36S and 34Si for TMR pairing force, neutron 2p1/2 to 2p3/2 splitting using NL3, NL3*, FSUGold, DD-ME2, DD-MEδ, DD-PC1 and PC-PF1 functionals, radial dependence of total density and proton density for NL3 with and without pairing, change in single-particle energies of 1f5/2 and 1f7/2 and of 2p1/2 and 2p3/2 neutron states for N=20 isotones. Several relativistic functionals such as nonlinear meson-coupling, density-dependent meson coupling, and density-dependent point-coupling models, with separable TMR pairing force of finite range to determine spin-orbit (SO) splittings. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.034318
Citations: PlumX Metrics

2017SH20      Phys.Rev. C 96, 014316 (2017)

S.Shen, H.Liang, J.Meng, P.Ring, S.Zhang

Fully self-consistent relativistic Brueckner-Hartree-Fock theory for finite nuclei

NUCLEAR STRUCTURE 4He, 16O, 40Ca; calculated ground state energies, charge and matter radii, single-particle spectra, binding energy per nucleon by relativistic ab initio approach. Solution of full relativistic Brueckner-Hartree-Fock (RBHF) equations with the relativistic form of the Bonn potential as a bare nucleon-nucleon interaction. Comparison with available experimental data.

doi: 10.1103/PhysRevC.96.014316
Citations: PlumX Metrics

2017SO06      Phys.Rev. C 95, 024305 (2017)

L.S.Song, J.M.Yao, P.Ring, J.Meng

Nuclear matrix element of neutrinoless double-β decay: Relativity and short-range correlations

RADIOACTIVITY 150Nd, 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 130Te, 136Xe(2β-); calculated nuclear matrix elements (NMEs) for neutrinoless double-beta (0νββ) decay; investigated effects of relativity and nucleon-nucleon short-range correlations on the nuclear matrix elements; predicted limits on the effective masses for light and heavy neutrinos. Covariant density functional theory using beyond-mean-field correlations from configuration mixing of angular-momentum and particle-number projected quadrupole deformed mean-field states.

doi: 10.1103/PhysRevC.95.024305
Citations: PlumX Metrics

2017ZH04      Phys.Rev. C 95, 014316 (2017)

Y.Zhang, Y.Chen, J.Meng, P.Ring

Influence of pairing correlations on the radius of neutron-rich nuclei

NUCLEAR STRUCTURE 124,122Zr; calculated total energy, neutron rms radius, total neutron densities for 124Zr with SkI4 interaction and DDDI pairing force, single-neutron energies for 124Zr; deduced influence of pairing correlations on the size of the neutron-rich nuclei. Self-consistent Skyrme Hartree-Fock-Bogoliubov calculations with Green's function techniques. Discussed pairing antihalo effect.

doi: 10.1103/PhysRevC.95.014316
Citations: PlumX Metrics

2016AG06      Phys.Rev. C 93, 044304 (2016)

S.E.Agbemava, A.V.Afanasjev, P.Ring

Octupole deformation in the ground states of even-even nuclei: A global analysis within the covariant density functional theory

NUCLEAR STRUCTURE 56,60Ca, 78Sr, 78,80,108,110,112Zr, 82Mo, 90Cd, 108,110,112,142,144Xe, 108,110,112,114,116,142,144,146,148,150Ba, 114,144,146,148,150Ce, 146,148,150Nd, 150Sm, 196,198,200,202Gd, 200,202,204Dy, 198,200,202,204Er, 204Yb, 210Os, 214Pt, 216,218Hg, 180,182,184,216,218,220,222Pb, 218,220,222Po, 218,220,222,224,226,232Rn, 218,220,222,224,226,228,230Ra, 220,222,224,226,228,230,232,236,288,290,292,294Th, 220,222,224,226,228,230,232,234,238,290,292,294,296U, 222,224,226,228,230,232,234,240,288,290,292,294,296Pu, 224,226,228,230,232,234,236,242,286,288,290,292,294,296,298Cm, 224,226,228,230,232,234,236,238,288,290,292,294,296,298,300Cf, 226,228,232,234,236,238,240,290,292,294,296,298,300,302Fm, 236,238,240,242,284,286,288,290,292,294,296,298,300,302,304,306No, 242,244,246,288,290,292,294,296,298,300,304,306,308Rf, 248,250,288,290,292,294,300,302,304,306Sg; calculated equilibrium β2, β3 deformation parameters for ground states using DD-PC1 and NL3* density functional models and ϵ2, ϵ3 parameters by mic-mac (MM) approach, potential energy surfaces in (β2, β3) plane using CEDF DD-PC1 theory. Covariant energy density functionals (CEDF) of different types, with a nonlinear meson coupling, with density-dependent meson couplings, and pairing correlations within relativistic Hartree-Bogoliubov theory. Predicted a new region of octupole deformation around Z=98 and N=196. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.044304
Citations: PlumX Metrics

2016SH34      Chin.Phys.Lett. 33, 102103 (2016)

S.-H.Shen, J.-N.Hu, H.-Z.Liang, J.Meng, P.Ring, S.-Q.Zhang

Relativistic Brueckner-Hartree-Fock Theory for Finite Nuclei

NUCLEAR STRUCTURE 16O; calculated total energy, charge radius, single-particle spectra for protons and neutrons. Brueckner-Hartree-Fock equations solved for finite nuclei in a Dirac-Woods-Saxon basis.

doi: 10.1088/0256-307X/33/10/102103
Citations: PlumX Metrics

2016ZH41      Phys.Rev. C 94, 041301 (2016)

P.W.Zhao, P.Ring, J.Meng

Configuration interaction in symmetry-conserving covariant density functional theory

NUCLEAR STRUCTURE 54Cr; calculated neutron and proton single-particle levels, yrast band and the angular momentum projected states, configurations and their quasiparticle excitation energies and the amplitudes in the yrast states. New method of configuration interaction on top of projected density functional theory (CI-PDFT). Comparison with experimental data.

doi: 10.1103/PhysRevC.94.041301
Citations: PlumX Metrics

2015AF01      Phys.Rev. C 91, 014324 (2015)

A.V.Afanasjev, S.E.Agbemava, D.Ray, P.Ring

Neutron drip line: Single-particle degrees of freedom and pairing properties as sources of theoretical uncertainties

NUCLEAR STRUCTURE Z=4-110, N=4-260; Z=70, N=78-180; calculated neutron pairing energies, neutron δ(2n)(Z, N) quantities between two-proton and two-neutron drip lines. Z=86, N=184-206; calculated neutron chemical potential, neutron quadrupole deformation β2, neutron pairing gap, neutron pairing energy, and neutron single-particle energies. 114Ge, 180Xe, 266Pb, 270Rn, 366Hs; calculated neutron single-particle states at spherical shape, neutron shell gaps at the 2n-drip lines, spread of theoretical predictions for the single-particle energies. 56Ni, 100,132Sn, 208Pb; calculated spread of theoretical predictions for the single-particle energies for doubly magic nuclei. Analyzed theoretical uncertainties in the prediction of the two-neutron drip line using covariant density functional theory (CEDFs) and several interactions.

