NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 19, 2024.

Search: Author = M.Centelles

Found 75 matches.

Back to query form



2023BA18      Phys.Rev. C 108, 015802 (2023)

P.Bano, S.P.Pattnaik, M.Centelles, X.Vinas, T.R.Routray

Correlations between charge radii differences of mirror nuclei and stellar observables

NUCLEAR STRUCTURE 34,36S, 34,38Ar, 36Ca, 38Ca, 54Fe, 54Ni; calculated rms proton radii differences of mirror nuclei and correlation with neutron skin thickness, slope of the symmetry energy, tidal deformability and neutron star radius correlation to charge radii difference in mirror pairs and neutron skin thickness. Investigated isospin-symmetry breaking effect leading to a linear correlation between the proton rms radii difference in mirror pairs and neutron skin thickness. Simple effective interaction (SEI) finite-range model.

doi: 10.1103/PhysRevC.108.015802
Citations: PlumX Metrics


2023BH07      Eur.Phys.J. A 59, 299 (2023)

A.Bhagwat, M.Centelles, X.Vinas, R.Wyss

Mic–Mac model based on the Wigner–Kirkwood method

NUCLEAR STRUCTURE A<120; analyzed available data; deduced binding energies, ground-state properties of these 551 nuclei using the well-known Finite Range Droplet Model and the Lublin–Strasbourg Drop Model, the Gogny forces within an Extended Thomas-Fermi approximation, Mic–Mac model using the Gogny D1S (D1M) force gives a fairly good description of the ground-state energies with a rms deviation of 834 keV (819 keV).

doi: 10.1140/epja/s10050-023-01209-y
Citations: PlumX Metrics


2022BA29      Phys.Rev. C 106, 024313 (2022)

P.Bano, X.Vinas, T.R.Routray, M.Centelles, M.Anguiano, L.M.Robledo

Finite-range simple effective interaction including tensor terms

NUCLEAR STRUCTURE 68,70,72,74,76,78Ni; calculated ground-state energies, neutron and proton single-particle levels around the Fermi level. 58,59,60,61,62,63,64,65,66,67,68,69,70Ni; calculated rms charge radii, isotope shifts. 69,71,73,75,77,79Cu; calculated ground-state energies. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated energy differences between 1h11/2 and 1g7/2 proton orbitals, single-particle neutron energies and their occupation probabilities. 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er; calculated energy differences between 1i13/2 and 1h9/2 neutron single-particle levels, and single-particle proton energies and their occupation probabilities in N=82 isotones. 91Zr, 93Mo, 95Ru, 97Pd, 99Cd, 101Sn; calculated neutron single-particle levels in N=51 isotones relative to the 2d5/2 level. Calculations based on simple effective interaction (SEI) with and without the addition of a short-range tensor force to SEI and SIII-T, SLy5-T, SAMi-T Skyrme and D1MTd Gogny effective interaction. Comparison with available experimental data.

doi: 10.1103/PhysRevC.106.024313
Citations: PlumX Metrics


2021BH02      Phys.Rev. C 103, 024320 (2021)

A.Bhagwat, M.Centelles, X.Vinas, P.Schuck

Woods-Saxon type of mean-field potentials with effective mass derived from the D1S Gogny force

NUCLEAR STRUCTURE 40Ca, 68Ni, 132Sn, 208Pb; calculated nucleon density distributions, neutron and proton mean fields for 132Sn and 208Pb, spin-orbit potentials and effective masses for 208Pb. 16O, 40,48Ca, 56,78Ni, 90Zr, 100,132Sn, 208Pb; calculated rms neutron and proton radii. Hartree-Fock, expectation value method (EVM), and ETF approaches, using D1S Gogny force.

doi: 10.1103/PhysRevC.103.024320
Citations: PlumX Metrics


2021BH03      Phys.Rev. C 103, 024321 (2021)

A.Bhagwat, M.Centelles, X.Vinas, P.Schuck

Microscopic-macroscopic approach for ground-state energies based on the Gogny force with the Wigner-Kirkwood averaging scheme

ATOMIC MASSES A=20-264, Z=10-108; calculated ground state energies of 551 spherical and deformed even-even nuclei. A=58-80, Z=30; A-114-148, Z=56; A=168-202, Z=78; A=196-216, Z=86; calculated binding energies; deduced differences from the evaluated data. 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 146,148,150,152,154,156,158,160,162,164,166,168Dy, 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated S(2n). 72Kr, 90,92,94Se, 98,100,102Ru, 124Xe, 186Pb; calculated potential-energy surfaces (PES) in (β, γ) plane. Wigner-Kirkwood Macroscopic-Microscopic model based on the Gogny D1S interaction, and by the Mic-Mac Gogny-based models. Comparison with evaluated data in AME-2012. Data for all the nuclei listed in the supplemental material of the article.

doi: 10.1103/PhysRevC.103.024321
Citations: PlumX Metrics


2021GO18      Phys.Rev. C 103, 064314 (2021)

C.Gonzalez-Boquera, M.Centelles, X.Vinas, L.M.Robledo

Finite-size instabilities in finite-range forces

NUCLEAR STRUCTURE 208Pb; calculated neutron and proton density with with a harmonic oscillator (HO) basis of 12, 14, 16, 18, and 19 shells using DIM DIM* Gogny interactions. 16O, 100,132,176Sn, 208Pb; calculated binding energies in Hartree-Fock from the HO-basis calculation, the coordinate-space quasilocal (QLA), and the full coordinate-space calculation (FINRES4) with D1M and D1M* Gogny interactions. 48Ca, 154Sm; calculated differences between the HFB energies as functions of number of harmonic oscillator (HO) shells and quadrupole deformation β2. Hartree-Fock (HF) method in the quasilocal approximation to finite-range forces. Role of the slope of the symmetry energy for nuclear structure properties.

