NSR Query Results
Output year order : Descending NSR database version of May 24, 2024. Search: Author = C.Mondal Found 18 matches. 2023MO03 Phys.Rev. C 107, 015801 (2023) Nucleonic metamodeling in light of multimessenger, PREX-II, and CREX data NUCLEAR STRUCTURE ^{48}Ca, ^{208}Pb; calculated posterior probability distributions of binding energies, neutron skin thickness, symmetry energy parameters. Full Bayesian study for static astrophysical observables as well as ground-state finite nuclear properties. Nuclear metamodelling technique used to calculate the ground-state properties of nuclei within the extended Thomas-Fermi (ETF) method.
doi: 10.1103/PhysRevC.107.015801
2023TH01 Phys.Rev. C 107, 015803 (2023) V.Thakur, R.Kumar, P.Kumar, M.Kumar, C.Mondal, K.Huang, J.Hu, B.K.Agrawal, S.K.Dhiman Relativistic approach for the determination of nuclear and neutron star properties in consideration of PREX-II results NUCLEAR STRUCTURE A=20-220; calculated charge rms radii, binding energy. ^{48}Ca, ^{208}Pb; calculated neutron skin thickness. Obtained properties of nonrotating neutron star. New parametrization of the relativistic mean-field (RMF) model obtained by fit to the available experimental data on binding energy, charge rms radii and taking into account recent PREX-II results on neutron skin thickness. Comparison to results obtained with different parametrizations - NL3, IOPB-I, FSUGarnet, Big Apple.
doi: 10.1103/PhysRevC.107.015803
2022AD03 Phys.Rev. C 105, 015806 (2022) S.M.Adil Imam, N.K.Patra, C.Mondal, T.Malik, B.K.Agrawal Bayesian reconstruction of nuclear matter parameters from the equation of state of neutron star matter
doi: 10.1103/PhysRevC.105.015806
2022MO09 Phys.Rev. C 105, 034305 (2022) Density dependence of symmetry energy and neutron skin thickness revisited using relativistic mean field models with nonlinear couplings NUCLEAR STRUCTURE ^{16}O, ^{40,48}Ca, ^{56,68}Ni, ^{90}Zr, ^{100,116,132}Sn, ^{144}Sm, ^{208}Pb; analyzed binding energies, charge radii, neutron-skin thickness; deduced symmetry energy and density slope parameter as a function of density, correlation coefficient between neutron skin-thickness and density slope parameter. Parameters of the FSU type relativistic models obtained by fitting binding energies and charge radii of the closed-shell spherical nuclei while keeping fixed value of neutron skin-thickness in ^{208}Pb.
doi: 10.1103/PhysRevC.105.034305
2022TH07 Phys.Rev. C 106, 045806 (2022) V.Thakur, R.Kumar, P.Kumar, V.Kumar, M.Kumar, C.Mondal, B.K.Agrawal, S.K.Dhiman Effects of an isovector scalar meson on the equation of state of dense matter within a relativistic mean field model NUCLEAR STRUCTURE ^{16,24}O, ^{40,48}Ca, ^{56,78}Ni, ^{88}Sr, ^{90}Zr , ^{100,116,132}Sn, ^{208}Pb; analyzed experimental values of binding energy, charge radii, neutron skin thickness; deduced mass-radius relation of a neutron star, variation of dimensionless tidal deformability with respect to gravitational mass. Calculations within relativistic mean field (RMF) framework withadded freedom in the isospin channel through the δ meson.
doi: 10.1103/PhysRevC.106.045806
2021AH05 Nucl.Phys. A1016, 122334 (2021) M.Ahmady, D.Chakrabarti, C.Mondal, R.Sandapen Nucleon electroweak form factors using spin-improved holographic light-front wavefunctions
doi: 10.1016/j.nuclphysa.2021.122334
2021DU08 Phys.Rev. C 103, 035202 (2021) M.Dutra, O.Lourenco, X.Vinas, C.Mondal Analysis of critical parameters for nonrelativistic models of symmetric nuclear matter
doi: 10.1103/PhysRevC.103.035202
2020MO26 Phys.Rev. C 102, 015802 (2020) C.Mondal, X.Vinas, M.Centelles, J.N.De Structure and composition of the inner crust of neutron stars from Gogny interactions NUCLEAR STRUCTURE A=15-215; calculated binding energies using variational Wigner-Kirkwood with shell and pairing corrections (VWKSP) and HFB methods using D1M, D1S and D1M^{*} Gogny forces, and compared to experimental values for about 160 even-even nuclei. Z=5-100; calculated binding energies per particle at different nucleon densities for inner crust of neutron star subtracted by free nucleon mass using the D1M^{*} Gogny force. ^{32}Mg, ^{40,50}Ca, ^{90}Zr, ^{100}Sn, ^{142}Sm, ^{176}Hg, ^{208}Pb, ^{216}Po, ^{224}U; calculated binding energies using VWKSP and HFB methods using D1M^{*} Gogny force and compared with experimental values. Calculated number of protons (Z=20-92) and the total number of baryons (A=100-2500) corresponding to the β-equilibrium configurations as a function of the inner crust density, and constructed the equation of state (EoS) of the inner crust of neutron stars for D1M, D1S and D1M^{*} interactions.