doi: 10.1103/PhysRevC.91.014324
Citations: PlumX Metrics

2015AG09      Phys.Rev. C 92, 054310 (2015)

S.E.Agbemava, A.V.Afanasjev, T.Nakatsukasa, P.Ring

Covariant density functional theory: Reexamining the structure of superheavy nuclei

NUCLEAR STRUCTURE 236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292Cm, 238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294Cf, 240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296Fm, 242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298No, 246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300Rf, 250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302Sg, 258,260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304Hs, 264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306Ds, 270,272,274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308Cn, 276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310Fl, 282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312Lv, 290,292,294,296,298,300,302,304,306,308,310,312,314Og, 292,294,296,298,300,302,304,306,308,310,312,314,316120, 298,300,302,304,306,308,310,312,314,316,318122, 304,306,308,310,312,314,316,318,320124, 312,314,316,318,320,322126, 318,320,322,324128, 324,326130; calculated binding energies, proton and neutron quadrupole deformations, charge radii, root-mean square (rms) proton radii, neutron skin thicknesses, S(2n), S(2p), Q(α) and T1/2(α) using Viola-Seaborg formula. 292,304120; calculated neutron and proton single-particle states, shell gaps. Relativistic Hartree-Bogoliubov theory with DD-PC1 and PC-PK1 interactions, and five most up-to-date covariant energy density functionals of different types.

doi: 10.1103/PhysRevC.92.054310
Citations: PlumX Metrics

2015BL05      Phys.Scr. 90, 114009 (2015)

J.P.Blocki, A.G.Magner, P.Ring

Derivative corrections to the symmetry energy and the isovector dipole-resonance structure in nuclei

NUCLEAR STRUCTURE 132Sn; calculated isovector dipole-resonance strength functions. Skyrme forces, comparison with available data.

doi: 10.1088/0031-8949/90/11/114009
Citations: PlumX Metrics

2015BL07      Phys.Rev. C 92, 064311 (2015)

J.P.Blocki, A.G.Magner, P.Ring

Slope-dependent nuclear-symmetry energy within the effective-surface approximation

NUCLEAR STRUCTURE 68Ni, 132Sn, 208Pb; calculated isovector energy and stiffness coefficients for several Skyrme forces, isovector dipole resonance (IVDR) strength functions, IVDR n-p transition densities, slope parameter. 116,118,120,122,124,126,128,130,132Sn; calculated IVDR splittings versus the asymmetry parameter, neutron skin thicknesses as function of slope parameter. Nuclear effective-surface (ES) approximation with analytical isovector surface-energy constants in the framework of Fermi-liquid droplet (FLD) model. Comparison with other theoretical approaches, and available experimental data for isovector giant-dipole resonances (IVGDR).

doi: 10.1103/PhysRevC.92.064311
Citations: PlumX Metrics

2015YA06      Phys.Rev. C 91, 024316 (2015)

J.M.Yao, L.S.Song, K.Hagino, P.Ring, J.Meng

Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory

NUCLEAR STRUCTURE 48Ca, 48Ti, 76Ge, 76,82Se, 82Kr, 96Zr, 96,100Mo, 100Ru, 116Cd, 116,124Sn, 124,130Te, 130,136Xe, 136Ba, 150Nd, 150Sm; calculated binding energy, charge radius of correlated ground state, energies and B(E2) of first 2+ states. Generator coordinate method for both the initial and final nuclei in double β decay. Comparison with experimental data.

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn, 130Te, 136Xe, 150Nd(2β-); calculated nuclear matrix elements (NMEs)for 0νββ decay, distribution of collective wave functions as a function of deformation parameter β, decomposition of the total NMEs from the final GCM+PNAMP (PC-PK1) calculation. Comparison with different model calculations; deduced upper limits of the effective neutrino mass.

doi: 10.1103/PhysRevC.91.024316
Citations: PlumX Metrics

2014AG08      Phys.Rev. C 89, 054320 (2014)

S.E.Agbemava, A.V.Afanasjev, D.Ray, P.Ring

Global performance of covariant energy density functionals: Ground state observables of even-even nuclei and the estimate of theoretical uncertainties

NUCLEAR STRUCTURE Z=2-120, N=2-280; calculated properties of ground states of even-even nuclei between the two-proton and two-neutron drip lines, binding energies, S(2n), S(2p), charge quadrupole-, hexadecapole- and isovector β2 deformations, charge radii, neutron skin thickness, positions of two-proton and two-neutron drip line, neutron and proton three-point indicators and pairing gaps, density, energy per particle, incompressibility, effective masses. Large-scale axial relativistic Hartree-Bogoliubov calculations with four modern covariant energy density functionals (CEDF) such as NL3*, DD-ME2, DD-MEd, and DD-PC1. Comparison with other calculations and experimental data. Also supplemental information available.

ATOMIC MASSES A=10-300; calculated masses, binding energies of 835 even-even nuclei and compared with experimental values. Large-scale axial relativistic Hartree-Bogoliubov calculations with four modern covariant energy density functionals (CEDFs).

doi: 10.1103/PhysRevC.89.054320
Citations: PlumX Metrics

2014BL13      Phys.Scr. 89, 054019 (2014)

J.P.Blocki, A.G.Magner, P.Ring

Isovector dipole-resonance structure within the effective surface approximation

NUCLEAR STRUCTURE 68Ni, 132Sn, 208Pb; calculated dipole resonance structure, γ strength function, sum rule using Thomas-Fermi approach to Fermi liquid droplet model with different Skyrme interactions and account for pygmy resonances; deduced symmetry energy, other parameters.

doi: 10.1088/0031-8949/89/5/054019
Citations: PlumX Metrics

2014CH02      Phys.Rev. C 89, 014312 (2014)

Yi.Chen, P.Ring, J.Meng

Influence of pairing correlations on the size of the nucleus in relativistic continuum Hartree-Bogoliubov theory

NUCLEAR STRUCTURE 11Li, 32Ne, 40,42,44,46Mg; calculated single-neutron levels, rms radii, occupation probabilities, and contributions to neutron rms radii as a function of pairing gap. Relativistic continuum Hartree-Bogoliubov theory. Influence of pairing correlations on density distribution of neutrons and on total nuclear size, and development of nuclear halos.

doi: 10.1103/PhysRevC.89.014312
Citations: PlumX Metrics

2014SO18      Phys.Rev. C 90, 054309 (2014)

L.S.Song, J.M.Yao, P.Ring, J.Meng

Relativistic description of nuclear matrix elements in neutrinoless double-β decay

NUCLEAR STRUCTURE 150Nd; calculated levels, B(E2), neutron and proton pairing gaps, potential energy curves, configurations using multireference covariant density functional theory (MR-CDFT). Comparison with experimental results.