doi: 10.1103/PhysRevC.103.064314
Citations: PlumX Metrics


2021RO19      Phys.Rev. C 104, L011302 (2021)

T.R.Routray, P.Bano, M.Anguiano, M.Centelles, X.Vinas, L.M.Robledo

Reexamination of the N=50 and Z=28 shell closure

NUCLEAR STRUCTURE 68,70,72,74,76,78Ni; calculated proton single-particle levels around the Fermi level. 69,71,73,75,77,79Cu; calculated energies and spins of the ground states, and energies of the first excited states. Quasilocal density functional theory (QLDFT) using Skyrme forces SAMi-T and SLy5 with the tensor part, D1M Gogny force, and simple effective interaction (SEI) model. Comparison with HFB calculations, and with experimental energies and spins of the first excited states.

doi: 10.1103/PhysRevC.104.L011302
Citations: PlumX Metrics


2020MO26      Phys.Rev. C 102, 015802 (2020)

C.Mondal, X.Vinas, M.Centelles, J.N.De

Structure and composition of the inner crust of neutron stars from Gogny interactions

NUCLEAR STRUCTURE A=15-215; calculated binding energies using variational Wigner-Kirkwood with shell and pairing corrections (VWKSP) and HFB methods using D1M, D1S and D1M* Gogny forces, and compared to experimental values for about 160 even-even nuclei. Z=5-100; calculated binding energies per particle at different nucleon densities for inner crust of neutron star subtracted by free nucleon mass using the D1M* Gogny force. 32Mg, 40,50Ca, 90Zr, 100Sn, 142Sm, 176Hg, 208Pb, 216Po, 224U; calculated binding energies using VWKSP and HFB methods using D1M* Gogny force and compared with experimental values. Calculated number of protons (Z=20-92) and the total number of baryons (A=100-2500) corresponding to the β-equilibrium configurations as a function of the inner crust density, and constructed the equation of state (EoS) of the inner crust of neutron stars for D1M, D1S and D1M* interactions.

doi: 10.1103/PhysRevC.102.015802
Citations: PlumX Metrics


2019GO15      Phys.Rev. C 100, 015806 (2019)

C.Gonzalez-Boquera, M.Centelles, X.Vinas, T.R.Routray

Core-crust transition in neutron stars with finite-range interactions: The dynamical method

doi: 10.1103/PhysRevC.100.015806
Citations: PlumX Metrics


2018GO07      Phys.Lett. B 779, 195 (2018)

C.Gonzalez-Boquera, M.Centelles, X.Vinas, L.M.Robledo

New Gogny interaction suitable for astrophysical applications

NUCLEAR STRUCTURE N<180; calculated binding energy differences in even-even nuclei. Comparison with available data.

doi: 10.1016/j.physletb.2018.02.005
Citations: PlumX Metrics


2017GO18      Phys.Rev. C 96, 065806 (2017)

C.Gonzalez-Boquera, M.Centelles, X.Vinas, A.Rios

Higher-order symmetry energy and neutron star core-crust transition with Gogny forces

doi: 10.1103/PhysRevC.96.065806
Citations: PlumX Metrics


2017MO23      Phys.Rev. C 96, 021302 (2017)

C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar, M.Centelles, X.Vinas

Interdependence of different symmetry energy elements

doi: 10.1103/PhysRevC.96.021302
Citations: PlumX Metrics


2016BE06      J.Phys.(London) G43, 045115 (2016)

B.Behera, X.Vinas, T.R.Routray, L.M.Robledo, M.Centelles, S.P.Pattnaik

Deformation properties with a finite-range simple effective interaction

NUCLEAR STRUCTURE Z=8-108; calculated binding energies and charge radii of even-even nuclei, potential energy surfaces, fission barriers, deformation properties. Finite-range simple effective interaction within the Hartree-Fock-Bogoliubov mean-field approach. Comparison with experimental data.

doi: 10.1088/0954-3899/43/4/045115
Citations: PlumX Metrics


2016MO20      Phys.Rev. C 93, 064303 (2016)

C.Mondal, B.K.Agrawal, M.Centelles, G.Colo, X.Roca-Maza, N.Paar, X.Vinas, S.K.Singh, S.K.Patra

Model dependence of the neutron-skin thickness on the symmetry energy

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated symmetry-energy coefficient and symmetry-energy slope parameter as a function of neutron-skin thickness using several microscopic mean-field models.

doi: 10.1103/PhysRevC.93.064303
Citations: PlumX Metrics


2016RO24      J.Phys.(London) G43, 105101 (2016)

T.R.Routray, X.Vinas, D.N.Basu, S.P.Pattnaik, M.Centelles, L.B.Robledo, B.Behera

Exact versus Taylor-expanded energy density in the study of the neutron star crust-core transition

doi: 10.1088/0954-3899/43/10/105001
Citations: PlumX Metrics


2015BE09      J.Phys.(London) G42, 345103 (2015)

B.Behera, X.Vinas, T.R.Routray, M.Centelles

Study of spin polarized nuclear matter and finite nuclei with finite range simple effective interaction

NUCLEAR STRUCTURE A<220; calculated charge radii and its uncertainty, neutron-proton effective mass splitting. Spin polarized pure neutron matter and symmetric nuclear matter (SNM).

doi: 10.1088/0954-3899/42/4/045103
Citations: PlumX Metrics


2015RO26      Phys.Rev. C 92, 064304 (2015)