doi: 10.1103/PhysRevC.102.015802
2019MA35 Phys.Rev. C 99, 052801 (2019) T.Malik, B.K.Agrawal, J.N.De, S.K.Samaddar, C.Providencia, C.Mondal, T.K.Jha Tides in merging neutron stars: Consistency of the GW170817 event with experimental data on finite nuclei
doi: 10.1103/PhysRevC.99.052801
2018MA70 Phys.Rev. C 98, 064316 (2018) T.Malik, C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar Nucleon effective mass and its isovector splitting NUCLEAR STRUCTURE ^{48}Ca, ^{68}Ni, ^{120}Sn, ^{208}Pb; calculated dipole enhancement factor, correlation of the isovector parameter, and energy weighted sum rule using energy density functional (EDF) based on the thermodynamic Gibbs-Duhem relation. Nucleon effective mass and its isovector splitting. Comparison with other theoretical predictions.
doi: 10.1103/PhysRevC.98.064316
2018MO26 Int.J.Mod.Phys. E27, 1850078 (2018) C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar Correlations among symmetry energy elements in Skyrme models
doi: 10.1142/S0218301318500787
2017KU31 Eur.Phys.J. A 53, 237 (2017) Gravitational form factors and angular momentum densities in light-front quark-diquark model
doi: 10.1140/epja/i2017-12433-0
2017MO16 Eur.Phys.J. A 53, 106 (2017) C.Mondal, D.Chakrabarti, X.Zhao Deuteron transverse densities in holographic QCD
doi: 10.1140/epja/i2017-12292-7
2017MO23 Phys.Rev. C 96, 021302 (2017) C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar, M.Centelles, X.Vinas Interdependence of different symmetry energy elements
doi: 10.1103/PhysRevC.96.021302
2016CH43 Eur.Phys.J. A 52, 285 (2016) Nucleon-to-Δ transition form factors and empirical transverse charge densities
doi: 10.1140/epja/i2016-16285-8
2016MO10 Phys.Rev. C 93, 044328 (2016) C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar Sensitivity of elements of the symmetry energy of nuclear matter to the properties of neutron-rich systems NUCLEAR STRUCTURE ^{16,24}O, ^{20,30}Ne, ^{24,36}Mg, ^{40,48,54,58}Ca, ^{56,68,78}Ni, ^{90}Zr, ^{100,116,132,138}Sn, ^{144}Sm, ^{208}Pb; analyzed best-fit parameters for binding energy and charge radius of a nucleus. Nuclear symmetry energy matter density for ultra-neutron-rich nuclei. Maximum mass of a neutron star. Relativistic mean field model.
doi: 10.1103/PhysRevC.93.044328
2016MO20 Phys.Rev. C 93, 064303 (2016) C.Mondal, B.K.Agrawal, M.Centelles, G.Colo, X.Roca-Maza, N.Paar, X.Vinas, S.K.Singh, S.K.Patra Model dependence of the neutron-skin thickness on the symmetry energy NUCLEAR STRUCTURE ^{132}Sn, ^{208}Pb; calculated symmetry-energy coefficient and symmetry-energy slope parameter as a function of neutron-skin thickness using several microscopic mean-field models.
doi: 10.1103/PhysRevC.93.064303
2015MO16 Phys.Rev. C 92, 024302 (2015) Constraining the symmetry energy content of nuclear matter from nuclear masses: A covariance analysis NUCLEAR STRUCTURE ^{16,24}O, ^{18,30}Ne, ^{40,48}Ca, ^{56,68}Ni, ^{90}Zr, ^{100,116,132}Sn, ^{144}Sm, ^{208}Pb; calculated binding energies and charge radii, binding energy/nucleon, incompressibility coefficient K, Dirac effective mass of nucleon, symmetry energy coefficient, density slope parameter of symmetry energy, and neutron skins using two different models and constrained by experimental masses. Covariance analysis. Relativistic mean-field (RMF) approach using 16 different models.
doi: 10.1103/PhysRevC.92.024302
Back to query form |