NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = S.Shlomo

Found 140 matches.

    Showing 1 to 100.

   [Next]

Back to query form



2024MA02      Eur.Phys.J. A 60, 6 (2024)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, U.V.Grygoriev, S.Shlomo

Pairing correlations within the micro-macroscopic approach for the level density

NUCLEAR STRUCTURE 40,48Ca, 52,54Fe, 56Ni, 115Sn, 144Sm, 208Pb; calculated level densities for low-energy states within the microscopic-macroscopic approach (MMA). Comparison with available data.

doi: 10.1140/epja/s10050-023-01222-1
Citations: PlumX Metrics


2023GO08      Phys.Rev. C 108, 014328 (2023)

M.L.Gorelik, S.Shlomo, B.A.Tulupov, M.H.Urin

Semimicroscopic description of isoscalar giant multipole resonances in medium-mass closed-shell nuclei

NUCLEAR STRUCTURE 48Ca, 90Zr, 132Sn, 208Pb; calculated isoscalar giant multipole resonances (up to L=3, including L=0 and 2 overtones) parameters, relative energy-weighted strength functions for isoscalar giant monopole, dipole, quadrupole, and octupole resonances (ISGMR, ISGDR, ISGQR and ISGOR), projected transition densities for isoscalar giant multipole resonances, partial branching ratio of direct one-nucleon decay. Particle-hole dispersive optical model (PHDOM). Comparison to experimental data.

doi: 10.1103/PhysRevC.108.014328
Citations: PlumX Metrics


2023MA40      Iader.Fiz.Enerh. 24, 175 (2023)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, U.V.Grygoriev, S.Shlomo

Nuclear level density in the statistical semiclassical micro-macroscopic approach

NUCLEAR STRUCTURE 140,142,145Nd, 144,150Sm, 166Ho, 208Pb, 230Th, 240Pu; analyzed available data; deduced level density parameters using Least Mean-Square (LMS) fit.

doi: 10.15407/jnpae2023.03.175
Citations: PlumX Metrics


2022MA14      Nucl.Phys. A1021, 122423 (2022)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, S.Shlomo

Level density within a micro-macroscopic approach

NUCLEAR STRUCTURE 240Pu, 150Sm, 166Ho; analyzed available data; deduced statistical level density for nucleonic system with a given energy E, particle number A and other integrals of motion in the micro-macroscopic approximation beyond the standard saddle-point method of the Fermi gas model.

doi: 10.1016/j.nuclphysa.2022.122423
Citations: PlumX Metrics


2021BO09      Nucl.Phys. A1010, 122159 (2021)

G.Bonasera, S.Shlomo, D.H.Youngblood, Y.-W.Lui, J.Button, X.Chen

Isoscalar and isovector giant resonances in 44Ca, 54Fe, 64, 68Zn and 56, 58, 60, 68Ni

NUCLEAR STRUCTURE 44Ca, 54Fe, 64,68Zn, 56,58,60,68Ni; calculated centroid energies for isoscalar and isovector giant dipole, quadrupole, octupole resonances within the spherical Hartree-Fock (HF)-based random phase approximation (RPA) theory with 33 distinct Skyrme-like effective nucleon-nucleon interactions.

doi: 10.1016/j.nuclphysa.2021.122159
Citations: PlumX Metrics


2021GO08      Phys.Rev. C 103, 034302 (2021)

M.L.Gorelik, S.Shlomo, B.A.Tulupov, M.H.Urin

Properties of isoscalar giant multipole resonances in medium-heavy closed-shell nuclei: A semimicroscopic description

NUCLEAR STRUCTURE 208Pb; calculated relative energy-weighted strength functions for isoscalar giant monopole, dipole, quadrupole, and octupole resonances (ISGMR, ISGDR, ISGQR and ISGOR), parameters, projected transition densities for isoscalar giant multipole resonances (ISGMPR) and compared with experimental data, isoscalar collective low-energy 3- and 2+ states, B(E2), B(E3), strength distribution, transition density, and partial and total probabilities of direct one nucleon decay, branching ratios for direct one-proton decay of the ISGDR. Particle-hole dispersive optical model (PHDOM).

doi: 10.1103/PhysRevC.103.034302
Citations: PlumX Metrics


2021MA67      Phys.Rev. C 104, 044319 (2021)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, S.Shlomo

Semiclassical shell-structure micro-macroscopic approach for the level density

NUCLEAR STRUCTURE 144,148Sm, 166Ho, 208Pb, 230Th; calculated level densities for low-energy states with different approximations, maximal mean errors in the statistical distribution of states; derived statistical level density as function of the entropy within the micro-macroscopic approximation (MMA) using the mixed micro- and grand-canonical ensembles beyond the standard saddle point method of the Fermi gas model, using mean-field semiclassical periodic-orbit theory. Comparison with experimental densities.

doi: 10.1103/PhysRevC.104.044319
Citations: PlumX Metrics


2021MA79      Int.J.Mod.Phys. E30, 2150092 (2021)

A.G.Magner, A.I.Sanzhur, S.N.Fedotkin, A.I.Levon, S.Shlomo

Shell-structure and asymmetry effects in level densities

NUCLEAR STRUCTURE 176,178,180,182,184,186,188,190,192,194,196,198,200Pt; analyzed available data; deduced level densities within the semiclassical extended Thomas-Fermi and periodic-orbit theory beyond the Fermi-gas saddle-point method.

