NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = J.N.De

Found 100 matches.

Back to query form

2021AG09      Eur.Phys.J. Special Topics 230, 517 (2021)

B.K.Agrawal, T.Malik, J.N.De, S.K.Samaddar

Constraining nuclear matter parameters from correlation systematics: a mean-field perspective

doi: 10.1140/epjs/s11734-021-00001-7
Citations: PlumX Metrics

2020MA58      Phys.Rev. C 102, 052801(R) (2020)

T.Malik, B.K.Agrawal, C.Providencia, J.N.De

Unveiling the correlations of tidal deformability with the nuclear symmetry energy parameters

doi: 10.1103/PhysRevC.102.052801
Citations: PlumX Metrics

2020MO26      Phys.Rev. C 102, 015802 (2020)

C.Mondal, X.Vinas, M.Centelles, J.N.De

Structure and composition of the inner crust of neutron stars from Gogny interactions

NUCLEAR STRUCTURE A=15-215; calculated binding energies using variational Wigner-Kirkwood with shell and pairing corrections (VWKSP) and HFB methods using D1M, D1S and D1M* Gogny forces, and compared to experimental values for about 160 even-even nuclei. Z=5-100; calculated binding energies per particle at different nucleon densities for inner crust of neutron star subtracted by free nucleon mass using the D1M* Gogny force. 32Mg, 40,50Ca, 90Zr, 100Sn, 142Sm, 176Hg, 208Pb, 216Po, 224U; calculated binding energies using VWKSP and HFB methods using D1M* Gogny force and compared with experimental values. Calculated number of protons (Z=20-92) and the total number of baryons (A=100-2500) corresponding to the β-equilibrium configurations as a function of the inner crust density, and constructed the equation of state (EoS) of the inner crust of neutron stars for D1M, D1S and D1M* interactions.

doi: 10.1103/PhysRevC.102.015802
Citations: PlumX Metrics

2019MA35      Phys.Rev. C 99, 052801 (2019)

T.Malik, B.K.Agrawal, J.N.De, S.K.Samaddar, C.Providencia, C.Mondal, T.K.Jha

Tides in merging neutron stars: Consistency of the GW170817 event with experimental data on finite nuclei

doi: 10.1103/PhysRevC.99.052801
Citations: PlumX Metrics

2018MA70      Phys.Rev. C 98, 064316 (2018)

T.Malik, C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar

Nucleon effective mass and its isovector splitting

NUCLEAR STRUCTURE 48Ca, 68Ni, 120Sn, 208Pb; calculated dipole enhancement factor, correlation of the isovector parameter, and energy weighted sum rule using energy density functional (EDF) based on the thermodynamic Gibbs-Duhem relation. Nucleon effective mass and its isovector splitting. Comparison with other theoretical predictions.

doi: 10.1103/PhysRevC.98.064316
Citations: PlumX Metrics

2018MO26      Int.J.Mod.Phys. E27, 1850078 (2018)

C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar

Correlations among symmetry energy elements in Skyrme models

doi: 10.1142/S0218301318500787
Citations: PlumX Metrics

2017BI07      Phys.Rev. C 95, 045201 (2017)

S.Biswas, J.N.De, P.S.Joarder, S.Raha, D.Syam

Multifragmentation model for the production of astrophysical strangelets

doi: 10.1103/PhysRevC.95.045201
Citations: PlumX Metrics

2017MO23      Phys.Rev. C 96, 021302 (2017)

C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar, M.Centelles, X.Vinas

Interdependence of different symmetry energy elements

doi: 10.1103/PhysRevC.96.021302
Citations: PlumX Metrics

2016MO10      Phys.Rev. C 93, 044328 (2016)

C.Mondal, B.K.Agrawal, J.N.De, S.K.Samaddar

Sensitivity of elements of the symmetry energy of nuclear matter to the properties of neutron-rich systems

NUCLEAR STRUCTURE 16,24O, 20,30Ne, 24,36Mg, 40,48,54,58Ca, 56,68,78Ni, 90Zr, 100,116,132,138Sn, 144Sm, 208Pb; analyzed best-fit parameters for binding energy and charge radius of a nucleus. Nuclear symmetry energy matter density for ultra-neutron-rich nuclei. Maximum mass of a neutron star. Relativistic mean field model.

doi: 10.1103/PhysRevC.93.044328
Citations: PlumX Metrics

2015DE19      Phys.Rev. C 92, 014304 (2015)

J.N.De, S.K.Samaddar, B.K.Agrawal

Reassessing nuclear matter incompressibility and its density dependence

doi: 10.1103/PhysRevC.92.014304
Citations: PlumX Metrics

2015MO16      Phys.Rev. C 92, 024302 (2015)

C.Mondal, B.K.Agrawal, J.N.De

Constraining the symmetry energy content of nuclear matter from nuclear masses: A covariance analysis

NUCLEAR STRUCTURE 16,24O, 18,30Ne, 40,48Ca, 56,68Ni, 90Zr, 100,116,132Sn, 144Sm, 208Pb; calculated binding energies and charge radii, binding energy/nucleon, incompressibility coefficient K, Dirac effective mass of nucleon, symmetry energy coefficient, density slope parameter of symmetry energy, and neutron skins using two different models and constrained by experimental masses. Covariance analysis. Relativistic mean-field (RMF) approach using 16 different models.

doi: 10.1103/PhysRevC.92.024302
Citations: PlumX Metrics

2014AG02      Eur.Phys.J. A 50, 19 (2014)

B. K. Agrawal, J. N. De, S. K. Samaddar, M. Centelles, X.Vinas

Symmetry energy of warm nuclear systems

NUCLEAR STRUCTURE A=56, 112, 150, 208; calculated symmetry energy coefficients vs temperature using energy functional with Skyrme interaction and subtracted finite-temperature Thomas-Fermi.

doi: 10.1140/epja/i2014-14019-8
Citations: PlumX Metrics

2014AG05      Phys.Rev. C 89, 044320 (2014)