RADIOACTIVITY 150Nd(2β-); calculated matrix elements, half-lives, effects of particle number projection, static and dynamic deformations, and the full relativistic structure on the matrix elements for 0νββ decay mode using multireference covariant density functional theory (MR-CDFT).

doi: 10.1103/PhysRevC.90.054309
Citations: PlumX Metrics

2014YA11      Phys.Rev. C 89, 054306 (2014)

J.M.Yao, K.Hagino, Z.P.Li, J.Meng, P.Ring

Microscopic benchmark study of triaxiality in low-lying states of 76Kr

NUCLEAR STRUCTURE 76Kr; calculated levels, J, π, B(E2), Spectroscopic quadrupole moments, potential-energy surfaces (PES) in (β, γ) plane, PES for quasi-γ band, staggering of γ band. Generator coordinate method (GCM) and covariant density functional theory with 5D collective Hamiltonian. Discussed triaxiality in low-lying states in 76Kr. Comparison with experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.89.054306
Citations: PlumX Metrics

2013AF02      Phys.Lett. B 726, 680 (2013)

A.V.Afanasjev, S.E.Agbemava, D.Ray, P.Ring

Nuclear landscape in covariant density functional theory

NUCLEAR STRUCTURE Z=1-120, N=1-300; calculated two-proton and neutron separation energies and dripline, neutron chemical potentials, quadrupole deformations. Skyrme density and covariant density functional theory calculations.

doi: 10.1016/j.physletb.2013.09.017
Citations: PlumX Metrics

2013BL03      Phys.Rev. C 87, 044304 (2013)

J.P.Blocki, A.G.Magner, P.Ring, A.A.Vlasenko

Nuclear asymmetry energy and isovector stiffness within the effective surface approximation

doi: 10.1103/PhysRevC.87.044304
Citations: PlumX Metrics

2013CH33      Phys.Rev. C 88, 014315 (2013)

F.-Q.Chen, Y.Sun, P.Ring

Quantum fluctuations in the collective 0+ states of deformed nuclei

NUCLEAR STRUCTURE 154,156,158,160,162Gd, 156,158,160,162,164Dy, 158,160,162,164,166Er; calculated energies of 2+, 4+ and 6+ members of ground bands, first excited 0+, probability functions of deformation for ground and first excited 0+ states, E0-matrix elements for 0+ to 0+ and 2+ to 2+ transitions. Extension of the original projected shell model (PSM). Comparison with experimental data.

doi: 10.1103/PhysRevC.88.014315
Citations: PlumX Metrics

2013LI48      Phys.Rev. C 88, 044320 (2013)

E.Litvinova, P.Ring, V.Tselyaev

Relativistic two-phonon model for the low-energy nuclear response

NUCLEAR STRUCTURE 68,70,72Ni, 112,116,120,124Sn; calculated low-energy dipole spectra, energies of 1- states, B(E1), anharmonicity. Two-quasiparticle Pygmy-dipole modes. Relativistic two-phonon model. Self-consistent relativistic quasiparticle random phase approximation (RQRPA), and relativistic quasiparticle time-blocking approximations (RQTBA, RQTBA-2). Comparison with experimental data.

doi: 10.1103/PhysRevC.88.044320
Citations: PlumX Metrics

2013LI55      Phys.Rev. C 88, 064307 (2013)

J.Li, J.X.Wei, J.N.Hu, P.Ring, J.Meng

Relativistic description of magnetic moments in nuclei with doubly closed shells plus or minus one nucleon

NUCLEAR MOMENTS 207,209Pb, 207Tl, 209Bi; calculated magnetic moments using relativistic mean field point-coupling model with the density functional PC-PK1. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.064307
Citations: PlumX Metrics

2013NI17      Phys.Rev. C 88, 044327 (2013)

T.Niksic, N.Kralj, T.Tutis, D.Vretenar, P.Ring

Implementation of the finite amplitude method for the relativistic quasiparticle random-phase approximation

NUCLEAR STRUCTURE 22O, 132,134,136,138,140,142,144,146,148,150,152,154,156,158,160Sm; calculated evolution and splitting of Kπ=0+, isoscalar giant monopole strength (ISGMR) in axially deformed systems as function of quadrupole deformation, mixing of monopole and quadrupole modes, fraction of EWSR for high-energy and low-energy components. FAM-RQRPA equations in the framework of relativistic energy density functionals.

doi: 10.1103/PhysRevC.88.044327
Citations: PlumX Metrics

2013TA21      Phys.Rev. C 88, 017301 (2013)

Y.Tanimura, K.Hagino, P.Ring

Application of the inverse Hamiltonian method to Hartree-Fock-Bogoliubov calculations

doi: 10.1103/PhysRevC.88.017301
Citations: PlumX Metrics

2013XI11      Phys.Rev. C 88, 057301 (2013)

J.Xiang, Z.P.Li, J.M.Yao, W.H.Long, P.Ring, J.Meng

Effect of pairing correlations on nuclear low-energy structure: BCS and general Bogoliubov transformation

NUCLEAR STRUCTURE 134,136,138,140,142,144,146,148,150,152,154Sm; calculated binding energies for quadrupole deformation, proton and neutron pairing gaps. 152Sm; calculated potential energy surfaces for quadrupole deformation, proton and neutron pairing gaps, moments of inertia, low-lying levels, J, π, bands, single-particle energy levels and occupation probabilities. Relativistic Hartree-Bogoliubov (RHB) and relativistic mean field plus BCS (RMF+BCS) calculations, and comparison between the two approaches.

doi: 10.1103/PhysRevC.88.057301
Citations: PlumX Metrics

2012AB01      Phys.Rev. C 85, 024314 (2012)

H.Abusara, A.V.Afanasjev, P.Ring

Fission barriers in covariant density functional theory: Extrapolation to superheavy nuclei

NUCLEAR STRUCTURE Z=90-98, N=138-154; calculated heights of inner fission barriers for even-even nuclei as functions of neutron and proton numbers. Comparison with experimental values. 276,278,280,282,284,286,288,290,292Cn, 280,282,284,286,288,290,292,294,296Fl, 284,286,288,290,292,294,296,298,300Lv, 288,290,292,294,296,298,300,302,304Og, 292,294,296,298,300,302,304,306,308120; calculated heights of axially symmetric and triaxial saddle points, deformation energy curves, ground state deformation parameters, inner and outer fission barriers, superdeformed minima. 240Pu, 278,290Cn, 286,300Lv, 292,304120; calculated potential energy surface contours in β-γ plane. Triaxial and octupole deformation. Covariant density functional models with NL3*, DD-ME2, and DD-PC1 parameterizations.