doi: 10.1142/S0218301321500920
Citations: PlumX Metrics


2020SH24      Phys.Atomic Nuclei 83, 599 (2020)

S.Shlomo

Isoscalar and Isovector Giant Resonances in Closed Shells Nuclei and Bulk Properties of Nuclear Matter

NUCLEAR STRUCTURE 40,48Ca, 68Ni, 90Zr, 116Sn, 144Sm, 208Pb; calculated centroid energies, isoscalar and isovector giant resonances of multipolarities L=0-3 using the fully self-consistent spherical Hartree-Fock (HF)-based random-phase approximation (RPA) theory.

doi: 10.1134/S1063778820040183
Citations: PlumX Metrics


2019BO16      Nucl.Phys. A992, 121612 (2019)

G.Bonasera, S.Shlomo, D.H.Youngblood, Y.-W.Lui, Krishichayan, J.Button

Isoscalar and isovector giant resonances in 92, 94, 96, 98, 100Mo and 90, 92, 94Zr

NUCLEAR STRUCTURE 92,94,96,98,100Mo, 90,92,94Zr; calculated response function S(E), centroid energies ECEN of the isoscalar and isovector giant resonances of multipolarity, centroid energy vs nuclear matter incompressibility using spherical Hartree-Fock based RPA with Skyrme-type nucleon-nucleon interaction, difference between the centroid energies vs asymmetrycoefficient for each isotope I=(N-Z)/A, ECEN vs m*/m; compared with data; deduced nuclear matter properties, ECEN for ISGMR, for ISGDR, ISGOR, ISGQR, IVGMR, IVGDR, IVGQR.

doi: 10.1016/j.nuclphysa.2019.121612
Citations: PlumX Metrics


2019BU26      Phys.Rev. C 100, 064318 (2019)

J.Button, Y.-W.Lui, D.H.Youngblood, X.Chen, G.Bonasera, S.Shlomo

Isoscalar E0, E1, and E2 strength in 54Fe and 64, 68Zn

NUCLEAR REACTIONS 54Fe, 64,68Zn(α, α'), E=240 MeV; measured Eα, Iα, σ(θ) at the Texas A and M K500 superconducting cyclotron. 54Fe, 64,68Zn; deduced centroid energies, EWSR, widths, strengths and moments of isoscalar E0(ISGMR), E1(ISGDR) and E2(ISGQR) giant resonances using single-folding DWBA calculations with optical model potentials. Comparison with the predictions from HF-RPA calculations using the KDE0v1 Skyrme interaction. Systematics of centroids for E0, E1 and E2 isoscalar giant resonances for 40,44,48Ca, 45,48Ti, 54,56Fe, 56,58,60,68Ni, 64,68Zn.

doi: 10.1103/PhysRevC.100.064318
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2018BO22      Phys.Rev. C 98, 054316 (2018)

G.Bonasera, M.R.Anders, S.Shlomo

Giant resonances in 40, 48Ca, 68Ni, 90Zr, 116Sn, 144Sm, and 208Pb

NUCLEAR STRUCTURE 40,48Ca, 68Ni, 90Zr, 116Sn, 144Sm, 208Pb; calculated centroid energies of isoscalar and isovector giant monopole (GMR), giant dipole (GDR), giant quadrupole (GQR), and giant octupole (GOR) resonances using Hartree-Fock based RPA with 33 Skyrme-type effective nucleon-nucleon interactions. Comparison with available experimental data.

doi: 10.1103/PhysRevC.98.054316
Citations: PlumX Metrics


2018GO03      Nucl.Phys. A970, 353 (2018)

M.L.Gorelik, S.Shlomo, B.A.Tulupov, M.H.Urin

On unitarity of the particle-hole dispersive optical model

NUCLEAR STRUCTURE 208Pb; calculated energy weighted relative isoscalar giant monopole resonance strength functions, energy-averaged radial component of ISM (IsoScalar Monopole) double transition density at different energies, partial and total branching ratios for direct neutron decay of ISGMR using initial and unitary versions of PHDOM (Particle-Hole Dispersive Optical Model). Branching ratios compared with data.

doi: 10.1016/j.nuclphysa.2017.12.006
Citations: PlumX Metrics


2018KO18      Phys.Rev. C 97, 064302 (2018)

V.M.Kolomietz, A.I.Sanzhur, S.Shlomo

Self-consistent mean-field approach to the statistical level density in spherical nuclei

NUCLEAR STRUCTURE 40,48Ca, 90Zr, 120Sn, 208Pb; calculated proton and neutron particle density parameters, statistical level density parameters. 208Pb; calculated neutron single-particle level density, number of neutron states, nuclear mean field and reduced nuclear mean field, neutron momentum-dependent and frequency-dependent effective mass, temperature dependence of S(n), and temperature dependence of neutron excitation energy. 160Gd; calculated temperature dependence of inverse statistical level density parameter. Self-consistent mean-field approach within the extended Thomas-Fermi approximation with Skryme forces SkM* and KDE0v1.

doi: 10.1103/PhysRevC.97.064302
Citations: PlumX Metrics


2017BU16      Phys.Rev. C 96, 054330 (2017)