B.K.Agrawal, D.Bandyopadhyay, J.N.De, S.K.Samaddar

Thermal properties of the nuclear surface

doi: 10.1103/PhysRevC.89.044320
Citations: PlumX Metrics

2014AL31      Phys.Rev. C 90, 054317 (2014)

N.Alam, B.K.Agrawal, J.N.De, S.K.Samaddar, G.Colo

Equation of state of nuclear matter from empirical constraints

doi: 10.1103/PhysRevC.90.054317
Citations: PlumX Metrics

2013AG06      Phys.Rev. C 87, 051306 (2013)

B.K.Agrawal, J.N.De, S.K.Samaddar, G.Colo, A.Sulaksono

Constraining the density dependence of the symmetry energy from nuclear masses

NUCLEAR STRUCTURE 208Pb, 238U; calculated symmetry slope parameter L, neutron skin thickness for spherical and deformed nuclei, symmetry energy using a microscopic framework with different energy density functionals.

doi: 10.1103/PhysRevC.87.051306
Citations: PlumX Metrics

2012AG22      Phys.Rev.Lett. 109, 262501 (2012)

B.K.Agrawal, J.N.De, S.K.Samaddar

Determining the Density Content of Symmetry Energy and Neutron Skin: An Empirical Approach

NUCLEAR STRUCTURE 208Pb; calculated energy density functionals, symmetry energy slope parameter, neutron skin thickness.

doi: 10.1103/PhysRevLett.109.262501
Citations: PlumX Metrics

2012DE02      Phys.Rev. C 85, 024310 (2012)

J.N.De, S.K.Samaddar

Temperature dependence of the symmetry energy of finite nuclei

NUCLEAR STRUCTURE A=26, Z=10, 12; A=40, Z=16, 18; A=56, Z=24, 26, 28; A=64, Z=26, 28, 30; A=80, Z=34, 36; A=112, Z=48, 50, 52; A=120, Z=50, 52; A=150, Z=60, 62; A=197, Z=77, 79; A=238, Z=90, 92; calculated symmetry energy coefficient as function of nuclear mass, temperature dependence of symmetry energy for various nucleon pairs. Thomas-Fermi model with SkM* and SBM interactions.

doi: 10.1103/PhysRevC.85.024310
Citations: PlumX Metrics

2012DE17      Phys.Rev. C 86, 024606 (2012)

J.N.De, S.K.Samaddar, X.Vinas, M.Centelles, I.N.Mishustin, W.Greiner

Effects of medium on nuclear properties in multifragmentation

doi: 10.1103/PhysRevC.86.024606
Citations: PlumX Metrics

2011SA21      Phys.Rev. C 83, 055802 (2011)

S.K.Samaddar, J.N.De

Warm α-nucleon matter

doi: 10.1103/PhysRevC.83.055802
Citations: PlumX Metrics

2010DE36      Phys.Rev. C 82, 045201 (2010)

J.N.De, S.K.Samaddar, B.K.Agrawal

Anatomy of the symmetry energy of dilute nuclear matter

doi: 10.1103/PhysRevC.82.045201
Citations: PlumX Metrics

2010SA06      Phys.Rev. C 81, 041601 (2010)

S.K.Samaddar, J.N.De

Examining the efficacy of isotope thermometry in the S-matrix approach

NUCLEAR STRUCTURE 124Sn; calculated temperature and volume of a hot fragmenting nuclear system by isotope thermometry in the S-matrix approach.

doi: 10.1103/PhysRevC.81.041601
Citations: PlumX Metrics

2009SA18      Phys.Rev. C 79, 051602 (2009)

S.K.Samaddar, J.N.De

Scattering effects on nuclear thermodynamic observables

doi: 10.1103/PhysRevC.79.051602
Citations: PlumX Metrics

2009SA36      Phys.Rev. C 80, 035803 (2009)

S.K.Samaddar, J.N.De, X.Vinas, M.Centelles

Symmetry coefficients and incompressibility of clusterized supernova matter

doi: 10.1103/PhysRevC.80.035803
Citations: PlumX Metrics

2008DE33      Phys.Rev. C 78, 065204 (2008)

J.N.De, S.K.Samaddar

Nuclear condensation and symmetry energy of dilute nuclear matter: An S-matrix approach

doi: 10.1103/PhysRevC.78.065204
Citations: PlumX Metrics

2008MA11      Phys.Rev. C 77, 032201 (2008)

S.Mallik, J.N.De, S.K.Samaddar, S.Sarkar

S-matrix approach to equation of state of nuclear matter

doi: 10.1103/PhysRevC.77.032201
Citations: PlumX Metrics

2008SA37      Phys.Rev. C 78, 034607 (2008)

S.K.Samaddar, J.N.De, X.Vinas, M.Centelles

Density dependence of the symmetry free energy of hot nuclei

NUCLEAR STRUCTURE 40S, 110Sn, 150Sm, 150Cs, 197Au; calculated equilibrium temperature, equilibrium central density, symmetry coefficients for nuclear matter.

doi: 10.1103/PhysRevC.78.034607
Citations: PlumX Metrics

2007DE54      Phys.Rev. C 76, 044607 (2007)

J.N.De, S.K.Samaddar

Nuclear condensation and the equation of state of nuclear matter

doi: 10.1103/PhysRevC.76.044607
Citations: PlumX Metrics

2007SA34      Phys.Rev. C 75, 054608 (2007)

S.K.Samaddar, J.N.De, X.Vinas, M.Centelles

Density reorganization in hot nuclei

NUCLEAR STRUCTURE 40S, 40Ca, 150Sm, 150Yb, 150Cs; calculated equilibrium density profile as a function of excitation energy.

doi: 10.1103/PhysRevC.75.054608
Citations: PlumX Metrics

2007SA52      Phys.Rev. C 76, 041602 (2007)