X.Roca-Maza, X.Vinas, M.Centelles, B.K.Agrawal, G.Colo, N.Paar, J.Piekarewicz, D.Vretenar

Neutron skin thickness from the measured electric dipole polarizability in 68Ni, 120Sn, and 208Pb

NUCLEAR STRUCTURE 68Ni, 120Sn, 208Pb; calculated dipole polarizability, and dipole polarizability times the symmetry energy as a function of the neutron skin thickness using self-consistent random-phase approximation (QRPA) with a large set of energy density functionals (EDFs), and comparison to experimental data; deduced symmetry energy αD and its density dependence. 48Ca, 90Zr; deduced neutron skin thickness and electric dipole polarizability.

doi: 10.1103/PhysRevC.92.064304
Citations: PlumX Metrics


2015VI04      Phys.Scr. 90, 114001 (2015)

X.Vinas, A.Bhagwat, M.Centelles, P.Schuck, R.Wyss

Applications to nuclear properties of the microscopic-macroscopic model based on the semiclassical Wigner-Kirkwood method

NUCLEAR STRUCTURE Zn, Ba, Pt, Rn; calculated 2 neutron separation energies. Comparison with experimental data.

RADIOACTIVITY 112,114,116Te, 116,118,120,122,124Ba, 114,116,118,120Xe, No, Rf, Sg, Hs, Ds(α); calculated Q-value, T1/2. Comparison with experimental data.

doi: 10.1088/0031-8949/90/11/114001
Citations: PlumX Metrics


2014AG02      Eur.Phys.J. A 50, 19 (2014)

B. K. Agrawal, J. N. De, S. K. Samaddar, M. Centelles, X.Vinas

Symmetry energy of warm nuclear systems

NUCLEAR STRUCTURE A=56, 112, 150, 208; calculated symmetry energy coefficients vs temperature using energy functional with Skyrme interaction and subtracted finite-temperature Thomas-Fermi.

doi: 10.1140/epja/i2014-14019-8
Citations: PlumX Metrics


2014VI01      Eur.Phys.J. A 50, 27 (2014)

X.Vinas, M.Centelles, X.Roca-Maza, M.Warda

Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

COMPILATION 40Ca, 54,56,57Fe, 59Co, 58,60,64Ni, 90,96Zr, 106,116Cd, 116,120,124Sn, 124,126,128,130Te, 208Pb, 209Bi, 232Th, 238U; compiled, calculated neutron skin thickness vs symmetry energy slope parameter. 208Pb; compiled calculations of mean-field model of parity-violating asymmetry vs skin thickness vs symmetry energy ope parameter and vs central radius, surface difuseness vs central radii.

doi: 10.1140/epja/i2014-14027-8
Citations: PlumX Metrics


2014WA20      Phys.Rev. C 89, 064302 (2014)

M.Warda, M.Centelles, X.Vinas, X.Roca-Maza

Influence of the single-particle structure on the nuclear surface and the neutron skin

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70Ca, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni, 90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122Zr, 132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176Sn, 208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266Pb; calculated proton and neutron rms radii, neutron skin thickness (NST), single-particle energies and Fermi level, configurations, rms radii, neutron, shell, and single-particle level densities and density ratios. Skyrme-Hartree-Fock plus BCS approach with the SLy4 Skyrme force. Discussed impact of the valence shell neutrons on the tail of the neutron density distributions.

doi: 10.1103/PhysRevC.89.064302
Citations: PlumX Metrics


2013CH37      Phys.Rev. C 88, 024319 (2013)

W.-C.Chen, J.Piekarewicz, M.Centelles

Giant monopole energies from a constrained relativistic mean-field approach

NUCLEAR STRUCTURE 16O, 40Ca, 90Zr, 116Sn, 144Sm, 208Pb; calculated centroids and constrained energies of giant monopole resonances (GMR). 208Pb; calculated energy-weighted monopole strength of GMR. Nonrelativistic constrained approach using NL3 and FSU models. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.024319
Citations: PlumX Metrics


2013RO02      Phys.Rev. C 87, 014304 (2013)

X.Roca-Maza, M.Centelles, F.Salvat, X.Vinas

Electron scattering in isotonic chains as a probe of the proton shell structure of unstable nuclei

NUCLEAR STRUCTURE 22O, 24Ne, 26Mg, 28Si, 30S, 32Ar, 34Ca, 70Ca, 84Se, 90Zr, 100Sn, 122Zr, 140Ce, 146Gd, 154Hf; calculated proton and neutron single-particle levels, and charge densities. Relativistic nuclear mean-field interaction G2.

NUCLEAR REACTIONS 122Zr, 140Ce, 154Hf(e, e), E=250, 500 MeV; calculated DWBA and Mott differential σ(θ, E). 22O, 24Ne, 26Mg, 28Si, 30S, 32Ar, 34Ca, 70Ca, 74Cr, 78Ni, 80Zn, 82Ge, 84Se, 86Kr, 88Sr, 90Zr, 92Mo, 94Ru, 96Pd, 98Cd, 100Sn, 120Sr, 122Zr, 128Pd, 132Sn, 136Xe, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf(e, e), E=500 MeV; calculated Helm model parameters, mass-number dependence of Helm parameters, square charge form factors as function of Helm parameters in DWBA. Dirac partial-wave approach, and covariant mean-field model G2.

doi: 10.1103/PhysRevC.87.014304
Citations: PlumX Metrics


2013RO20      Phys.Rev. C 88, 024316 (2013)

X.Roca-Maza, M.Brenna, G.Colo, M.Centelles, X.Vinas, B.K.Agrawal, N.Paar, D.Vretenar, J.Piekarewicz