J.Button, Y.-W.Lui, D.H.Youngblood, X.Chen, G.Bonasera, S.Shlomo

Isoscalar E0, E1, and E2 strength in 44Ca

NUCLEAR REACTIONS 44Ca(α, α'), E=240 MeV; measured Eα, Iα, angular distributions using multipole-dipole-multipole (MDM) spectrometer at Texas A and M K500 superconducting cyclotron. 40Ca; deduced isoscalar giant monopole and quadrupole resonances (ISGMR and ISGQR), widths, E0, E1 and E2 strengths, energy-weighted sum rule (EWSR). Strength distributions compared with the predictions of Hartree-Fock based random phase approximation calculations with the KDE0v1 Skyrme-type interaction.

doi: 10.1103/PhysRevC.96.054330
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2017KO19      Phys.Rev. C 95, 054305 (2017)

V.M.Kolomietz, S.V.Lukyanov, A.I.Sanzhur, S.Shlomo

Equation of state and radii of finite nuclei in the presence of a diffuse surface layer

NUCLEAR STRUCTURE 208Pb; calculated equation of state and partial pressure. A=10-220; calculated equimolar nuclear radius versus A. A=20-32, Z=11; calculated rms radius of the proton distribution versus A. A=20-32, Z=11; A=111-125, Z=50; A=204-210, Z=82; calculated isovector shift of nuclear rms radius versus A. Comparison with experimental data. Gibbs-Tolman-Rowlinson-Widom (GTW) approach for nuclear surfaces and nuclear radii.

doi: 10.1103/PhysRevC.95.054305
Citations: PlumX Metrics


2017KO21      Phys.Rev. C 95, 054613 (2017)

V.M.Kolomietz, S.Shlomo

Bulk and isospin instabilities in hot nuclear matter

NUCLEAR STRUCTURE 208Pb; calculated dependence of isoscalar instability growth rate on the multipolarity of the particle density fluctuations for temperatures of 0.5, 4, 6, and 8 MeV, instabilities in a hot asymmetric nuclear matter with bulk density distortions, using equation of state of the extended Thomas-Fermi approximation, and KDE0v1 interaction.

doi: 10.1103/PhysRevC.95.054613
Citations: PlumX Metrics


2017SH55      Bull.Rus.Acad.Sci.Phys. 81, 1230 (2017)

S.Shlomo, M.R.Anders

A novel method for determining the single particle potential directly from the measured single particle density: Application to the charge density difference between the isotones 206Pb-205Tl

doi: 10.3103/S1062873817100227
Citations: PlumX Metrics


2016BU19      Phys.Rev. C 94, 034315 (2016)

J.Button, Y.-W.Lui, D.H.Youngblood, X.Chen, G.Bonasera, S.Shlomo

Isoscalar E0, E1, E2, and E3 strength in 94Mo

NUCLEAR REACTIONS 94Mo(α, α'), E=240 MeV; measured Eα, Iα, σ(θ) at Texas A and M K500 cyclotron facility; deduced moments, widths, E0, E1, E2 and E3 strength distributions, EWSR for isoscalar giant resonances. Comparison with spherical Hartree-Fock RPA calculations using KDE0v1 Skyrme-type interaction.

doi: 10.1103/PhysRevC.94.034315
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2016GO19      Nucl.Phys. A955, 116 (2016)

M.L.Gorelik, S.Shlomo, B.A.Tulupov, M.H.Urin

Investigation of the energy-averaged double transition density of isoscalar monopole excitations in medium-heavy mass spherical nuclei

NUCLEAR STRUCTURE 208Pb; calculated energy-weighted γ isoscalar giant monopole resonance strength function, transition density, double transition density vs radius for E*=13.8, 23, 33, 38 MeV using CRPA (Continuum RPA) and particle-hole dispersive optical model.

doi: 10.1016/j.nuclphysa.2016.06.004
Citations: PlumX Metrics


2015AN12      Phys.Rev. C 92, 034318 (2015)

M.R.Anders, S.Shlomo, I.Talmi

Short-range correlations and the 3s1/2 wave function in 206Pb

NUCLEAR REACTIONS 205Tl, 206Pb(e, e), E not given; calculated charge distributions, potentials by fits to experimental data, charge densities of a proton, possible effects of short-range correlations on the shell-model wave function of a proton in the 3s1/2 orbit.

doi: 10.1103/PhysRevC.92.034318
Citations: PlumX Metrics


2015GO15      Phys.Atomic Nuclei 78, 551 (2015); Yad.Fiz. 78, 595 (2015)

M.L.Gorelik, Sh.Shlomo, B.A.Tulupov, M.H.Urin

Properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei

NUCLEAR STRUCTURE 208Pb; calculated isoscalar giant monopole resonance strength functions, particle-hole-type isoscalar monopole excitations using FM-DWBA using the Hartree-Fock ground state density and the transition densities obtained from the Hartree-Fock-based random-phase-approximation (RPA).

doi: 10.1134/S1063778815050075
Citations: PlumX Metrics


2015KR08      Phys.Rev. C 92, 044323 (2015)