doi: 10.1103/PhysRevC.85.024314
Citations: PlumX Metrics

2012AF04      Int.J.Mod.Phys. E21, 1250025 (2012)

A.V.Afanasjev, H.Abusara, P.Ring

Recent progress in the study of fission barriers in covariant density functional theory

doi: 10.1142/S0218301312500255
Citations: PlumX Metrics

2012EN02      Phys.Rev. C 85, 064331 (2012)

J.Endres, D.Savran, P.A.Butler, M.N.Harakeh, S.Harissopulos, R.-D.Herzberg, R.Krucken, A.Lagoyannis, E.Litvinova, N.Pietralla, V.Yu.Ponomarev, L.Popescu, P.Ring, M.Scheck, F.Schluter, K.Sonnabend, V.I.Stoica, H.J.Wortche, A.Zilges

Structure of the pygmy dipole resonance in 124Sn

NUCLEAR REACTIONS 124Sn(α, α'), E=136 MeV; measured Eγ, Eα, αγ-coin, αγ(θ) using Big-Bite magnetic Spectrometer at KVI facility; deduced pygmy dipole resonances, levels, differential σ. Comparison with B(E1) strengths in (γ, γ'). Comparison with quasiparticle-phonon model calculations and relativistic quasiparticle random-phase approximations.

doi: 10.1103/PhysRevC.85.064331
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1762. Data from this article have been entered in the XUNDL database. For more information, click here.

2012LI11      Phys.Rev. C 85, 024312 (2012)

L.Li, J.Meng, P.Ring, E.-G.Zhao, S.-G.Zhou

Deformed relativistic Hartree-Bogoliubov theory in continuum

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40,42Mg; calculated binding energy, quadrupole deformation β2, rms radius, neutron Fermi energy, S(2n), neutron density profiles. 42Mg; calculated binding energy, neutron pairing tensor, single neutron levels and density distribution contours of ground state, neutron halo contributions. Deformed relativistic Hartree Bogoliubov (RHB) theory, Woods-Saxon (WS) basis. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024312
Citations: PlumX Metrics

2012LI22      Chin.Phys.Lett. 29, 042101 (2012)

L.-L.Li, J.Meng, P.Ring, E.-G.Zhao, S.-G.Zhou

Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum

doi: 10.1088/0256-307X/29/4/042101
Citations: PlumX Metrics

2012LI36      Phys.Rev. C 86, 021302 (2012)

H.Liang, P.Zhao, P.Ring, X.Roca-Maza, J.Meng

Localized form of Fock terms in nuclear covariant density functional theory

NUCLEAR STRUCTURE 90Zr, 208Pb; calculated Gamow-Teller resonance (GTR) and spin-dipole resonance (SDR) strength distributions. Relativistic Hartree-Fock (RHF) covariant density functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.021302
Citations: PlumX Metrics

2012LI42      Phys.Rev. C 86, 034334 (2012)

Z.P.Li, T.Niksic, P.Ring, D.Vretenar, J.M.Yao, J.Meng

Efficient method for computing the Thouless-Valatin inertia parameters

NUCLEAR STRUCTURE 152,154,156,158,160,162,164Sm; calculated Thouless-Valatin moments of inertia for nuclear system. Adiabatic time-dependent Hartree-Fock approximation (ATDHF). Comparison with calculations using the self-consistent cranking model.

doi: 10.1103/PhysRevC.86.034334
Citations: PlumX Metrics

2012RI06      Phys.Scr. T150, 014035 (2012)


Energy density functional theory in nuclei: does it have to be relativistic?

doi: 10.1088/0031-8949/2012/T150/014035
Citations: PlumX Metrics

2012VR03      Prog.Theor.Phys.(Kyoto), Suppl. 196, 137 (2012)

D.Vretenar, T.Niksic, P.Ring

Relativistic Nuclear Energy Density Functionals

NUCLEAR STRUCTURE 48Ca, 46Ar, 44S, 42Si, 40Mg, 240Pu; calculated RHB triaxial quadrupole constrained energy surfaces, energy levels, J, π, B(E2).

doi: 10.1143/PTPS.196.137
Citations: PlumX Metrics

2012YU02      Phys.Rev. C 85, 024318 (2012)

L.F.Yu, P.W.Zhao, S.Q.Zhang, P.Ring, J.Meng

Magnetic rotations in 198Pb and 199Pb within covariant density functional theory

NUCLEAR STRUCTURE 198,199Pb; calculated neutron single-particle and total Routhians, levels, J, π, bands, angular momentum alignments, β and γ deformation parameters, B(E2), B(M1) for magnetic-dipole rotational (shears) bands. Tilted axis cranking relativistic mean-field theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024318
Citations: PlumX Metrics

2012ZH18      Phys.Rev. C 85, 054310 (2012)

P.W.Zhao, J.Peng, H.Z.Liang, P.Ring, J.Meng

Covariant density functional theory for antimagnetic rotation

NUCLEAR STRUCTURE 105Cd; calculated total Routhians, energy spectrum, total angular momenta, kinetic and dynamic moments of inertia, B(E2) values, alignments, Dirac currents, density distribution contours for antimagnetic rotational (AMR) band using tilted-axis cranking and relativistic mean field (TAC-RMF), and TAC with covariant density functional theory (CDFT). Comparison with experimental data.

doi: 10.1103/PhysRevC.85.054310
Citations: PlumX Metrics

2011AF04      J.Phys.:Conf.Ser. 312, 092004 (2011)

A.V.Afanasjev, H.Abusara, E.Litvinova, P.Ring

Spectroscopy of the heaviest nuclei (theory)

NUCLEAR STRUCTURE 240Pu, 241Am, 251Md; calculated moments of inertia of one-quasiproton configurations using CDFT (covariant density functional theory); compared with data. 228,230,232,234Th, 232,234,236,238,240U, 237,238,240,242,244,246Pu, 242,244,246,248,250Cm, 252,254Cf; calculated deformation energy curves, fission barriers using RMF plus BCS with NL3* parameterization; compared to data.

doi: 10.1088/1742-6596/312/9/092004
Citations: PlumX Metrics

2011DA03      Phys.Rev. C 83, 044303 (2011)

I.Daoutidis, P.Ring

Relativistic continuum quasiparticle random--phase approximation in spherical nuclei

NUCLEAR REACTIONS 112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150Sn(γ, γ'), E<11 MeV; calculated centroids of excitation energies, ratios of the PDR strength to the TRK sum rule. 70Zn, 94Zr, 124,132Sn, 130Te, 138Ba, 144Sm, 208Pb(γ, γ'), E=11-18 MeV; calculated excitation energy of the isovector giant dipole resonance (IVGDR), E1 strength distribution for 124Sn, 132Sn. Relativistic continuum QRPA approach for E1 excitations of spherical open-shell even-even nuclei. Giant-dipole and the soft-pygmy resonances. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.044303
Citations: PlumX Metrics