Electric dipole polarizability in 208Pb: Insights from the droplet model

NUCLEAR STRUCTURE 208Pb; calculated electric dipole polarizability αD as function of neutron skin thickness, correlation between αD and symmetry energy, parity-violating asymmetry as function of αD. Droplet model. Large set of relativistic and nonrelativistic nuclear mean-field models with modern nuclear energy density functionals (EDF). Comparison with experimental data.

doi: 10.1103/PhysRevC.88.024316
Citations: PlumX Metrics


2012BH10      Phys.Rev. C 86, 044316 (2012)

A.Bhagwat, X.Vinas, M.Centelles, P.Schuck, R.Wyss

Microscopic-macroscopic approach for binding energies with the Wigner-Kirkwood method. II. Deformed nuclei

NUCLEAR STRUCTURE 63Ge, 65As, 67Se, 71,80,82,84,86,88,90,92,94,96,98,100,102,104Kr, 76,78,80,82,84,86,88,90,92,94,96,98,100,102Sr, 84,86,88,90,92,94,96,98,100,102,104,106,108Zr, 86,88,90,92,94,96,98,100,102,104,106,108,110Mo, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 140,142,144,146,148,150,152,154,156,158,160,162Gd, 186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Po; calculated S2n, β2, Sp, binding energy using Microscopic-macroscopic model with Wigner-Kirkwood expansion. Comparison with experimental data. Z, N>7; deduced difference between the calculated and the corresponding experimental binding energies for 561 nuclides.

RADIOACTIVITY 279,280Rg, 282,283Nh, 287,288,289Fl, 287,288Mc, 291,292,293Lv, 294Og(α); calculated Q values and half-lives. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.044316
Citations: PlumX Metrics


2012DE17      Phys.Rev. C 86, 024606 (2012)

J.N.De, S.K.Samaddar, X.Vinas, M.Centelles, I.N.Mishustin, W.Greiner

Effects of medium on nuclear properties in multifragmentation

doi: 10.1103/PhysRevC.86.024606
Citations: PlumX Metrics


2012VI03      Int.J.Mod.Phys. E21, 1250029 (2012)

X.Vinas, M.Warda, M.Centelles, X.Roca-Maza

Neutron skin thickness in neutron-rich nuclei: Bulk and surface contributions and shell effects

NUCLEAR STRUCTURE 208Pb, 90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122Zr; calculated neutron skin thickness; deduced shell effects. Mean field models.

doi: 10.1142/S0218301312500292
Citations: PlumX Metrics


2012WA02      Acta Phys.Pol. B43, 209 (2012)

M.Warda, M.Centelles, X.Vinas, X.Roca-Maza

Nuclear Symmetry Energy and Neutron Skin Thickness

NUCLEAR STRUCTURE 208Pb; calculated neutron skin thickness, parity violating asymmetry parameters. Comparison with experimental data.

doi: 10.5506/APhysPolB.43.209
Citations: PlumX Metrics


2011RO17      Phys.Rev.Lett. 106, 252501 (2011)

X.Roca-Maza, M.Centelles, X.Vinas, M.Warda

Neutron Skin of 208Pb, Nuclear Symmetry Energy, and the Parity Radius Experiment

NUCLEAR STRUCTURE 208Pb; analyzed difference between neutron and proton rms radii, neutron skin; deduced a high linear correlation between parity-violating asymmetry and neutron skin. Parity radius experiment (PREX).

doi: 10.1103/PhysRevLett.106.252501
Citations: PlumX Metrics


2011RO50      Phys.Rev. C 84, 054309 (2011); Erratum Phys.Rev. C 93, 069905 (2016)

X.Roca-Maza, X.Vinas, M.Centelles, P.Ring, P.Schuck

Relativistic mean-field interaction with density-dependent meson-nucleon vertices based on microscopical calculations

NUCLEAR STRUCTURE 16,18,26,28,30Ne, 20,32Mg, 34,36Si, 36S, 38,40Ar, 36,38,40,42,44,46,48,50,52Ca, 40,42,44,48,50,52,54Ti, 46,52Cr, 54,64,66,68Fe, 54,56,58,66,68,70,72Ni, 58,70,72Zn, 82Ge, 84,86Se, 86,88Kr, 86,88,90Sr, 86,88,90,92Zr, 86,88,90,92,94Mo, 94,96Ru, 96,98Pd, 98,100Cd, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 126,128,130,132,134,136Te, 134,136,138Xe, 136,138,140Ba, 138,140,142,144Ce, 140,142,144Nd, 142,144,146Sm, 146Gd, 148Dy, 150Er, 152Yb, 170,172Pt, 172,174,176,204,206Hg, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 204,206,208,210,212,214,216Po, 208,210,212,214,216Rn, 210,212,214,216,218Ra, 212,214,216,218,220Th, 224U; analyzed binding energies, and charge radii. 100,132,176Sn; calculated isoscalar, isovector parts of the spin-orbit potential, spin orbit splitting. Relativistic Brueckner theory, high-precision density functional DD-MEδ with density-dependent meson-nucleon couplings. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.054309
Citations: PlumX Metrics


2010BH05      Phys.Rev. C 81, 044321 (2010)

A.Bhagwat, X.Vinas, M.Centelles, P.Schuck, R.Wyss

Microscopic-macroscopic approach for binding energies with the Wigner-Kirkwood method