S.K.Samaddar, J.N.De, X.Vinas, M.Centelles

Excitation energy dependence of the symmetry energy of finite nuclei

NUCLEAR STRUCTURE 40S, 150Sm, 150Cs; calculated density and temperature dependence of symmetry coefficients, nucleon-nucleon collisions.

doi: 10.1103/PhysRevC.76.041602
Citations: PlumX Metrics

2006DE16      Phys.Rev. C 73, 034602 (2006)

J.N.De, S.K.Samaddar, S.Shlomo, J.B.Natowitz

Continuous phase transition and negative specific heat in finite nuclei

NUCLEAR STRUCTURE 40,50Ca, 150Re, 150Nd; calculated thermodynamic quantities, phase transition features. Heated liquid-drop model.

doi: 10.1103/PhysRevC.73.034602
Citations: PlumX Metrics

2006DE29      Phys.Lett. B 638, 160 (2006)

J.N.De, S.K.Samaddar, X.Vinas, M.Centelles

Nuclear expansion with excitation

NUCLEAR STRUCTURE 150Sm; calculated thermodynamic quantities, density, phase transition features. Skyrme type effective two-body interaction model.

doi: 10.1016/j.physletb.2006.05.046
Citations: PlumX Metrics

2005CE03      Phys.Rev. C 72, 014304 (2005)

M.Centelles, X.Vinas, S.K.Patra, J.N.De, T.Sil

Sum rule approach to the isoscalar giant monopole resonance in drip line nuclei

NUCLEAR STRUCTURE O, Ca, Ni, Zr, Pb; calculated giant monopole resonance energies, sum rules. Density-dependent Hartree-Fock approximation, Skyrme forces.

doi: 10.1103/PhysRevC.72.014304
Citations: PlumX Metrics

2005SA02      Phys.Rev. C 71, 011601 (2005)

S.K.Samaddar, J.N.De, A.Bonasera

Ambiguities in statistical calculations of nuclear fragmentation

NUCLEAR STRUCTURE 197Au; calculated fragment charge distributions, isotopic yield ratios for fragmentation of excited system, possible recombination effects. Statistical approach.

doi: 10.1103/PhysRevC.71.011601
Citations: PlumX Metrics

2004SA29      Phys.Rev. C 69, 064615 (2004)

S.K.Samaddar, J.N.De, S.Shlomo

Flow effects on multifragmentation in the canonical model

NUCLEAR STRUCTURE 109Ag, 197Au; calculated fragment multiplicities, flow effects in multifragmentation of hot nuclei. Analytically solvable canonical model.

doi: 10.1103/PhysRevC.69.064615
Citations: PlumX Metrics

2004SI01      Phys.Rev. C 69, 014602 (2004)

T.Sil, S.K.Samaddar, J.N.De, S.Shlomo

Liquid-gas phase transition in infinite and finite nuclear systems

NUCLEAR STRUCTURE 50Ca, 150,186Re; calculated thermodynamic quantities, phase transition features. Heated liquid drop model.

doi: 10.1103/PhysRevC.69.014602
Citations: PlumX Metrics

2002SI25      Phys.Rev. C66, 045803 (2002)

T.Sil, J.N.De, S.K.Samaddar, X.Vinas, M.Centelles, B.K.Agrawal, S.K.Patra

Isospin-rich nuclei in neutron star matter

NUCLEAR STRUCTURE 140,330Pb, 80Ca, 170Sn; calculated nuclear properties in neutron-star environment.

doi: 10.1103/PhysRevC.66.045803
Citations: PlumX Metrics

2001AG02      Phys.Rev. C63, 024002 (2001)

B.K.Agrawal, T.Sil, S.K.Samaddar, J.N.De

Shape Transition in Some Rare-Earth Nuclei in Relativistic Mean Field Theory

NUCLEAR STRUCTURE 148,150Sm, 150,152Gd, 152,154Dy; calculated β2 deformation, pairing gaps vs nuclear temperature, shape transitions. Relativistic mean-field approach.

doi: 10.1103/PhysRevC.63.024002
Citations: PlumX Metrics

2001AG08      Phys.Rev. C64, 017304 (2001)

B.K.Agrawal, T.Sil, S.K.Samaddar, J.N.De

Temperature Induced Shell Effects in Deformed Nuclei

NUCLEAR STRUCTURE 64,66Zn, 148,150Sm, 152,154Dy; calculated deformation, shell-correction energy vs temperature.

doi: 10.1103/PhysRevC.64.017304
Citations: PlumX Metrics

2001AG09      Phys.Rev. C64, 024305 (2001)

B.K.Agrawal, T.Sil, S.K.Samaddar, J.N.De, S.Shlomo

Coulomb Energy Differences in Mirror Nuclei Revisited

NUCLEAR STRUCTURE 15,16,17O, 32S, 39,40,41,48Ca, 56Ni, 90Zr, 208Pb; calculated radii. 15,17O, 15N, 17F, 39,41Ca, 39K, 41Sc, 55,57Ni, 55Co, 57Cu; calculated Coulomb displacement energies. Relativistic mean-field model, comparison with other models and data.

doi: 10.1103/PhysRevC.64.024305
Citations: PlumX Metrics

2001DE43      Phys.Rev. C64, 057306 (2001)

J.N.De, X.Vinas, S.K.Patra, M.Centelles

Nuclei Beyond the Drip Line

NUCLEAR STRUCTURE 140,208,340Pb; calculated neutron and proton densities. Ca, Pb calculated radii; deduced limiting asymmetry. Thomas-Fermi model.

doi: 10.1103/PhysRevC.64.057306
Citations: PlumX Metrics

2001SI20      Phys.Rev. C63, 054604 (2001)

T.Sil, B.K.Agrawal, J.N.De, S.K.Samaddar

Liquid-Gas Phase Transition in Nuclei in the Relativistic Thomas-Fermi Theory

NUCLEAR STRUCTURE 40Ca, 109Ag, 150Sm; calculated equations of state, caloric curves, other thermodynamic properties. Relativistic Thomas-Fermi theory.