2011MA08      J.Phys.(London) G38, 045101 (2011)

I.Maqbool, J.A.Sheikh, P.A.Ganai, P.Ring

Particle-number-projected Hartree-Fock-Bogoliubov study with effective shell model interactions

NUCLEAR STRUCTURE 20,22,24,26,28Ne, 24Mg, 28Si, 32S, 36Ar, 44,46,48,50,52Cr; calculated energy surfaces, quadrupole moments, pairing gaps. Hartree-Fock-Bogoliubov method using GXPF1A effective interaction.

doi: 10.1088/0954-3899/38/4/045101
Citations: PlumX Metrics

2011NI07      Int.J.Mod.Phys. E20, 459 (2011)

T.Niksic, D.Vretenar, P.Ring

Beyond the relativistic mean-field approximation: configuration mixing calculations

NUCLEAR STRUCTURE 190,192,194,196,198,200Pt; calculated triaxial quadrupole binding-energy maps, proton canonical single-particle energy levels, low-energy spectra, J, π. Comparison with experimental data.

doi: 10.1142/S0218301311017855
Citations: PlumX Metrics

2011PE26      Phys.Rev. C 84, 045806 (2011)

D.Pena Arteaga, M.Grasso, E.Khan, P.Ring

Nuclear structure in strong magnetic fields: Nuclei in the crust of a magnetar

NUCLEAR STRUCTURE 16O, 56Fe; calculated evolution of single-particle level energies, binding energy per article, radius, and β deformation as a function of magnetic field strengths. Z=22-30, N=22-36; calculated minimum magnetic field for which the first level crossing at the Fermi energy occurs. Influence of strong magnetic fields on nuclear structure using a fully self-consistent covariant density functional.

doi: 10.1103/PhysRevC.84.045806
Citations: PlumX Metrics

2011RI05      Int.J.Mod.Phys. E20, 235 (2011)

P.Ring, H.Abusara, A.V.Afanasjev, G.A.Lalazissis, T.Niksic, D.Vretenar

Modern applications of Covariant Density Functional theory

NUCLEAR STRUCTURE 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf, 150Nd; calculated potential and deformation energy surfaces, J, π.

doi: 10.1142/S0218301311017570
Citations: PlumX Metrics

2011RO50      Phys.Rev. C 84, 054309 (2011); Erratum Phys.Rev. C 93, 069905 (2016)

X.Roca-Maza, X.Vinas, M.Centelles, P.Ring, P.Schuck

Relativistic mean-field interaction with density-dependent meson-nucleon vertices based on microscopical calculations

NUCLEAR STRUCTURE 16,18,26,28,30Ne, 20,32Mg, 34,36Si, 36S, 38,40Ar, 36,38,40,42,44,46,48,50,52Ca, 40,42,44,48,50,52,54Ti, 46,52Cr, 54,64,66,68Fe, 54,56,58,66,68,70,72Ni, 58,70,72Zn, 82Ge, 84,86Se, 86,88Kr, 86,88,90Sr, 86,88,90,92Zr, 86,88,90,92,94Mo, 94,96Ru, 96,98Pd, 98,100Cd, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 126,128,130,132,134,136Te, 134,136,138Xe, 136,138,140Ba, 138,140,142,144Ce, 140,142,144Nd, 142,144,146Sm, 146Gd, 148Dy, 150Er, 152Yb, 170,172Pt, 172,174,176,204,206Hg, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 204,206,208,210,212,214,216Po, 208,210,212,214,216Rn, 210,212,214,216,218Ra, 212,214,216,218,220Th, 224U; analyzed binding energies, and charge radii. 100,132,176Sn; calculated isoscalar, isovector parts of the spin-orbit potential, spin orbit splitting. Relativistic Brueckner theory, high-precision density functional DD-MEδ with density-dependent meson-nucleon couplings. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.054309
Citations: PlumX Metrics

2011YA01      Phys.Rev. C 83, 014308 (2011)

J.M.Yao, H.Mei, H.Chen, J.Meng, P.Ring, D.Vretenar

Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions. II. Microscopic analysis of low-lying states in magnesium isotopes

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40Mg; calculated potential energy curves for ground state as a function of β2 deformation parameter, B(E2) values for first 2+ states, excitation energies and spectroscopic quadrupole moments of the first 2+ and 4+ states, binding energy contour maps in β-γ plane, probability distributions of the collective wave functions in β-γ plane. Constrained self-consistent relativistic mean-field calculations for triaxial shapes (3DAMP+GCM). Comparison with previous axial 1DAMP+GCM calculations, and with experimental data.

doi: 10.1103/PhysRevC.83.014308
Citations: PlumX Metrics

2011YA11      Phys.Rev. C 84, 024306 (2011)

J.M.Yao, J.Meng, P.Ring, Z.X.Li, Z.P.Li, K.Hagino

Microscopic description of quantum shape fluctuation in C isotopes

NUCLEAR STRUCTURE 10,12,14,16,18,20,22C; calculated levels, J, π, B(E2), potential energy surfaces. Covariant density functional (CDF) theory, angular momentum projection (3DAMP), generator coordinate method (GCM). Comparison with experimental data.

doi: 10.1103/PhysRevC.84.024306
Citations: PlumX Metrics

2011ZH28      Phys.Rev.Lett. 107, 122501 (2011)

P.W.Zhao, J.Peng, H.Z.Liang, P.Ring, J.Meng

Antimagnetic Rotation Band in Nuclei: A Microscopic Description

NUCLEAR STRUCTURE 105Cd; calculated angular momentum, energy and rotational frequency, B(E2). Covariant density functional theory.

doi: 10.1103/PhysRevLett.107.122501
Citations: PlumX Metrics

2011ZH55      J.Phys.:Conf.Ser. 312, 092067 (2011)

S.G.Zhou, J.Meng, P.Ring, E.G.Zhao

Neutron halo in deformed nuclei from a relativistic Hartree-Bogoliubov model in a Woods-Saxon basis

NUCLEAR STRUCTURE 44Mg; calculated density distribution, neutron halo using fully self-consistent deformed Hartree-Bogoliubov model in spherical Woods-Saxon basis.

doi: 10.1088/1742-6596/312/9/092067
Citations: PlumX Metrics

2011ZH57      Phys.Lett. B 699, 181 (2011)

P.W.Zhao, S.Q.Zhang, J.Peng, H.Z.Liang, P.Ring, J.Meng

Novel structure for magnetic rotation bands in 60Ni

NUCLEAR STRUCTURE 60Ni; calculated energy spectra, total angular momenta, evolution of deformation parameters, B(M1), B(E2), B(M1)/B(E2) ratios; deduced systematics of the newly observed shears bands. The self-consistent tilted axis cranking relativistic mean-field theory based on a point-coupling interaction.