NUCLEAR STRUCTURE 40Ca, 132Sn, 208Pb; calculated coulomb potential, Wigner-Kirkwood energies and ground state energies as function of quadrupole deformation. 136,138,140,142,144,146,148,150,152,154,156Gd, 138,140,142,144,146,148,150,152,154,156,158Dy, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated Strutinsky shell corrections. 38,40,42,44,46,48,50,52Ca, 40,42,44,46,48,50,52Sc, 40,42,44,46,48,50,52,54Ti, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated binding energies, one-neutron and two-neutron separation energies. A=40-152, A=18-220; calculated binding energies for a set of 367 spherical nuclei. Classical Wigner-Kirkwood expansion method for spherical and deformed nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.044321
Citations: PlumX Metrics


2010CE01      J.Phys.(London) G37, 075107 (2010)

M.Centelles, S.K.Patra, X.Roca-Maza, B.K.Sharma, P.D.Stevenson, X.Vinas

The influence of the symmetry energy on the giant monopole resonance of neutron-rich nuclei analyzed in Thomas-Fermi theory

NUCLEAR STRUCTURE 90Zr, 208,266Pb; calculated neutron skin thickness, energy per particle, giant monopole resonance. Relativistic extended Thomas-Fermi method.

doi: 10.1088/0954-3899/37/7/075107
Citations: PlumX Metrics


2010CE02      Phys.Rev. C 82, 054314 (2010)

M.Centelles, X.Roca-Maza, X.Vinas, M.Warda

Origin of the neutron skin thickness of 208Pb in nuclear mean-field models

NUCLEAR STRUCTURE 208Pb; calculated neutron skin thickness, sharp radius, surface width, central radius and surface diffuseness of neutron and proton density distributions, and nucleon densities using Skyrme, Gogny and relativistic mean-field models with about 25 different interactions.

doi: 10.1103/PhysRevC.82.054314
Citations: PlumX Metrics


2010PI11      Eur.Phys.J. A 46, 379 (2010)

J.Piekarewicz, M.Centelles, X.Roca-Maza, X.Vinas

Garvey-Kelson relations for nuclear charge radii

NUCLEAR STRUCTURE Z=9-96; calculated charge radii using Garvey-Kelson algebraic expressions. Calculations compared to 455 measured radii, radii for Kr, Sn, Ba, Hg isotopes plotted explicitly together with other calculations.

doi: 10.1140/epja/i2010-11051-8
Citations: PlumX Metrics


2010WA13      Phys.Rev. C 81, 054309 (2010)

M.Warda, X.Vinas, X.Roca-Maza, M.Centelles

Analysis of bulk and surface contributions in the neutron skin of nuclei

NUCLEAR STRUCTURE 100,132Sn, 208Pb; Z=50, A=100-176; Z=82, A=168-268; calculated halo factor, neutron and proton densities, neutron skin thicknesses using Gogny, Skyrme, and covariant nuclear mean-field interactions. 40,48Ca, 54,56,57Fe, 58,60,64Ni, 59Co, 90,96Zr, 106,116Cd, 112,116,120,124Sn, 122,124,126,128,130Te, 208Pb, 209Bi, 232Th, 238U; analyzed experimental neutron skin thicknesses with results of the covariant NL3 and FSUGold parameter sets of the nonrelativistic Skyrme SLy4 and Gogny D1S forces.

doi: 10.1103/PhysRevC.81.054309
Citations: PlumX Metrics


2009CE01      Phys.Rev.Lett. 102, 122502 (2009)

M.Centelles, X.Roca-Maza, X.Vinas, M.Warda

Nuclear Symmetry Energy Probed by Neutron Skin Thickness of Nuclei

doi: 10.1103/PhysRevLett.102.122502
Citations: PlumX Metrics


2009PI07      Phys.Rev. C 79, 054311 (2009)

J.Piekarewicz, M.Centelles

Incompressibility of neutron-rich matter

NUCLEAR STRUCTURE 90Zr, 112,114,116,118,120,122,124Sn, 144Sm, 208Pb; calculated isoscalar monopole strengths and giant monopole resonance (GMR) centroid energies in a relativistic mean-field formalism using NL3 and FSUGold models. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054311
Citations: PlumX Metrics


2009SA36      Phys.Rev. C 80, 035803 (2009)

S.K.Samaddar, J.N.De, X.Vinas, M.Centelles

Symmetry coefficients and incompressibility of clusterized supernova matter

doi: 10.1103/PhysRevC.80.035803
Citations: PlumX Metrics


2009WA14      Phys.Rev. C 80, 024316 (2009)

M.Warda, X.Vinas, X.Roca-Maza, M.Centelles

Neutron skin thickness in the droplet model with surface width dependence: Indications of softness of the nuclear symmetry energy

NUCLEAR STRUCTURE A=40-238; analyzed neutron skin thickness, its correlation with ratio of bulk symmetry energy to surface stiffness coefficient (J/Q) and neutron excess (N-Z)/A using the droplet model and effective nuclear interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.024316
Citations: PlumX Metrics


2008RO26      Phys.Rev. C 78, 044332 (2008)

X.Roca-Maza, M.Centelles, F.Salvat, X.Vinas

Theoretical study of elastic electron scattering off stable and exotic nuclei

NUCLEAR REACTIONS 16O, 40,42,44,48Ca, 48Ti, 90Zr, 116,118,124,132,176Sn, 208Pb(e, e), E=225, 250, 500 MeV; calculated charge densities, σ(θ), form factors. Skyrme forces and effective Lagrangians.

doi: 10.1103/PhysRevC.78.044332
Citations: PlumX Metrics


2008SA37      Phys.Rev. C 78, 034607 (2008)

S.K.Samaddar, J.N.De, X.Vinas, M.Centelles

Density dependence of the symmetry free energy of hot nuclei

NUCLEAR STRUCTURE 40S, 110Sn, 150Sm, 150Cs, 197Au; calculated equilibrium temperature, equilibrium central density, symmetry coefficients for nuclear matter.