doi: 10.1103/PhysRevC.63.054604
Citations: PlumX Metrics

2001SI22      Phys.Rev. C63, 064302 (2001)

T.Sil, B.K.Agrawal, J.N.De, S.K.Samaddar

Anatomy of Nuclear Shape Transition in the Relativistic Mean Field Theory

NUCLEAR STRUCTURE 148,150Sm, 64Zn; calculated single-particle levels, deformation vs temperature. Relativistic mean-field theory.

doi: 10.1103/PhysRevC.63.064302
Citations: PlumX Metrics

2000AG07      Phys.Rev. C62, 044307 (2000)

B.K.Agrawal, T.Sil, J.N.De, S.K.Samaddar

Nuclear Shape Transition at Finite Temperature in a Relativistic Mean Field Approach

NUCLEAR STRUCTURE 168,170Er; calculated deformation, pairing strength vs temperature, related features. Relativistic mean-field approach.

doi: 10.1103/PhysRevC.62.044307
Citations: PlumX Metrics

1999AG01      Phys.Rev. C59, 832 (1999)

B.K.Agrawal, S.K.Samaddar, T.Sil, J.N.De

Isotope Thermometry in Nuclear Multifragmentation

NUCLEAR STRUCTURE 150Sm; calculated fragmenting system temperature vs excitation energy, time. Comparison of several double-ratio thermometers.

doi: 10.1103/PhysRevC.59.832
Citations: PlumX Metrics

1999AG03      Phys.Rev. C59, 3109 (1999)

B.K.Agrawal, S.K.Samaddar, A.Ansari, J.N.De

Influence of Pairing Correlations on the Excitation Energy, Angular Momentum, and Parity Dependence of Nuclear Level Densities

NUCLEAR STRUCTURE 152Sm, 160Yb; calculated level density, related parameters vs excitation energy; deduced pair correlation effects. Static path approximation.

doi: 10.1103/PhysRevC.59.3109
Citations: PlumX Metrics

1999DE01      Phys.Rev. C59, R1 (1999)

J.N.De, B.K.Agrawal, S.K.Samaddar

Equation of State of Finite Nuclei and Liquid-Gas Phase Transition

NUCLEAR STRUCTURE 85Kr, 150Sm; calculated equation of state; deduced critical temperatures, finite size effects. Thomas-Fermi framework.

doi: 10.1103/PhysRevC.59.R1
Citations: PlumX Metrics

1999SA29      Phys.Lett. 459B, 8 (1999)

S.K.Samaddar, S.Das Gupta, J.N.De, B.K.Agrawal, T.Sil

The One Body Density in a Finite Size Lattice Gas Model

doi: 10.1016/S0370-2693(99)00665-6
Citations: PlumX Metrics

1998AG13      Phys.Rev. C58, 3004 (1998)

B.K.Agrawal, S.K.Samaddar, J.N.De, S.Shlomo

Large-Model-Space Calculation of the Nuclear Level Density Parameter at Finite Temperature

NUCLEAR STRUCTURE 40Ca, 56Fe; calculated level density parameter vs temperature; deduced shell effects, continuum corrections, other contributions. Microscopic model.

doi: 10.1103/PhysRevC.58.3004
Citations: PlumX Metrics

1998DE07      Phys.Rev. C57, 1398 (1998)

J.N.De, S.Shlomo, S.K.Samaddar

Level Density Parameter in a Refined Thomas-Fermi Theory

NUCLEAR STRUCTURE 150Sm; calculated level density parameter vs temperature. Thomas-Fermi theory, second-order corrections.

doi: 10.1103/PhysRevC.57.1398
Citations: PlumX Metrics

1998DE12      Nucl.Phys. A630, 192c (1998)

J.N.De, S.K.Samaddar S.Shlomo

Liquid-Gas Phase Transition in Finite Nuclei

NUCLEAR STRUCTURE 150Sm; calculated caloric curve, specific heat; deduced phase transition. Thomas-Fermi theory.

doi: 10.1016/S0375-9474(97)00756-2
Citations: PlumX Metrics

1998PA17      Phys.Rev. C57, 3246 (1998)

S.Pal, S.K.Samaddar, J.N.De, B.Djerroud

Multiplicity Scaling in Nuclear Fragmentation

NUCLEAR STRUCTURE Ca, Ag, Sm, Au; calculated intermediate mass fragment multiplicities from highly excited nuclei; deduced scaling behavior.

doi: 10.1103/PhysRevC.57.3246
Citations: PlumX Metrics

1998UM03      Phys.Rev. D57, 3242 (1998)

V.S.Uma Maheswari, J.N.De, S.K.Samaddar

Hybrid Stars: Spin-polarized nuclear matter and density-dependent quark masses

doi: 10.1103/PhysRevD.57.3242
Citations: PlumX Metrics

1997DE09      Phys.Rev. C55, R1641 (1997)

J.N.De, S.Das Gupta, S.Shlomo, S.K.Samaddar

Caloric Curve for Finite Nuclei in Thomas-Fermi Theory

NUCLEAR STRUCTURE 150Sm; calculated proton density profile vs temperature, volume, temperature vs excitation energy per particle, specific heat per particle vs temperature. 85Kr; calculated temperature vs excitation energy per particle, specific heat per particle vs temperature. Finite temperature Thomas-Fermi theory.

doi: 10.1103/PhysRevC.55.R1641
Citations: PlumX Metrics

1997SA62      Phys.Rev.Lett. 79, 4962 (1997)

S.K.Samaddar, J.N.De, S.Shlomo

Effect of Flow on the Caloric Curve for Finite Nuclei

NUCLEAR STRUCTURE 150Sm; calculated energy, specific heat per nucleon vs temperature, proton rms radius, density; deduced liquid-gas phase transition. Finite temperature Thomas-Fermi theory.

doi: 10.1103/PhysRevLett.79.4962
Citations: PlumX Metrics

1997SH17      Phys.Rev. C55, R2155 (1997)