Krishichayan, Y.-W.Lui, J.Button, D.H.Youngblood, G.Bonasera, S.Shlomo

Isoscalar giant resonances in 90, 92, 94Zr

NUCLEAR REACTIONS 90,92,94Zr(α, α'), E=240 MeV; measured inelastic α spectra, σ(θ) distributions using multipole-dipole-multipole (MDM) spectrometer at Texas A and M. 90,92,94Zr; deduced E0 (ISGMR), E1 (ISGDR), E2 (ISGQR) and E3 (ISGOR) isoscalar giant resonances, centroid energies, FWHM, widths, strengths EWSR. Comparison with previous experimental studies. DWBA calculations using density-dependent single-folding model. Systematics of centroid energies, widths and strengths for A=90-100, even-even Mo and Zr isotopes. Comparison of strength distributions with Hartree-Fock based RPA calculations using KDE0v1 Skyrme type interaction.

doi: 10.1103/PhysRevC.92.044323
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2194. Data from this article have been entered in the XUNDL database. For more information, click here.


2015YO04      Phys.Rev. C 92, 014318 (2015)

D.H.Youngblood, Y.-W.Lui, Krishichayan, J.Button, G.Bonasera, S.Shlomo

Isoscalar E0, E1, E2, and E3 strength in 92, 96, 98, 100Mo

NUCLEAR REACTIONS 92,96,98,100Mo(α, α'), E=240 MeV; measured Eα, Iα, angular distributions using multipole-dipole-multipole (MDM) spectrometer and a focal plane detector at Texas A and M K500 superconducting cyclotron facility. DWBA analysis of σ(θ) data. 92,96,98,100Mo; deduced isoscalar giant resonances and E0, E1, E2, and E3 transition strengths and EWSR. Comparison with spherical Hartree-Fock-RPA calculations using KDE0v1 Skyrme-type interaction.

doi: 10.1103/PhysRevC.92.014318
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2014AU01      Phys.Rev. C 89, 014335 (2014)

N.Auerbach, Ch.Stoyanov, M.R.Anders, S.Shlomo

Isoscalar and isovector dipole strength distributions in nuclei and the Schiff moment

NUCLEAR STRUCTURE 40,48Ca, 56,78Ni, 90,104Zr, 144Sm, 208Pb; calculated strength distribution S(E), S(E)/E, centroid energies, inverse energy moments of isoscalar and isovector dipole resonances (ISD and IVD). Influence dipole strength distribution on nuclear Schiff moment. Self-consistent HF-based RPA calculations using 18 different Skyrme-type effective interactions.

doi: 10.1103/PhysRevC.89.014335
Citations: PlumX Metrics


2013AN05      Phys.Rev. C 87, 024303 (2013)

M.R.Anders, S.Shlomo, T.Sil, D.H.Youngblood, Y.-W.Lui, Krishichayan

Giant resonances in 40Ca and 48Ca

NUCLEAR STRUCTURE 40,48Ca; calculated strength functions S(E), centroid energies of isoscalar and isovector (monopole, dipole, quadrupole, and octupole) giant resonances. Self-consistent Hartree-Fock-based random phase approximation calculations with 18 Skyrme-type nucleon-nucleon effective interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.024303
Citations: PlumX Metrics


2013RO21      Phys.Rev. C 88, 024609 (2013)

G.Ropke, S.Shlomo, A.Bonasera, J.B.Natowitz, S.J.Yennello, A.B.McIntosh, J.Mabiala, L.Qin, S.Kowalski, K.Hagel, M.Barbui, K.Schmidt, G.Giuliani, H.Zheng, S.Wuenschel

Density determinations in heavy ion collisions

doi: 10.1103/PhysRevC.88.024609
Citations: PlumX Metrics


2013YO07      Phys.Rev. C 88, 021301 (2013)

D.H.Youngblood, Y.-W.Lui, Krishichayan, J.Button, M.R.Anders, M.L.Gorelik, M.H.Urin, S.Shlomo

Unexpected characteristics of the isoscalar monopole resonance in the A ≈ 90 region: Implications for nuclear incompressibility

NUCLEAR REACTIONS 90,92,94Zr, 92,96,98,100Mo(α, α'), E=240 MeV; measured α spectra, σ at low angles using Texas A-M cyclotron facility; deduced energies, centroids, widths, E0-EWSR for isoscalar giant monopole resonances (ISGMR), nuclear incompressibility. Comparison with HF-RPA calculations.

doi: 10.1103/PhysRevC.88.021301
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2093.


2012HA04      Phys.Rev.Lett. 108, 062702 (2012)

K.Hagel, R.Wada, L.Qin, J.B.Natowitz, S.Shlomo, A.Bonasera, G.Ropke, S.Typel, Z.Chen, M.Huang, J.Wang, H.Zheng, S.Kowalski, C.Bottosso, M.Barbui, M.R.D.Rodrigues, K.Schmidt, D.Fabris, M.Lunardon, S.Moretto, G.Nebbia, S.Pesente, V.Rizzi, G.Viesti, M.Cinausero, G.Prete, T.Keutgen, Y.El Masri, Z.Majka

Experimental Determination of In-Medium Cluster Binding Energies and Mott Points in Nuclear Matter

NUCLEAR REACTIONS 112,124Sn(40Ar, X), (64Zn, X), E=47 MeV/nucleon; measured reaction products, Eα, Iα. 2,3H, 3,4He; deduced temperature and density dependence, binding energies, Pauli blocking effects in a quantum statistical approach.