doi: 10.1103/PhysRevC.78.034607
Citations: PlumX Metrics


2008VI04      Int.J.Mod.Phys. E17, 177 (2008)

X.Vinas, M.Centelles, M.Warda

Semiclassical description of exotic nuclear shapes

NUCLEAR STRUCTURE Z=122-366; N=188-626; calculated neutron and proton densities, single-particle potentials, potential energy surface (PES) as a function of the quadrupole mass moment, two-dimensional density plots. Extended Thomas-Fermi (ETS) method and the Skyrme force SkM.

doi: 10.1142/S0218301308009677
Citations: PlumX Metrics


2007CE01      Ann.Phys.(New York) 322, 363 (2007)

M.Centelles, P.Schuck, X.Vinas

Thomas-Fermi theory for atomic nuclei revisited

NUCLEAR STRUCTURE A=8-200; calculated binding energies, shell correction energies. Semiclassical approach, Thomas-Fermi theory, Wigner-Kirkwood expansion.

doi: 10.1002/andp.2006.07.009
Citations: PlumX Metrics


2007PA47      J.Phys.(London) G45, 055202 (2007);Addendum: J.Phys.(London) G45, 119401 (2007)

S.P.Pattnaik, T.R.Routray, X.Vinas, D.N.Basu, M.Centelles, K.Madhuri, B.Behera

Influence of the nuclear matter equation of state on the r-mode instability using the finite-range simple effective interaction

doi: 10.1088/1361-6471/aab7c5
Citations: PlumX Metrics


2007SA34      Phys.Rev. C 75, 054608 (2007)

S.K.Samaddar, J.N.De, X.Vinas, M.Centelles

Density reorganization in hot nuclei

NUCLEAR STRUCTURE 40S, 40Ca, 150Sm, 150Yb, 150Cs; calculated equilibrium density profile as a function of excitation energy.

doi: 10.1103/PhysRevC.75.054608
Citations: PlumX Metrics


2007SA52      Phys.Rev. C 76, 041602 (2007)

S.K.Samaddar, J.N.De, X.Vinas, M.Centelles

Excitation energy dependence of the symmetry energy of finite nuclei

NUCLEAR STRUCTURE 40S, 150Sm, 150Cs; calculated density and temperature dependence of symmetry coefficients, nucleon-nucleon collisions.

doi: 10.1103/PhysRevC.76.041602
Citations: PlumX Metrics


2006CE05      Phys.Rev. C 74, 034332 (2006)

M.Centelles, P.Leboeuf, A.G.Monastra, J.Roccia, P.Schuck, X.Vinas

Average ground-state energy of finite Fermi systems

doi: 10.1103/PhysRevC.74.034332
Citations: PlumX Metrics


2006DE29      Phys.Lett. B 638, 160 (2006)

J.N.De, S.K.Samaddar, X.Vinas, M.Centelles

Nuclear expansion with excitation

NUCLEAR STRUCTURE 150Sm; calculated thermodynamic quantities, density, phase transition features. Skyrme type effective two-body interaction model.

doi: 10.1016/j.physletb.2006.05.046
Citations: PlumX Metrics


2005CE03      Phys.Rev. C 72, 014304 (2005)

M.Centelles, X.Vinas, S.K.Patra, J.N.De, T.Sil

Sum rule approach to the isoscalar giant monopole resonance in drip line nuclei

NUCLEAR STRUCTURE O, Ca, Ni, Zr, Pb; calculated giant monopole resonance energies, sum rules. Density-dependent Hartree-Fock approximation, Skyrme forces.

doi: 10.1103/PhysRevC.72.014304
Citations: PlumX Metrics


2005SI05      Phys.Rev. C 71, 045502 (2005)

T.Sil, M.Centelles, X.Vinas, J.Piekarewicz

Atomic parity nonconservation, neutron radii, and effective field theories of nuclei

NUCLEAR STRUCTURE 168,170,172,174,176Yb, 156,158,161,162,164Dy, 130,132,134,138Ba, 121,123,125,127,129,131,133,135,137,139,141,145Cs, 207,212,213,219,223,225Fr; calculated charge radii, isotope shifts, neutron skin thickness, atomic parity nonconservation observables. 207,212,213,219,223,225Fr; calculated binding energy, quadrupole deformation. Effective field theories, comparison with data.

doi: 10.1103/PhysRevC.71.045502
Citations: PlumX Metrics


2004AR23      Phys.Lett. B 601, 51 (2004)

P.Arumugam, B.K.Sharma, P.K.Sahu, S.K.Patra, T.Sil, M.Centelles, X.Vinas

Versatility of field theory motivated nuclear effective Lagrangian approach

doi: 10.1016/j.physletb.2004.09.026
Citations: PlumX Metrics


2004SI13      Phys.Rev. C 69, 044315 (2004)

T.Sil, S.K.Patra, B.K.Sharma, M.Centelles, X.Vinas

Superheavy nuclei in a relativistic effective Lagrangian model

NUCLEAR STRUCTURE Z=120; calculated two-neutron separation energies, pair gaps vs neutron number. Z=100-140; calculated two-proton separation energies, pair gaps for N=172, 184, 258 isotones. 298Fl, 292,304,378120; calculated single-particle level energies. Relativistic effective Lagrangian model, possible shell effects discussed.

doi: 10.1103/PhysRevC.69.044315
Citations: PlumX Metrics


2003VI05      Phys.Rev. C 67, 054307 (2003)