S.Shlomo, J.N.De, A.Kolomiets

Effect of Flow on the Freeze-Out Density and Temperature of Disassembling Hot Nuclei

doi: 10.1103/PhysRevC.55.R2155
Citations: PlumX Metrics

1997UM02      Nucl.Phys. A615, 516 (1997)

V.S.Uma Maheswari, D.N.Basu, J.N.De, S.K.Samaddar

Spin Polarised Nuclear Matter and Its Application to Neutron Stars

doi: 10.1016/S0375-9474(97)00002-X
Citations: PlumX Metrics

1996DE05      Phys.Rev. C53, 780 (1996)

J.N.De, N.Rudra, S.Pal, S.K.Samaddar

Refined Thomas-Fermi Description of Hot Nuclei

NUCLEAR STRUCTURE 40Ca, 90Zr, 208Pb; calculated equilibrium gas density, pressure, compression moduli, level density parameter, entropy per particle, neutron evaporation lifetime vs temperature. Other nuclei in this mass range included. Hot nuclei, refined Thomas-Fermi description.

doi: 10.1103/PhysRevC.53.780
Citations: PlumX Metrics

1996PA24      Nucl.Phys. A608, 49 (1996)

S.Pal, S.K.Samaddar, J.N.De

The Effect of Flow on Nuclear Multifragmentation in a Quantum Statistical Model

NUCLEAR STRUCTURE 108Ag; calculated charge yield, intermediate mass fragment, charged particle multiplicity vs temperature; deduced radial collective flow role. Prompt multi-fragmentation, quantum statistical model.

doi: 10.1016/S0375-9474(96)00271-0
Citations: PlumX Metrics

1995PA13      Nucl.Phys. A586, 466 (1995)

S.Pal, S.K.Samaddar, A.Das, J.N.De

Recombination Effect in Nuclear Multifragmentation

NUCLEAR STRUCTURE 150Sm; calculated fragment charge yield, multiplicity probability distribution, other aspects following fragmentation. Sequential binary decay, prompt multi-fragmentation models.

doi: 10.1016/0375-9474(95)00620-G
Citations: PlumX Metrics

1995PA20      Nucl.Phys. A589, 489 (1995)

S.Pal, S.K.Samaddar, J.N.De

Signature of Exotic Nuclear Shapes from IMF-IMF Correlations

NUCLEAR STRUCTURE 150Sm; calculated three-fragment configurations charge distributions, angle-integrated correlation functions; deduced exotic nuclear shapes signature related features. BUU type framework calculations.

doi: 10.1016/0375-9474(95)00130-S
Citations: PlumX Metrics

1995PA32      Nucl.Phys. A591, 719 (1995)

S.Pal, S.K.Samaddar, J.N.De

Effect of Neighbouring Fragments on Sequential Binary Decay

NUCLEAR REACTIONS Cu(197Au, X), E=600 MeV/nucleon; analyzed fragmentation data. Transition state model.

doi: 10.1016/0375-9474(95)00189-8
Citations: PlumX Metrics

1994MA04      Phys.Rev. C49, 541 (1994)

M.M.Majumdar, S.K.Samaddar, N.Rudra, J.N.De

Finite Range Momentum and Density Dependent Effective Interaction and Analysis of Nuclear Incompressibility

NUCLEAR STRUCTURE A=40-250; calculated giant monopole resonance energy vs mass. Finite range effective interaction, Thomas Fermi approximation based nuclear compressibility.

doi: 10.1103/PhysRevC.49.541
Citations: PlumX Metrics

1994PA39      Phys.Lett. 337B, 14 (1994)

S.Pal, S.K.Samaddar, A.Das, J.N.De

Microcanonical Simulation of Multifragmentation of Exotic Nuclear Shapes

NUCLEAR STRUCTURE 150Sm; calculated charged particle multiplicity distributions, other observables. Multi-fragmentation, toroidal, bubble nuclei, statistical model, microcanonical simulation.

doi: 10.1016/0370-2693(94)91435-4
Citations: PlumX Metrics

1993MA41      Phys.Rev. C48, 2093 (1993)

M.M.Majumdar, J.N.De, C.Samanta, S.K.Samaddar

Role of Nuclear Compressibility on the Fission Path

NUCLEAR STRUCTURE 238U, 208Pb; calculated equilibrium density along fission path, deformation energy, volume, Coulomb, surface contributions; deduced nuclear compressibility role. Semi-macroscopic framework.

doi: 10.1103/PhysRevC.48.2093
Citations: PlumX Metrics

1992BA12      Nucl.Phys. A539, 370 (1992)

D.Bandyopadhyay, S.K.Samaddar, R.Saha, J.N.De

Fusion Limited by Temperature

NUCLEAR REACTIONS 27Al(40Ar, X), 58Ni(35Cl, X), 40Ca(40Ca, X), E ≈ 5-50 MeV/nucleon; calculated fusion σ(E); deduced temperature dependence.

doi: 10.1016/0375-9474(92)90275-O
Citations: PlumX Metrics

1992KR09      Nucl.Phys. A542, 159 (1992)

K.Krishan, S.Bhattacharya, J.N.De, S.K.Samaddar

Distribution of Angular Momentum in Incomplete Fusion Reaction

NUCLEAR REACTIONS 27Al(84Kr, X), E=20, 30 MeV/nucleon; calculated prompt particle average number vs incident L, incompletely fused composites mass, excitation energy, angular momentum distribution. Dynamic trajectory model, particle exchange dissipation, Monte Carlo simulation technique.

doi: 10.1016/0375-9474(92)90404-8
Citations: PlumX Metrics

1992SA24      Phys.Rev. C46, 2631 (1992)

S.K.Samaddar, J.N.De, D.Sperber

Realistic Estimate of Incomplete Fusion Excitation Function in Nucleus-Nucleus Collisions