doi: 10.1103/PhysRevLett.108.062702
Citations: PlumX Metrics


2012QI06      Phys.Rev.Lett. 108, 172701 (2012)

L.Qin, K.Hagel, R.Wada, J.B.Natowitz, S.Shlomo, A.Bonasera, G.Ropke, S.Typel, Z.Chen, M.Huang, J.Wang, H.Zheng, S.Kowalski, M.Barbui, M.R.D.Rodrigues, K.Schmidt, D.Fabris, M.Lunardon, S.Moretto, G.Nebbia, S.Pesente, V.Rizzi, G.Viesti, M.Cinausero, G.Prete, T.Keutgen, Y.El Masri, Z.Majka, Y.G.Ma

Laboratory Tests of Low Density Astrophysical Nuclear Equations of State

NUCLEAR REACTIONS 112,124Sn(40Ar, X), (64Zn, X)2H/3H/3He/4He, E=47 MeV/nucleon; measured reaction products, Eα, Iα; deduced yields, equilibrium constants for α particle production. Astrophysical equation of state calculations.

doi: 10.1103/PhysRevLett.108.172701
Citations: PlumX Metrics


2012SH27      J.Phys.:Conf.Ser. 337, 012014 (2012)

S.Shlomo

Equation of State of Symmetric And Asymmetric Nuclear Matter At Various Densities And Temperatures

NUCLEAR STRUCTURE 90Zr, 116Sn, 144Sm, 208Pb; calculated isoscalar giant magnetic resonance centroid energy using self-consistent RPA with different interactions. Compared to data.

doi: 10.1088/1742-6596/337/1/012014
Citations: PlumX Metrics


2012WA20      Phys.Rev. C 85, 064618 (2012)

R.Wada, K.Hagel, L.Qin, J.B.Natowitz, Y.G.Ma, G.Ropke, S.Shlomo, A.Bonasera, S.Typel, Z.Chen, M.Huang, J.Wang, H.Zheng, S.Kowalski, C.Bottosso, M.Barbui, M.R.D.Rodrigues, K.Schmidt, D.Fabris, M.Lunardon, S.Moretto, G.Nebbia, S.Pesente, V.Rizzi, G.Viesti, M.Cinausero, G.Prete, T.Keutgen, Y.El Masri, Z.Majka

Nuclear matter symmetry energy at 0.03 ≤ ρ/ρ0

NUCLEAR REACTIONS 112,124Sn(40Ar, X), (64Zn, X), E=47 MeV/nucleon; measured charged particle and neutron spectra and multiplicity; deduced coalescence parameters and model volumes as a function of surface velocity, nuclear temperature, density, isoscaling parameter, symmetry free energy and symmetry entropy versus density. NIMROD multidetector at Texas A

doi: 10.1103/PhysRevC.85.064618
Citations: PlumX Metrics


2011LU07      Phys.Rev. C 83, 044327 (2011)

Y.-W.Lui, D.H.Youngblood, S.Shlomo, X.Chen, Y.Tokimoto, Krishichayan, M.Anders, J.Button

Isoscalar giant resonances in 48Ca

NUCLEAR REACTIONS 48Ca(α, α'), E=240 MeV; measured Eα, Iα, cross sections, σ(θ) for isoscalar giant resonances. 48Ca; deduced B(E2), B(E3), E0, E1, E2 E3+E4 energy-weighted sum rules (EWSR), isoscalar strength distributions, giant resonances, centroid energies. Comparison with mean-field-based random-phase approximation.

doi: 10.1103/PhysRevC.83.044327
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC1845. Data from this article have been entered in the XUNDL database. For more information, click here.


2011NA20      Int.J.Mod.Phys. E20, 987 (2011)

J.B.Natowitz, K.Hagel, R.Wada, L.Qin, Z.Chen, P.Sahu, G.Ropke, S.Kowalski, C.Bottosso, S.Shlomo, M.Barbui, D.Fabris, M.Lunardon, S.Moretto, G.Nebbia, S.Pesente, V.Rizzi, G.Viesti, M.Cinausero, G.Prete, T.Keutgen, Y.El Masri, Z.Majka

Clustered low density nuclear matter in near Fermi energy collisions

doi: 10.1142/S0218301311019118
Citations: PlumX Metrics


2010NA07      Phys.Rev.Lett. 104, 202501 (2010)

J.B.Natowitz, G.Ropke, S.Typel, D.Blaschke, A.Bonasera, K.Hagel, T.Klahn, S.Kowalski, L.Qin, S.Shlomo, R.Wada, H.H.Wolter

Symmetry Energy of Dilute Warm Nuclear Matter

NUCLEAR REACTIONS 92Mo, 197Au(64Zn, X), E=35 MeV/nucleon; analyzed heavy-ion collision data; deduced free neutron and proton yields, temperatures, densities, symmetry energy. Quantum-statistical model of nuclear matter.

doi: 10.1103/PhysRevLett.104.202501
Citations: PlumX Metrics


2010QI06      Nucl.Phys. A834, 521c (2010)