X.Vinas, P.Schuck, M.Farine, M.Centelles

Semiclassical evaluation of average nuclear one- and two-body matrix elements

NUCLEAR STRUCTURE A=224; calculated one- and two-body matrix elements. Thomas-Fermi approach, comparison with quantal results.

doi: 10.1103/PhysRevC.67.054307
Citations: PlumX Metrics


2002PA16      Phys.Rev. C65, 044304 (2002)

S.K.Patra, M.Centelles, X.Vinas, M.Del Estal

Surface Incompressibility from Semiclassical Relativistic Mean Field Calculations

doi: 10.1103/PhysRevC.65.044304
Citations: PlumX Metrics


2002PA20      Nucl.Phys. A703, 240 (2002)

S.K.Patra, X.Vinas, M.Centelles, M.Del Estal

Scaling Calculation of Isoscalar Giant Resonances in Relativistic Thomas-Fermi Theory

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 116Sn, 144Sm, 208Pb; calculated isoscalar giant monopole, quadrupole resonance energies. Scaling method, Thomas-Fermi theory, comparisons with data.

doi: 10.1016/S0375-9474(01)01531-7
Citations: PlumX Metrics


2002SI25      Phys.Rev. C66, 045803 (2002)

T.Sil, J.N.De, S.K.Samaddar, X.Vinas, M.Centelles, B.K.Agrawal, S.K.Patra

Isospin-rich nuclei in neutron star matter

NUCLEAR STRUCTURE 140,330Pb, 80Ca, 170Sn; calculated nuclear properties in neutron-star environment.

doi: 10.1103/PhysRevC.66.045803
Citations: PlumX Metrics


2002VI06      Yad.Fiz. 65, 764 (2002); Phys.Atomic Nuclei 65, 731 (2002)

X.Vinas, P.Schuck, M.Farine, M.Durand, M.Centelles

Semiclassical and Statistical Description of the Nuclear Fermi Liquid Drop

doi: 10.1134/1.1471282
Citations: PlumX Metrics


2001AL04      Nucl.Phys. A679, 441 (2001)

V.P.Aleshin, M.Centelles, X.Vinas, N.G.Nicolis

Dynamic and Quasistatic Trajectories in Quasifission Reactions and Particle Emission

NUCLEAR REACTIONS 100Mo(60Ni, X), E=600, 1200 MeV; 112Sn(48Ca, X), E=480 MeV; calculated elongation vs neck radius, dynamic trajectories. 92,100Mo(63Cu, X), 100Mo(60Ni, X), E=10 MeV/nucleon; 144,148,154Sm(20Ne, X), E=20 MeV/nucleon; calculated neutron, proton, α multiplicities; deduced role of quasifission. Statistical particle evaporation model, comparison with data.

doi: 10.1016/S0375-9474(00)00371-7
Citations: PlumX Metrics


2001DE01      Phys.Rev. C63, 024314 (2001)

M.Del Estal, M.Centelles, X.Vinas, S.K.Patra

Effects of New Nonlinear Couplings in Relativistic Effective Field Theory

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,58,78Ni, 90Zr, 100,116,124,132Sn, 196,208,214Pb; calculated ground-state energies, radii, surface thickness. Z=30-82; calculated isotopic shifts, two-neutron separation energies. 208Pb; calculated single-particle energies. Extended relativistic mean field.

doi: 10.1103/PhysRevC.63.024314
Citations: PlumX Metrics


2001DE09      Phys.Rev. C63, 044321 (2001)

M.Del Estal, M.Centelles, X.Vinas, S.K.Patra

Pairing Properties in Relativistic Mean Field Models Obtained from Effective Field Theory

NUCLEAR STRUCTURE Ni, Sn, Pb; calculated one-, two-particle separation energies. 44S, 48Ca, 52Cr, 56Ni, 60Ge, 122Zr, 128Pd, 134Te, 140Ce, 146Gd, 152Yb; calculated particle densities, radii, spin-orbit potentials. Effective field theory, relativistic mean field.

doi: 10.1103/PhysRevC.63.044321
Citations: PlumX Metrics


2001DE43      Phys.Rev. C64, 057306 (2001)

J.N.De, X.Vinas, S.K.Patra, M.Centelles

Nuclei Beyond the Drip Line

NUCLEAR STRUCTURE 140,208,340Pb; calculated neutron and proton densities. Ca, Pb calculated radii; deduced limiting asymmetry. Thomas-Fermi model.

doi: 10.1103/PhysRevC.64.057306
Citations: PlumX Metrics


2001PA02      Phys.Rev. C63, 024311 (2001)

S.K.Patra, M.Del Estal, M.Centelles, X.Vinas

Ground-State Properties and Spins of the Odd Z = N + 1 Nuclei 61Ga-97In

NUCLEAR STRUCTURE 61Ga, 65As, 69Br, 73Rb, 77Y, 79Zr, 81Nb, 83Mo, 85Tc, 89Rh, 93Ag, 97In; calculated ground-state J, π, binding energies, β2 deformations, configurations, radii, one-proton separation energies. Relativisitic mean-field approach.

doi: 10.1103/PhysRevC.63.024311
Citations: PlumX Metrics


2001PA48      Phys.Lett. 523B, 67 (2001)

S.K.Patra, M.Centelles, X.Vinas, M.Del Estal

Scaling in Relativistic Thomas-Fermi Approach for Nuclei

NUCLEAR STRUCTURE 40Ca, 90Zr, 116Sn, 144Sm, 208Pb; calculated isoscalar giant monopole resonance energies. Virial theorem for relativistic mean field model, several parameter sets compared.

doi: 10.1016/S0370-2693(01)01328-4
Citations: PlumX Metrics


1999DE09      Nucl.Phys. A650, 443 (1999)