NUCLEAR REACTIONS 200Hg, 40Ca(40Ca, X), E ≤ 60 MeV/nucleon; calculated fusion σ(E). 200Hg(40Ca, X), E ≤ 40 MeV/nucleon; calculated hot residues mass, charge vs E, hot composite maximum angular momentum vs E. Promptly emitted particles model.

doi: 10.1103/PhysRevC.46.2631
Citations: PlumX Metrics

1991DE29      Nucl.Phys. A534, 294 (1991)

J.N.De, D.Bandyopadhyay, S.K.Samaddar, N.Rudra

Stability Against Nucleon Dripping in Hot Nuclei

NUCLEAR STRUCTURE N=126; calculated isotone limiting temperature. Z=10-80; calculated n, p drip lines vs temperature. Thermodynamic model, metastable equilibrium.

doi: 10.1016/0375-9474(91)90499-V
Citations: PlumX Metrics

1990BA17      Nucl.Phys. A511, 1 (1990)

D.Bandyopadhyay, C.Samanta, S.K.Samaddar, J.N.De

Thermostatic Properties of Finite and Infinite Nuclear Systems

NUCLEAR STRUCTURE A=50-200; calculated limiting temperature vs mass number.

doi: 10.1016/0375-9474(90)90024-G
Citations: PlumX Metrics

1990DE24      Phys.Rev. C42, R819 (1990)

J.N.De, W.Stocker

Temperature Dependence of Fusion Barriers

NUCLEAR REACTIONS 58Ni(35Cl, X), 40Ca(40Ca, X), E not given; calculated free interaction energy vs separation distance, fusion barrier. 70Ge(27Al, X), 74Ge(74Ge, X), 100Mo(100Mo, X), E not given; calculated fusion barrier.

doi: 10.1103/PhysRevC.42.R819
Citations: PlumX Metrics

1989BH03      Phys.Rev.Lett. 62, 2589 (1989)

S.Bhattacharya, J.N.De, K.Krishan, S.K.Samaddar

Role of Two-Body Collisions in Limiting Momentum Transfer and Energy Deposition in Nucleus-Nucleus Collisions

NUCLEAR REACTIONS 40Ca(14N, X), 56Fe(20Ne, X), 90Zr(32S, X), E=10-50 MeV/nucleon; calculated linear momentum transfer, temperature vs E. Promptly emitted particle model.

doi: 10.1103/PhysRevLett.62.2589
Citations: PlumX Metrics

1989KR04      Nucl.Phys. A495, 65c (1989)

K.Krishan, S.Bhattacharya, J.N.De, S.K.Samaddar

Saturation of Energy Deposition and Linear Momentum Transfer in Heavy Ion Collisions

NUCLEAR REACTIONS 56Fe(20Ne, X), 90Zr(32S, X), 40Ca(14N, X), E ≤ 10 MeV/nucleon; calculated fractional linear momentum transfer vs E. Prompt emission model.

doi: 10.1016/0375-9474(89)90308-4
Citations: PlumX Metrics

1989SA59      Phys.Lett. B 217, 381 (1989)

C.Samanta, D.Bandyopadhyay, J.N.De

Incompressibility of asymmetric nuclear matter

doi: 10.1016/0370-2693(89)90064-6
Citations: PlumX Metrics

1988BH06      Phys.Rev. C37, 2916 (1988)

S.Bhattacharya, K.Krishan, S.K.Samaddar, J.N.De

Realistic Estimates for Promptly Emitted Particles

NUCLEAR REACTIONS 165Ho(20Ne, xn), E=220, 292, 402 MeV; 165Ho(12C, xn), E=300 MeV; calculated promptly emitted multiplicities.

doi: 10.1103/PhysRevC.37.2916
Citations: PlumX Metrics

1988KR13      J.Phys.(London) G14, 1423 (1988)

K.Krishan, S.K.Samaddar, J.N.De

Spin Dispersion and Alignment in Deep Inelastic Collisions

NUCLEAR REACTIONS 209Bi(86Kr, X), E=610 MeV; 238U(86Kr, X), E=730 MeV; 154Sm(32S, X), E=214 MeV; calculated fragment angular momentum gain vs incident L, spin variances vs energy loss. Stochastic nucleon exchange model.

doi: 10.1088/0305-4616/14/11/013
Citations: PlumX Metrics

1987BA01      Nucl.Phys. A462, 587 (1987)

D.Bandyopadhyay, S.R.Samaddar, K.Krishan, J.N.De

Energy Dependent Nucleus-Nucleus Potential in Heavy Ion Collisions

NUCLEAR REACTIONS 208Pb, 16O(16O, 16O), 208Pb(208Pb, 208Pb), E=0-40 MeV/nucleon; calculated nucleus-nucleus potential parameters. 27Al(16O, X), E(cm) ≈ 50-100 MeV; 17O(13C, X), E(cm) ≈ 8-50 MeV; 26Mg(20Ne, X), E(cm) ≈ 8-50 MeV; 27Al(32S, X), E ≈ 33-500 MeV; 109Ag(40Ar, X), E(cm) ≈ 100-500 MeV; calculated fusion σ(E). Proximity model.

doi: 10.1016/0375-9474(87)90407-6
Citations: PlumX Metrics

1987BA57      Phys.Lett. 196B, 424 (1987)

D.Bandopadhyay, S.K.Samaddar, K.Krishan, J.N.De

Spectator Recoil and Nucleon Emission Spectra in Intermediate-Energy Nuclear Collisions

NUCLEAR REACTIONS 124Sn(40Ar, X), E=44 MeV/nucleon; 197Au(12C, X), E=85 MeV/nucleon; calculated σ(E(p), θ(p)), σ(fragment θ, E), X(A)=70-130. Hot-zone model.

doi: 10.1016/0370-2693(87)90794-5
Citations: PlumX Metrics

1987SA43      J.Phys.(London) G13, L231 (1987)

S.K.Samaddar, K.Krishan, J.N.De

Role of Barrier on Spin Orientation in Nucleus-Nucleus Collisions

NUCLEAR REACTIONS 209Bi(86Kr, X), E=610 MeV; calculated fragment spin orientation. Stochastic nucleon exchange model.

doi: 10.1088/0305-4616/13/10/002
Citations: PlumX Metrics

1986BH08      Z.Phys. A325, 79 (1986)

S.Bhattacharyya, J.N.De, S.K.Samaddar, K.Krishan

Mass and Charge Distributions with Correlated Exchange

NUCLEAR REACTIONS 56Fe(56Fe, X), 166Er, 139La(86Kr, X), E not given; calculated energy loss-mass variance correlation, inclusive variances isospin correlation coefficient dependence. Correlated nucleon exchange model.