L.Qin, J.B.Natowitz, G.Roepke, K.Hagel, R.Wada, Z.Chen, M.Huang, S.Kowalski, C.Bottosso, S.Shlomo, M.Barbui, A.Bonasera, M.Rodrigues, D.Fabris, M.Lunardon, S.Moretto, G.Nebbia, S.Pesente, V.Rizzi, G.Viesti, M.Cinausero, G.Prete, T.Keutgen, Y.El Masri, Z.Majka

Laboratory Studies of low density matter

doi: 10.1016/j.nuclphysa.2010.01.081
Citations: PlumX Metrics


2010SH18      Phys.Atomic Nuclei 73, 1390 (2010)

S.Shlomo

Modern energy density functional for nuclei and the nuclear matter equation of state

doi: 10.1134/S1063778810080120
Citations: PlumX Metrics


2010SH33      Iader.Fiz.Enerh. 11, 347 (2010); Nuc.phys.atom.energ. 11, 347 (2010)

S.Shlomo

Freeze-out properties of hot nuclear matter created in heavy ion collisions

NUCLEAR REACTIONS 58Ni(40Ca, X), (40Ar, X), 58Fe(40Ca, X), (40Ar, X), E=33 MeV/nucleon; analyzed data; deduced temperature, baryon density.


2009AU02      Phys.Rev.Lett. 103, 172501 (2009)

N.Auerbach, S.Shlomo

η/s Ratio in Finite Nuclei

doi: 10.1103/PhysRevLett.103.172501
Citations: PlumX Metrics


2009SH12      Phys.Rev. C 79, 034604 (2009)

S.Shlomo, G.Ropke, J.B.Natowitz, L.Qin, K.Hagel, R.Wada, A.Bonasera

Effect of medium dependent binding energies on inferring the temperatures and freeze-out density of disassembling hot nuclear matter from cluster yields

doi: 10.1103/PhysRevC.79.034604
Citations: PlumX Metrics


2008SH27      Iader.Fiz.Enerh. 9 no.3, 7 (2008); Nuc.phys.atom.energ. 9, no.3, 7 (2008)

S.Shlomo

Mean-field approximation for finite nuclei and nuclear matter

NUCLEAR STRUCTURE 90Zr, 116Sn, 144Sm, 208Pb; calculated isoscalar monopole resonance. 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,132Sn, 208Pb;calculated binding energies, charge rms radii. Self-consistent Hartree-Fock based random phase approximation. Comparison with experimental data.

doi: 10.15407/jnpae
Citations: PlumX Metrics


2007KO04      Phys.Rev. C 75, 014601 (2007)

S.Kowalski, J.B.Natowitz, S.Shlomo, R.Wada, K.Hagel, J.Wang, T.Materna, Z.Chen, Y.G.Ma, L.Qin, A.S.Botvina, D.Fabris, M.Lunardon, S.Moretto, G.Nebbia, S.Pesente, V.Rizzi, G.Viesti, M.Cinausero, G.Prete, T.Keutgen, Y.El Masri, Z.Majka, A.Ono

Experimental determination of the symmetry energy of a low density nuclear gas

NUCLEAR REACTIONS 92Mo, 197Au(64Zn, X), E=35 MeV/nucleon; measured light charged particle spectra, multiplicities, yield ratios; deduced temperature- and density-dependent symmetry energy coefficients.

doi: 10.1103/PhysRevC.75.014601
Citations: PlumX Metrics


2007KO51      Nucl.Phys. A787, 619c (2007)

S.Kowalski, J.B.Natowitz, S.Shlomo, R.Wada, K.Hagel, J.Wang, T.Materna, Z.Chen, Y.G.Ma, L.Qin, A.S.Botvina, D.Fabris, M.Lunardon, S.Moretto, G.Nebbia, S.Pesente, V.Rizzi, G.Viesti, M.Cinausero, G.Prete, T.Keutgen, Y.El Masri, Z.Majka, A.Ono

Clustering and Symmetry Energy in a Low Density Nuclear Gas

NUCLEAR REACTIONS 92Mo, 197Au(64Zn, X), E=35 MeV/nucleon; analyzed charged-particle and neutron mutliplicities; deduced cluster formation, reaction mechanism features and isoscaling parameters.

doi: 10.1016/j.nuclphysa.2006.12.092
Citations: PlumX Metrics


2007SH51      Iader.Fiz.Enerh. 8 no.3, 7 (2007); Nuc.phys.atom.energ. 8, no.3, 7 (2007)

S.Shlomo

The equation of state of symmetric and asymmetric nuclear matter

NUCLEAR STRUCTURE 80Zr; calculated isoscalar multipole giant resonances centroid positions. 208Pb; calculated isoscalar multipole strength functions. 90Zr, 116Sn, 144Sm, 208Pb; calculated isoscalar giant monopole and isoscalar giant dipole resonance energies.Self-consistent HF-RPA calculations.

doi: 10.15407/jnpae
Citations: PlumX Metrics


2006DE16      Phys.Rev. C 73, 034602 (2006)

J.N.De, S.K.Samaddar, S.Shlomo, J.B.Natowitz

Continuous phase transition and negative specific heat in finite nuclei

NUCLEAR STRUCTURE 40,50Ca, 150Re, 150Nd; calculated thermodynamic quantities, phase transition features. Heated liquid-drop model.