doi: 10.1016/j.physletb.2011.03.068
Citations: PlumX Metrics

2010AB23      Phys.Rev. C 82, 044303 (2010)

H.Abusara, A.V.Afanasjev, P.Ring

Fission barriers in actinides in covariant density functional theory: The role of triaxiality

NUCLEAR STRUCTURE 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated β2- and γ-deformation energy curves, potential energy surfaces, proton and neutron single-particle energies as a function of β2 and γ parameter, fission barriers as a function of proton and neutron number using relativistic mean-field theory and covariant density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.044303
Citations: PlumX Metrics

2010EN01      Phys.Rev.Lett. 105, 212503 (2010)

J.Endres, E.Litvinova, D.Savran, P.A.Butler, M.N.Harakeh, S.Harissopulos, R.-D.Herzberg, R.Krucken, A.Lagoyannis, N.Pietralla, V.Yu.Ponomarev, L.Popescu, P.Ring, M.Scheck, K.Sonnabend, V.I.Stoica, H.J.Wortche, A.Zilges

Isospin Character of the Pygmy Dipole Resonance in 124Sn

NUCLEAR REACTIONS 124Sn(α, α'), E=136 MeV; measured Eα, Iα, Eγ, Iγ, α-γ-coin.; deduced pigmy resonance σ(θ), B(E1), two groups of states. Comparison with calculations.

doi: 10.1103/PhysRevLett.105.212503
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1762.

2010LI17      Phys.Rev.Lett. 105, 022502 (2010)

E.Litvinova, P.Ring, V.Tselyaev

Mode Coupling and the Pygmy Dipole Resonance in a Relativistic Two-Phonon Model

NUCLEAR STRUCTURE 116,120Sn, 68,70,72Ni; calculated energies, B(E1), anharmonicities, low-lying dipole spectra. Relativistic quasiparticle time blocking approximation (RQTBA).

doi: 10.1103/PhysRevLett.105.022502
Citations: PlumX Metrics

2010LI20      Phys.Rev. C 81, 064321 (2010)

Z.P.Li, T.Niksic, D.Vretenar, P.Ring, J.Meng

Relativistic energy density functionals: Low-energy collective states of 240Pu and 166Er

NUCLEAR STRUCTURE 240Pu; calculated binding energy maps in β-γ plane, low-energy excitation spectra, deformation energy curves, barrier height, g.s., β, γ, superdeformed bands, levels, J, π. 166Er; calculated binding energy maps in β-γ plane, low-energy excitation spectra, E2 transition probabilities, deformation energy curves, g.s., γ and two-phonon γ-vibrational bands, levels, J, π. Relativistic energy density functionals DD-PC1 and PC-F1 starting with constrained self-consistent triaxial relativistic Hartree-Bogoliubov calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.064321
Citations: PlumX Metrics

2010LO02      Phys.Rev. C 81, 024308 (2010)

W.H.Long, P.Ring, N.Van Giai, J.Meng

Relativistic Hartree-Fock-Bogoliubov theory with density dependent meson-nucleon couplings

NUCLEAR STRUCTURE Z=50, N=56-86 (even); calculated binding energies and neutron radii using Relativistic Hartree-Fock-Bogoliubov (RHFB) with Gogny and delta pairing force and density dependent Relativistic Hartree-Fock-Bogoliubov (DDRHFB) with BCS pairing. Z=50, N=50-88; N=82, Z=48-73; calculated binding energies, S(n), S(p), S(2n) and S(2p) using RHFB with PKA1 and PKO1 parameters and RHB with DD-ME2 parameters. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.024308
Citations: PlumX Metrics

2010LO03      Phys.Rev. C 81, 031302 (2010)

W.-H.Long, P.Ring, J.Meng, N.Van Giai, C.A.Bertulani

Nuclear halo structure and pseudospin symmetry

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74Ca, 56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94Ni, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Zr, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174Sn, 122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198Ce; calculated neutron skin thickness (rn-rp) using RHFB with PKA1 plus the D1S pairing force. 140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198Ce; calculated neutron and proton densities, neutron single particle energies, Two-body interaction matrix elements Vab, neutron shell gap, halo structure near neutron drip line, and conservation of pseudospin symmetry using relativistic Hartree-Fock-Bogoliubov calculations.

doi: 10.1103/PhysRevC.81.031302
Citations: PlumX Metrics

2010MA35      Nucl.Phys. A834, 50c (2010)

Z.-y.Ma, Y.Tian, P.Ring

Density functional theory with a separable pairing force in finite nuclei

NUCLEAR STRUCTURE 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn; calculated E2, B(E2), pairing gap using separable and Gogny D1S forces. 128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188Sm; calculated deformation using RMF+BCS, HFB, RHB (relativistic Hartree-Bogoliubov). Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.015
Citations: PlumX Metrics

2010MO13      Phys.Rev. C 81, 065803 (2010)

Ch.C.Moustakidis, T.Niksic, G.A.Lalazissis, D.Vretenar, P.Ring

Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 196,198,200,202,204,206,208,210,212,214Pb; calculated rms radii using Hartree-Bogoliubov (RHB) model. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.065803
Citations: PlumX Metrics

2010NI06      Phys.Rev. C 81, 054318 (2010)

T.Niksic, P.Ring, D.Vretenar, Y.Tian, Z.-y.Ma

3D relativistic Hartree-Bogoliubov model with a separable pairing interaction: Triaxial ground-state shapes

NUCLEAR STRUCTURE 134,136,138,140,142,144,146,148,150,152,154,156Sm, 190,192,194,196,198,200Pt; calculated triaxial quadrupole binding-energy contour maps, neutron and proton pairing energy maps in β-γ plane, quadrupole deformations. 192Pt; calculated proton and neutron canonical single-particle energy levels. Relativistic Hartree-Bogoliubov (RHB) model.

doi: 10.1103/PhysRevC.81.054318
Citations: PlumX Metrics

2010RI11      J.Phys.:Conf.Ser. 205, 012010 (2010)


Covariant density functional theory beyond mean field and applications for nuclei far from stability

NUCLEAR STRUCTURE 116,120,130Sn; calculated PDR, GDR strength function, photoabsorption σ using RQRPA and RQTBA. 16C; calculated potential surfaces vs deformation, low-lying levels, rotational band, B(E2) using mean field and projection onto angular momentum and 3DAM (3-dimensional angular momentum projection)+GCM. Compared with EXFOR data.

doi: 10.1088/1742-6596/205/1/012010
Citations: PlumX Metrics

2010VR01      Int.J.Mod.Phys. E19, 548 (2010)