1986SA01      Nucl.Phys. A451, 160 (1986)

S.K.Samaddar, M.M.Majumdar, B.C.Samanta, J.N.De

Vacuum Polarization and the Nuclear Mass Formula

NUCLEAR REACTIONS 109Ag(109Ag, X), E(cm) ≈ 227-237 MeV; calculated fusion σ(E); deduced vacuum polarization role.

doi: 10.1016/0375-9474(86)90249-6
Citations: PlumX Metrics

1985DE25      Nucl.Phys. A440, 152 (1985)

J.N.De, S.S.Kapoor

On the Influence of the Shell Structure of Single-Particle Levels in Dissipative Heavy-Ion Collisions

NUCLEAR REACTIONS 208Pb(208Pb, X), E=7.6 MeV/nucleon; 209Bi(136Xe, X), E=940, 1130, 1422 MeV; 208Pb(238U, X), E=7.5 MeV/nucleon; 144Sm(144Sm, X), E=6.95 MeV/nucleon; 154Sm(154Sm, X), E=6.3 MeV/nucleon; calculated fragment energy loss vs charge distribution variance; deduced shell structure role on single particle levels. Dissipative heavy ion collision, Randrup formalism.

doi: 10.1016/0375-9474(85)90047-8
Citations: PlumX Metrics

1985DE44      Nucl.Phys. A445, 173 (1985)

J.N.De, K.Krishan, S.K.Samaddar

The Effect of the Shell Gap in Strongly Damped Collisions

NUCLEAR REACTIONS 209Bi(56Fe, X), E=465 MeV; 144Sm(144Sm, X), E=6.95 MeV/nucleon; 209Bi(136Xe, X), E=940 MeV; 208Pb(208Pb, X), E=7.6 MeV/nucleon; calculated fragment charge variance energy dependence. 238U, 165Ho(56Fe, X), E=465 MeV; calculated fragment energy loss, charge variance correlation.

doi: 10.1016/0375-9474(85)90367-7
Citations: PlumX Metrics

1985SA08      Phys.Rev. C31, 1053 (1985)

S.K.Samaddar, J.N.De, K.Krishan

Thermal Equilibrium in Strongly Damped Collisions

NUCLEAR REACTIONS 238U, 165Ho(56Fe, X), E=465 MeV; calculated fragment charge centroids, variances, energy division. Nucleon exchange model, Monte-Carlo simulation.

doi: 10.1103/PhysRevC.31.1053
Citations: PlumX Metrics

1984DE40      Phys.Rev. C30, 1763 (1984)


Correlation between Neutrons and Protons in Heavy Ion Collisions

NUCLEAR REACTIONS 56Fe, 165Ho, 209Bi, 238U(56Fe, X), 144Sm(144Sm, X), E not given; calculated fragment mass, charge distribution variances ratio vs correlation coefficient. Nucleon exchange model.

doi: 10.1103/PhysRevC.30.1763
Citations: PlumX Metrics

1984DE41      J.Phys.(London) G10, L257 (1984)

J.N.De, K.Krishan, S.K.Samaddar

The Mass and Charge Variances in Sm + Sm Collisions

NUCLEAR REACTIONS 154Sm(154Sm, X), E=970 MeV; 144Sm(144Sm, X), E=1000 MeV; calculated charge, mass variances.

doi: 10.1088/0305-4616/10/2/016
Citations: PlumX Metrics

1983DE05      Phys.Rev. C27, 1328 (1983)

J.N.De, S.S.Kapoor

Analysis of Energy Loss Versus Fragment Charge Distributions for the 136Xe + 209Bi System

NUCLEAR REACTIONS 209Bi(136Xe, X), E=940, 1130, 1422 MeV; analyzed data; deduced nucleon exchange role. Transport model, isospin effects.

doi: 10.1103/PhysRevC.27.1328
Citations: PlumX Metrics

1982DE01      Phys.Rev.Lett. 48, 81 (1982)

J.N.De, S.K.Samaddar, K.Krishan

Role of Stochastic Transfer of Nucleons for Angular Momentum Misalignment in Nuclear Collisions

NUCLEAR REACTIONS 238U(86Kr, X), E=730 MeV; calculated target angular momentum gain, alignment factor vs (L), energy loss. Stochastic nucleon transfer, Pauli effect.

doi: 10.1103/PhysRevLett.48.81
Citations: PlumX Metrics

1982DE23      Phys.Lett. 113B, 455 (1982)


Stochastic Transfer and Isobaric and Isotopic Distributions in Nuclear Collisions

NUCLEAR REACTIONS 165Ho(56Fe, X), E=464 MeV; analyzed fragment charge, mass distribution centroid ratios, mass, charge variance ratios, isotopic charge distributions vs energy loss. Stochastic nucleon transfer.

doi: 10.1016/0370-2693(82)90784-5
Citations: PlumX Metrics

1981KA28      Nucl.Phys. A367, 122 (1981)

A.O.T.Karvinen, J.N.De, B.Jakobsson

Single-Nucleon and Heavy Recoil Spectra in Intermediate Energy Heavy-Ion Reactions

NUCLEAR REACTIONS 108Ag(12C, n), E=35, 50, 86 MeV/nucleon; calculated σ(θ) for preequilibrium, equilibrium emission. Local large volume hot zone assumption.