doi: 10.1103/PhysRevC.73.034602
Citations: PlumX Metrics


2006KO08      Phys.Rev. C 73, 024312 (2006)

V.M.Kolomietz, A.G.Magner, S.Shlomo

Splitting of the isovector giant dipole resonance in neutron-rich spherical nuclei

NUCLEAR STRUCTURE A=40-240; analyzed GDR energies, splitting mechanisms. Fermi-liquid-drop model.

doi: 10.1103/PhysRevC.73.024312
Citations: PlumX Metrics


2006KO48      Phys.Scr. 73, 458 (2006)

V.M.Kolomietz, S.V.Radionov, S.Shlomo

The influence of memory effects on dispersions of kinetic energy at nuclear fission

doi: 10.1088/0031-8949/73/5/008
Citations: PlumX Metrics


2006SH17      Phys.Atomic Nuclei 69, 1132 (2006)

S.Shlomo, T.Sil, V.K.Au, O.G.Pochivalov

Current Status of Equation of State of Nuclear Matter

NUCLEAR STRUCTURE 80Zr, 100,116Sn; calculated isoscalar strength distributions. 90Zr, 116Sn, 144Sm, 208Pb; calculated isoscalar giant monopole resonance energies. Fully self-consistent approach.

doi: 10.1134/S1063778806070064
Citations: PlumX Metrics


2006SH21      Eur.Phys.J. A 30, 23 (2006)

S.Shlomo, V.M.Kolomietz, G.Colo

Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes

NUCLEAR STRUCTURE 90Zr, 116Sn, 208Pb; analyzed GMR and GDR features; deduced incompressibility coefficient.

doi: 10.1140/epja/i2006-10100-3
Citations: PlumX Metrics


2006SH30      Int.J.Mod.Phys. E15, 1909 (2006)

S.Shlomo, V.K.Au

Nuclear matter properties from collective modes in nuclei

doi: 10.1142/S0218301306005423
Citations: PlumX Metrics


2006SI10      Phys.Rev. C 73, 034316 (2006)

T.Sil, S.Shlomo, B.K.Agrawal, P.-G.Reinhard

Effects of self-consistency violation in Hartree-Fock RPA calculations for nuclear giant resonances revisited

NUCLEAR STRUCTURE 16O, 40,60Ca, 56Ni, 80,90,110Zr, 100,116Sn, 144Sm, 208Pb; calculated isoscalar and isovector giant resonance energies, consequences of self-consistency violation. 208Pb; calculated giant resonance strength functions.

doi: 10.1103/PhysRevC.73.034316
Citations: PlumX Metrics


2005AG10      Phys.Rev. C 72, 014310 (2005)

B.K.Agrawal, S.Shlomo, V.K.Au

Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach

NUCLEAR STRUCTURE 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,132Sn, 208Pb; analyzed binding energies, radii, breathing-mode energies, related data; deduced Skyrme parameters. 40Ca, 208Pb; calculated single-particle energies. Simulated annealing approach.

doi: 10.1103/PhysRevC.72.014310
Citations: PlumX Metrics


2005AG16      Eur.Phys.J. A 25, Supplement 1, 525 (2005)

B.K.Agrawal, S.Shlomo, V.K.Au

Breathing mode energy and nuclear matter incompressibility coefficient within relativistic and non-relativistic models

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 116,132Sn, 208Pb; calculated binding energies, radii. 90Zr, 116Sn, 144Sm, 208Pb; calculated breathing mode energies.

doi: 10.1140/epjad/i2005-06-003-7
Citations: PlumX Metrics


2005SH01      Rep.Prog.Phys. 68, 1 (2005)

S.Shlomo, V.M.Kolomietz

Hot nuclei

doi: 10.1088/0034-4885/68/1/R01
Citations: PlumX Metrics


2004AG04      Phys.Rev. C 70, 014308 (2004)

B.K.Agrawal, S.Shlomo

Consequences of self-consistency violations in Hartree-Fock random-phase approximation calculations of the nuclear breathing mode energy

NUCLEAR STRUCTURE 40,60Ca, 56Ni, 80,90,110Zr, 100Sn, 208Pb; calculated giant monopole resonance energies, effect of self-consistency violations. Hartree-Fock RPA.

doi: 10.1103/PhysRevC.70.014308
Citations: PlumX Metrics


2004AG06      Phys.Rev. C 70, 057302 (2004)

B.K.Agrawal, S.Shlomo, V.K.Au

Critical densities for the Skyrme type effective interactions

doi: 10.1103/PhysRevC.70.057302
Citations: PlumX Metrics


2004KO04      Phys.Rep. 390, 133 (2004)

V.M.Kolomietz, S.Shlomo

Nuclear Fermi-liquid drop model

doi: 10.1016/j.physrep.2003.10.013
Citations: PlumX Metrics


2004KO10      Phys.Rev. C 69, 024314 (2004)

V.M.Kolomietz, S.V.Lukyanov, S.Shlomo

Shape fluctuations in a Fermi system with nonlinear dissipativity

doi: 10.1103/PhysRevC.69.024314
Citations: PlumX Metrics


2004NA05      Int.J.Mod.Phys. E13, 269 (2004)