D.Vretenar, T.Niksic, P.Ring

Relativistic nuclear energy density functionals

NUCLEAR STRUCTURE 226,228,230,232,234,236Th, 228,230,232,234,236,238,240,242U, 232,234,236,238,240,242,244,246Pu, 238,240,242,244,246,248,250Cm, 242,244,246,248,250,252,254,256Cf, 242,244,246,248,250,252,254,256Fm, 250,252,254,256,258,260,262No; calculated ground-state axial quadrupole and hexadecapole moments.

doi: 10.1142/S0218301310014960
Citations: PlumX Metrics

2010YA04      Phys.Rev. C 81, 044311 (2010)

J.M.Yao, J.Meng, P.Ring, D.Vretenar

Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions

NUCLEAR STRUCTURE 24Mg; calculated levels, J, π, B(E2), RMF+BCS energy surfaces, probability distribution contour plots for ground state and excited states, neutron and proton pairing gaps using generator coordinate method and configuration mixing of angular-momentum-projected wave functions. Relativistic mean-field calculations for triaxial shapes. Effects of triaxial deformation and K mixing. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.044311
Citations: PlumX Metrics

2010ZH23      Phys.Rev. C 82, 011301 (2010)

S.-G.Zhou, J.Meng, P.Ring, E.-G.Zhao

Neutron halo in deformed nuclei

NUCLEAR STRUCTURE 36,38Ne, 44Mg; calculated proton and neutron density distributions, densities of the neutron core and neutron halo, single neutron levels for the core using deformed relativistic Hartree Bogoliubov (DRHB) theory. Halo phenomenon in deformed nuclei.

doi: 10.1103/PhysRevC.82.011301
Citations: PlumX Metrics

2009AY03      Phys.Rev. C 80, 034613 (2009)

S.Ayik, O.Yilmaz, N.Er, A.Gokalp, P.Ring

Spinodal instabilities in nuclear matter in a stochastic relativistic mean-field approach

doi: 10.1103/PhysRevC.80.034613
Citations: PlumX Metrics

2009DA14      Phys.Rev. C 80, 024309 (2009)

J.Daoutidis, P.Ring

Continuum random-phase approximation for relativistic point coupling models

NUCLEAR STRUCTURE 16O, 40Ca, 132Sn, 208Pb; calculated E0 and E1 transition strengths, transition densities for neutrons and protons, width, centroid energies for isoscalar giant monopole (ISGMR), isovector giant dipole (IVGDR), isoscalar giant quadrupole (ISGQR), isoscalar giant dipole (ISGDR) and E1 pygmy resonances using Continuum Relativistic random-phase approximation (CRPA) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.024309
Citations: PlumX Metrics

2009LA22      Phys.Rev. C 80, 041301 (2009)

G.A.Lalazissis, S.Karatzikos, M.Serra, T.Otsuka, P.Ring

Covariant density functional theory: The role of the pion

NUCLEAR STRUCTURE 40,48Ca, 48,56Ni, 100,132Sn, 208Pb, Sn A=116-152; calculated binding energies, single particle energies and spin orbit splitting of the doublets using relativistic mean field (RMF) theory and relativistic Hartree-Fock approximation. Discussed the role of the pion in covariant density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.041301
Citations: PlumX Metrics

2009LI13      Nucl.Phys. A823, 26 (2009)

E.Litvinova, H.P.Loens, K.Langanke, G.Martinez-Pinedo, T.Rauscher, P.Ring, F.-K.Thielemann, V.Tselyaev

Low-lying dipole response in the relativistic quasiparticle time blocking approximation and its influence on neutron capture cross sections

NUCLEAR STRUCTURE 106,116,132,140Sn; calculated E1 strength function using microscopic quasiparticle time blocking approximation. Comparison with other models.

NUCLEAR REACTIONS 105,115,131,139Sn(n, γ), E=0.001-20 MeV; calculated σ. 67,69,71,73,75,77Ni, 105,109,113,115,119,123,129,131,133,135,137,139Sn(n, γ), E≈80-100 keV; calculated stellar capture rate ratio between various models.

doi: 10.1016/j.nuclphysa.2009.03.009
Citations: PlumX Metrics

2009LI19      Phys.Rev. C 79, 054301 (2009)

Z.P.Li, T.Niksic, D.Vretenar, J.Meng, G.A.Lalazissis, P.Ring

Microscopic analysis of nuclear quantum phase transitions in the N ≈ 90 region

NUCLEAR STRUCTURE 144,146,148,150,152,154Nd, 150,152,154Sm, 152,154,156Gd; calculated RMF+BCS quadrupole binding energy parametric plots as a function of β- and γ-deformation, excitation energies, B(E2) transition rates and single-particle states using 5-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom. 150Nd, 152Sm; calculated spectra of ground-state, β and γ bands, B(E2) transition rates using PC-F1 relativistic density functional and X(5) symmetry approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054301
Citations: PlumX Metrics

2009LI20      Phys.Rev. C 79, 054312 (2009)

E.Litvinova, P.Ring, V.Tselyaev, K.Langanke

Relativistic quasiparticle time blocking approximation. II. Pygmy dipole resonance in neutron-rich nuclei

NUCLEAR STRUCTURE 68,70,72,74,76,78Ni, 116,118,120,122,124,126,128,130,132,134,136,138,140Sn, 208Pb; calculated dipole excitation spectra, σ, proton and neutron transition densities, pygmy strength, mean energies for giant dipole resonance (GDR) and pygmy dipole resonance (PDR) using relativistic quasiparticle random-phase approximation (RQRPA) and relativistic quasiparticle time-blocking approximation (RQTBA). Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054312
Citations: PlumX Metrics

2009NI04      Phys.Rev. C 79, 034303 (2009)

T.Niksic, Z.P.Li, D.Vretenar, L.Prochniak, J.Meng, P.Ring

Beyond the relativistic mean-field approximation. III. Collective Hamiltonian in five dimensions

NUCLEAR STRUCTURE 152,154,156,158,160Gd; calculated binding energy as function of deformation, triaxial quadrupole binding energy, ground-state, β and γ bands, K components, B(E2), staggering. 154Gd; calculated neutron and proton pairing energies, inertial parameters, cranking mass parameter, rotational zero-point energy and collective potential in β-γ plane, levels, J, π. RMF+BCS calculations using collective Hamiltonian in five dimensions. Comparisons with experimental data.

doi: 10.1103/PhysRevC.79.034303
Citations: PlumX Metrics

2009PE05      Phys.Rev. C 79, 034311 (2009)

D.Pena Arteaga, E.Khan, P.Ring

Isovector dipole strength in nuclei with extreme neutron excess

NUCLEAR STRUCTURE 132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166Sn; calculated isovector dipole (E1) resonance strengths and energies of GDR and PDR, total pygmy dipole strength, transition densities. Relativistic quasiparticle random phase approximation (RQRPA).

doi: 10.1103/PhysRevC.79.034311
Citations: PlumX Metrics

2009SC11      Phys.Rev.Lett. 103, 012501 (2009)