M.Del Estal, M.Centelles, X.Vinas

Nuclear Surface Properties in Relativistic Effective Field Theory

doi: 10.1016/S0375-9474(99)00106-2
Citations: PlumX Metrics


1998CE07      Nucl.Phys. A635, 193 (1998)

M.Centelles, M.Del Estal, X.Vinas

Semicalssical Treatment of Asymmetric Semi-Infinite Nuclear Matter: Surface and curvature properties in relativistic and non-relativistic models

doi: 10.1016/S0375-9474(98)00167-5
Citations: PlumX Metrics


1997AL15      Acta Phys.Pol. B28, 387 (1997)

V.P.Aleshin, B.Sidorenko, M.Centelles, X.Vinas

Light Particle Evaporation from Dynamical Systems

NUCLEAR REACTIONS 100Mo(60Ni, X), E=600 MeV; calculated reaction shape evolution; deduced particle evaporation features.


1997DE29      Phys.Rev. C56, 1774 (1997)

M.Del Estal, M.Centelles, X.Vinas

Variational Wigner-Kirkwood Approach to Relativistic Mean Field Theory

doi: 10.1103/PhysRevC.56.1774
Citations: PlumX Metrics


1996CE01      Phys.Rev. C53, 1018 (1996)

M.Centelles, X.Vinas, P.Schuck

Nuclear Curvature Energy in Relativistic Models

doi: 10.1103/PhysRevC.53.1018
Citations: PlumX Metrics


1994CE02      Nucl.Phys. A567, 611 (1994)

M.Centelles, X.Vinas, P.Schuck

Level Density Parameter in Relativistic Models

NUCLEAR STRUCTURE A=16-224; calculated level density at Fermi energy. Relativistic, nonrelativistic approaches, Thomas-Fermi approximation, harmonic oscillator potentials. 90Zr; calculated level density parameter vs Fermi momentum scalar meson mass. A ≤ 250; calculated level density parameter vs mass number. Nonlinear σ-omega model.

doi: 10.1016/0375-9474(94)90027-2
Citations: PlumX Metrics


1994CE03      Phys.Rev. C49, 2852 (1994)

M.Centelles, M.Farine, P.Schuck, X.Vinas

Comment on ' Influence of Bulk Properties on the Surface Structure of Finite Nuclei '

doi: 10.1103/PhysRevC.49.2852
Citations: PlumX Metrics


1993CE01      Phys.Rev. C47, 1091 (1993)

M.Centelles, X.Vinas, M.Barranco, N.Ohtsuka, A.Faessler, D.T.Khoa, H.Muther

Relativistic Extended Thomas-Fermi Calculations of Finite Nuclei with Realistic Nucleon-Nucleon Interactions

NUCLEAR STRUCTURE 12C, 16O, 40,48Ca, 56Ni, 90Zr, 114,118Sn, 140Ce, 208Pb; calculated binding energy, charge radius. 52Fe, 118Sn, 152Dy, 186Os, 207Bi, 240Pu; calculated fission barrier, saddle point quadrupole moment, critical angular momentum, equidensity lines. Relativistic extended Thomas-Fermi calculations, realistic interactions.

NUCLEAR REACTIONS 12C(12C, 12C), E=2.4 GeV; 28Si, 12C(16O, 16O), E=1.503 GeV; calculated σ(θ). Relativistic extended Thomas-Fermi calculations, realistic interactions.

doi: 10.1103/PhysRevC.47.1091
Citations: PlumX Metrics


1993CE06      Nucl.Phys. A563, 173 (1993)

M.Centelles, X.Vinas

Semiclassical Approach to the Description of Semi-Infinite Nuclear Matter in Relativistic Mean-Field Theory

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated total energy, charge radii. Relativistic mean field theory, semi-classical approach.

doi: 10.1016/0375-9474(93)90601-S
Citations: PlumX Metrics


1992CE01      Nucl.Phys. A537, 486 (1992)

M.Centelles, X.Vinas, M.Barranco, S.Marcos, R.J.Lombard

Semiclassical Approximations in Non-Linear σ(omega) Models

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated total energy, proton, neutron rms radii, nucleon densities. Nonlinear (sigma-omega) models, semi-classical approximations.

doi: 10.1016/0375-9474(92)90365-Q
Citations: PlumX Metrics


1991CE09      J.Phys.(London) G17, L193 (1991)

M.Centelles, X.Vinas, M.Barranco, N.Ohtsuka, A.Faessler, D.T.Khoa, H.Muther

Relativistic Extended Thomas-Fermi Calculations of Finite Nuclei

NUCLEAR STRUCTURE 12C, 16O, 40,48Ca, 56Ni, 90Zr, 114,118Sn, 140Ce, 208Pb; calculated binding energy, charge radii. 240Pu; calculated fission barrier angular momentum dependence vs quadrupole moment. Relativistic extended Thomas-Fermi model.

NUCLEAR REACTIONS 12C(12C, 12C), E=1.016 GeV; calculated σ(θ). Microscopic optical potential. Relativistic extended Thomas-Fermi model.

doi: 10.1088/0954-3899/17/11/005
Citations: PlumX Metrics


1990CE03      Nucl.Phys. A510, 397 (1990)

M.Centelles, M.Pi, X.Vinas, F.Garcias, M.Barranco

Self-Consistent Extended Thomas-Fermi Calculations in Nuclei

NUCLEAR STRUCTURE 40Ca, 90Zr, 208Pb; calculated total energies. Extended Thomas-Fermi model, Skyrme type forces.

doi: 10.1016/0375-9474(90)90058-T
Citations: PlumX Metrics


Back to query form