doi: 10.1016/0375-9474(81)90281-5
Citations: PlumX Metrics

1981SA11      Phys.Scr. 23, 231 (1981)

S.K.Samaddar, A.Sherman, D.Sperber, M.Zielinska-Pfabe, J.N.De

The Role of Deformation, Thermal Fluctuations and Single Particle Transfer in Strongly Damped Collisions

NUCLEAR REACTIONS 209Bi(136Xe, X), E=1130 MeV; 209Bi(84Kr, X), E=600 MeV; calculated σ(fragment Z), deflection function, final kinetic energy vs incident L, σ(fragment θ); deduced role of deformation, thermal fluctuations, single particle transfer. Dynamical model, strongly damped collisions.

doi: 10.1088/0031-8949/23/3/003
Citations: PlumX Metrics

1980BO01      Nucl.Phys. A333, 285 (1980)

J.P.Bondorf, J.N.De, G.Fai, A.O.T.Karvinen, B.Jakobsson, J.Randrup

Promptly Emitted Particles in Nuclear Collisions

NUCLEAR REACTIONS 158Gd(12C, X), E=152 MeV; 146Nd(16O, X), E=126.5 MeV; 158Gd(α, X), E=45 MeV; 136Xe(45Sc, X), E=1360 MeV; calculated σ(E) for 1, 2 prompt nucleons. Proximity model, coupling of internal nucleon motion to relative nuclear motion.

doi: 10.1016/0375-9474(80)90234-1
Citations: PlumX Metrics

1979BO15      Phys.Lett. 84B, 162 (1979)

J.P.Bondorf, J.N.De, A.O.T.Karvinen, G.Fai, B.Jakobsson

Prompt Emission of Nucleons in Heavy-Ion Collisions

NUCLEAR REACTIONS 146Nd(16O, n), E=126.5 MeV; 158Gd(12C, n), E=152 MeV; calculated σ(E, θn, En); deduced mechanism of production of quasifree prompt emission. Sharp surface model.

doi: 10.1016/0370-2693(79)90273-9
Citations: PlumX Metrics

1979SA36      Nucl.Phys. A332, 210 (1979)

S.K.Samaddar, M.I.Sobel, J.N.De, S.I.A.Garpman, D.Sperber, M.Zielinska-Pfabe, S.Moller

A Classical Dynamical Model with Shape Deformation for Strongly Damped Collisions

NUCLEAR REACTIONS 209Bi(136Xe, X), E=1130 MeV; 209Bi(84Kr, X), E=600 MeV; calculated scattering angle, energy loss, mass transfer. Classical dynamical model, damped HI collisions.

doi: 10.1016/0375-9474(79)90106-4
Citations: PlumX Metrics

1978BI05      Phys.Rev.Lett. 40, 1123 (1978)

J.R.Birkelund, J.R.Huizenga, J.N.De, D.Sperber

Heavy-Ion Fusion Based on the Proximity Potential and One-Body Friction

NUCLEAR REACTIONS 27Al(16O, X), 58,60,62,64Ni, 112,116,120,124Sn(35Cl, X), 109Ag(40Ar, X); calculated fusion σ.

doi: 10.1103/PhysRevLett.40.1123
Citations: PlumX Metrics

1978DE06      Phys.Lett. 72B, 293 (1978)

J.N.De, D.Sperber

The Role of Deformation and Transfer in the Analysis of Strongly Damped Collisions

NUCLEAR REACTIONS 209Bi(136Xe, X), E=712, 1130 MeV; calculated σ(Z), σ(θ).

doi: 10.1016/0370-2693(78)90122-3
Citations: PlumX Metrics

1978DE24      Phys.Lett. 78B, 13 (1978)

J.N.De, S.I.A.Garpman, A.Sherman, D.Sperber, K.Tam

A Stochastic Model for Strongly Damped Collisions with Liquid Drop Driving Forces

NUCLEAR REACTIONS 209Bi(136Xe, X), E=1130 MeV; calculated σ(E(Z), θ).

doi: 10.1016/0370-2693(78)90335-0
Citations: PlumX Metrics

1978DE40      S.Afr.J.Phys. 1, 239 (1978)

J.N.De, A.Sherman, D.Sperber, J.R.Birkelund, J.R.Huizenga

Fusion-Excitation Functions as a Test of the Radial Dependence of the Proximity Potential

NUCLEAR REACTIONS 27Al(35Cl, X), E(cm)=50-300 MeV; 232Th(40Ar, X), E(cm)=20-55 MeV; calculated σ(fusion, E); deduced radial dependence of ion-ion potential. Proximity potential model.

1977DE07      Phys.Lett. 66B, 315 (1977)


Deep Inelastic Collisions: A Classical Description with Friction and Deformation

NUCLEAR REACTIONS 209Bi(84Kr, X), E=600 MeV; calculated σ.

doi: 10.1016/0370-2693(77)90003-X
Citations: PlumX Metrics

1976DE26      Z.Phys. A277, 385 (1976)

J.N.De, D.H.E.Gross, H.Kalinowski

A Classical Description of Deep Inelastic Collisions

NUCLEAR REACTIONS 232Th(40Ar, X), E=379 MeV; 40Ca(40Ca, X), E=278 MeV; 209Bi(84Kr, X), E=525, 600 MeV; 208Pb(40Ca, X), E=288 MeV; 186W(63Cu, X), E=395 MeV; 197Au(63Cu, X), E=443, 365 MeV; calculated σ for deep inelastic scattering.

doi: 10.1007/BF01545976
Citations: PlumX Metrics

1974DE50      Pramana 2, 199 (1974)

J.N.De, M.K.Pal

Structure Calculations in 18O Nucleus

NUCLEAR STRUCTURE 18O; calculated levels, B(E2), quadrupole moment.

doi: 10.1007/BF02847795
Citations: PlumX Metrics

Back to query form