W.Schwerdtfeger, P.G.Thirolf, K.Wimmer, D.Habs, H.Mach, T.R.Rodriguez, V.Bildstein, J.L.Egido, L.M.Fraile, R.Gernhauser, R.Hertenberger, K.Heyde, P.Hoff, H.Hubel, U.Koster, T.Kroll, R.Krucken, R.Lutter, T.Morgan, P.Ring

Shape Coexistence Near Neutron Number N = 20: First Identification of the E0 Decay from the Deformed First Excited Jπ = 0+ State in 30Mg

RADIOACTIVITY 30Na(β-); measured Eγ, Iγ; deduced J, π, monopole strength, partial E0 lifetime. Comparison with beyond mean field calculations.

doi: 10.1103/PhysRevLett.103.012501
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2009TI03      Phys.Lett. B 676, 44 (2009)

Y.Tian, Z.Y.Ma, P.Ring

A finite range pairing force for density functional theory in superfluid nuclei

NUCLEAR STRUCTURE Sn, Pb; calculated pairing energy and associated matrix elements using the relativistic Hartree?Bogoliubov approach.

doi: 10.1016/j.physletb.2009.04.067
Citations: PlumX Metrics

2009TI04      Phys.Rev. C 79, 064301 (2009)

Y.Tian, Z.-y.Ma, P.Ring

Separable pairing force for relativistic quasiparticle random-phase approximation

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 122Zr, 124Mo, 126Ru, 128Pd, 130Cd, 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb; calculated energies of first 2+, first and second 3-, B(E2), proton average gap, and isoscalar giant monopole resonance (ISGMR) using Relativistic Hartree-Bogoliubov (RHB) and relativistic quasiparticle random phase approximation (RQRPA). Comparison with experimental data.

doi: 10.1103/PhysRevC.79.064301
Citations: PlumX Metrics

2009TI07      Phys.Rev. C 80, 024313 (2009)

Y.Tian, Z.-y.Ma, P.Ring

Axially deformed relativistic Hartree Bogoliubov theory with a separable pairing force

NUCLEAR STRUCTURE 164Er, 128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188Sm, 240Pu; calculated binding energies, neutron and proton pairing energies using axially symmetric relativistic Hartree-Bogoliubov calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.024313
Citations: PlumX Metrics

2009YA04      Phys.Rev. C 79, 044312 (2009)

J.M.Yao, J.Meng, P.Ring, D.Pena Arteaga

Three-dimensional angular momentum projection in relativistic mean-field theory

NUCLEAR STRUCTURE 24,30,32Mg; calculated level energies, B(E2), binding energies, pairing gaps, neutron and proton numbers of angular momentum projected states, energy curves as function of mass quadrupole moment, neutron and proton single-particle states, potential energy surfaces using three dimensional projection methods in relativistic mean-field (RMF) calculation for triaxially deformed nuclei. Comparison with experimental data. 16O, 40,48Ca, 56Ni, 112,120,124,132Sn, 208Pb; calculated binding energies, charge radii.

doi: 10.1103/PhysRevC.79.044312
Citations: PlumX Metrics

2009YA24      Chin.Phys.C 33, Supplement 1, 21 (2009)

J.-M.Yao, J.Meng, D.Pena Arteaga, P.Ring

Restoration of rotational symmetry in deformed relativistic mean-field theory

NUCLEAR STRUCTURE 24Mg; calculated three-dimensional angular momentum projection, normal kernel, potential energy curves as a function of the deformation, J, π. RMF-PC, BCS theory.

doi: 10.1088/1674-1137/33/S1/007
Citations: PlumX Metrics

2008LI30      Phys.Rev. C 78, 014312 (2008); Erratum Phys.Rev. C 78, 049902 (2008)

E.Litvinova, P.Ring, V.Tselyaev

Relativistic quasiparticle time blocking approximation: Dipole response of open-shell nuclei

NUCLEAR STRUCTURE 88Sr, 90Zr, 92Mo, 100,106,114,116,120,130Sn; calculated dipole spectra, photoproduction σ, B(E1). Relativistic quasiparticle random phase approximation.

doi: 10.1103/PhysRevC.78.014312
Citations: PlumX Metrics

2008NI01      Phys.Rev. C 77, 034302 (2008)

T.Niksic, D.Vretenar, G.A.Lalazissis, P.Ring

Finite- to zero-range relativistic mean-field interactions

NUCLEAR STRUCTURE 16O, 40,48Ca, 72Ni, 90Zr, 124,132Sn, 204,208,214Pb, 210Po; calculated charge radii, binding energies. Compared with experiment. Finite to zero range relativistic mean field approximation.

doi: 10.1103/PhysRevC.77.034302
Citations: PlumX Metrics

2008NI09      Phys.Rev. C 78, 034318 (2008)

T.Niksic, D.Vretenar, P.Ring

Relativistic nuclear energy density functionals: Adjusting parameters to binding energies

NUCLEAR STRUCTURE Nd, Sm, Gd, Dy, Er, Yb; calculated charge radii and ground state quadrupole deformations. Pb, Sn; calculated charge radii, neutron and proton rms radii. 208Pb, Sn; calculated isoscalar monopole and isovector dipole strength distributions. Density functional theory.

doi: 10.1103/PhysRevC.78.034318
Citations: PlumX Metrics

2008PA05      Phys.Rev. C 77, 024608 (2008)

N.Paar, D.Vretenar, T.Marketin, P.Ring

Inclusive charged-current neutrino-nucleus reactions calculated with the relativistic quasiparticle random-phase approximation

NUCLEAR REACTIONS 12C, 16O, 56Fe, 208Pb(ν, e-), E=0-100 MeV; calculated neutron-nucleus cross sections.

doi: 10.1103/PhysRevC.77.024608
Citations: PlumX Metrics

2008PA06      J.Phys.(London) G35, 014058 (2008)

N.Paar, D.Vretenar, P.Ring

Neutrino-nucleus reactions with the relativistic quasiparticle RPA

NUCLEAR REACTIONS 12C(ν, e-), (ν, μ-), E not given; 16O(ν, e-), E not given; 208Pb(ν, e-), E < 50 MeV; calculated cross sections; 56Fe(ν, e-), E < 60 MeV; calculated cross sections, contribution of multipole transitions. Comparisons with data.

doi: 10.1088/0954-3899/35/1/014058
Citations: PlumX Metrics

2008PE08      Phys.Rev. C 77, 034317 (2008)

D.Pena Arteaga, P.Ring

Relativistic random-phase approximation in axial symmetry

NUCLEAR STRUCTURE 20Ne; calculated particle-hole structure, M1 and E1 excitation strengths using covariant density functional RMF and RRPA models.

doi: 10.1103/PhysRevC.77.034317
Citations: PlumX Metrics

Back to query form    [Next]