J.B.Natowitz, K.Hagel, Y.Ma, M.Murray, L.Qin, S.Shlomo, R.Wada, J.Wang

Relationships between caloric curves and the critical point of nucleonic matter

doi: 10.1142/S0218301304002041
Citations: PlumX Metrics


2004SA29      Phys.Rev. C 69, 064615 (2004)

S.K.Samaddar, J.N.De, S.Shlomo

Flow effects on multifragmentation in the canonical model

NUCLEAR STRUCTURE 109Ag, 197Au; calculated fragment multiplicities, flow effects in multifragmentation of hot nuclei. Analytically solvable canonical model.

doi: 10.1103/PhysRevC.69.064615
Citations: PlumX Metrics


2004SH13      Nucl.Phys. A734, 589 (2004)

S.Shlomo, B.K.Agrawal, V.K.Au

Status of the nuclear matter equation of state as determined from compression modes

NUCLEAR STRUCTURE 90Zr, 116Sn, 144Sm, 208Pb; calculated giant monopole resonance energies, incompressibility coefficient. 208Pb; calculated GDR strength distribution. Several models compared with data.

doi: 10.1016/j.nuclphysa.2004.01.108
Citations: PlumX Metrics


2004SI01      Phys.Rev. C 69, 014602 (2004)

T.Sil, S.K.Samaddar, J.N.De, S.Shlomo

Liquid-gas phase transition in infinite and finite nuclear systems

NUCLEAR STRUCTURE 50Ca, 150,186Re; calculated thermodynamic quantities, phase transition features. Heated liquid drop model.

doi: 10.1103/PhysRevC.69.014602
Citations: PlumX Metrics


2003AG04      Phys.Rev. C 67, 034314 (2003)

B.K.Agrawal, S.Shlomo, A.I.Sanzhur

Self-consistent Hartree-Fock based random phase approximation and the spurious state mixing

NUCLEAR STRUCTURE 80Zr; calculated isoscalar giant resonance strength functions, transition densities, spurious state mixing effects. Self-consistent Hartree-Fock, continuum RPA.

doi: 10.1103/PhysRevC.67.034314
Citations: PlumX Metrics


2003AG10      Phys.Rev. C 68, 031304 (2003)

B.K.Agrawal, S.Shlomo, V.K.Au

Nuclear matter incompressibility coefficient in relativistic and nonrelativistic microscopic models

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 116,132Sn, 208Pb; analyzed binding energies, radii; deduced parameters. 90Zr, 116Sn, 144Sm, 208Pb; analyzed giant monopole resonance parameters; deduced nuclear matter incompressibility coefficient. Comparison of relativistic and nonrelativistic approaches.

doi: 10.1103/PhysRevC.68.031304
Citations: PlumX Metrics


2003KO37      Phys.Rev. C 68, 014614 (2003)

V.M.Kolomietz, A.I.Sanzhur, S.Shlomo

Non-Markovian effects on the dynamics of bubble growth in hot asymmetric nuclear matter

doi: 10.1103/PhysRevC.68.014614
Citations: PlumX Metrics


2003SH30      Nucl.Phys. A719, 225c (2003)

S.Shlomo, A.I.Sanzhur, B.K.Agrawal

Isoscalar giant monopole and dipole resonances and the nuclear matter incompressibility coefficient

NUCLEAR REACTIONS 116Sn(α, α'), E=240 MeV; calculated isoscalar GDR strength distribution, excitation σ(E). RPA approach, comparison with data.

doi: 10.1016/S0375-9474(03)00923-0
Citations: PlumX Metrics


2003SH34      Nucl.Phys. A722, 98c (2003)

S.Shlomo, B.K.Agrawal

Current status of the nuclear matter incompressibility coefficient as deduced from data on compression modes

NUCLEAR REACTIONS 116Sn(α, α'), E=240 MeV; analyzed giant resonance excitation σ, energy weighted sum rule, nuclear matter incompressibility coefficient.

doi: 10.1016/S0375-9474(03)01343-5
Citations: PlumX Metrics


2003SH39      Phys.Rev. C 68, 064301 (2003)

S.Shlomo, V.M.Kolomietz, B.K.Agrawal

Isoscalar giant monopole resonance and its overtone in microscopic and macroscopic models

NUCLEAR STRUCTURE 90Zr, 116Sn, 144Sm, 208Pb; calculated isoscalar giant monopole resonance centroid energies. 208Pb; calculated giant resonance transition densities.

doi: 10.1103/PhysRevC.68.064301
Citations: PlumX Metrics


2002KO08      Yad.Fiz. 65, 68 (2002); Phys.Atomic Nuclei 65, 65 (2002)

V.M.Kolomietz, S.Shlomo

Surface Instability of a Nuclear Fermi Liquid Drop

NUCLEAR STRUCTURE 40,48Ca, 208Pb; calculated stiffness coefficient vs temperature, limiting temperature vs deformation. Liquid drop model.

doi: 10.1134/1.1446555
Citations: PlumX Metrics


2002NA22      Phys.Rev. C66, 031601 (2002)

J.B.Natowitz, K.Hagel, Y.Ma, M.Murray, L.Qin, S.Shlomo, R.Wada, J.Wang

Caloric Curves and Nuclear Expansion

NUCLEAR STRUCTURE A=30-240; 90Zr; calculated, analyzed density vs excitation energy. Expanding Fermi gas hypothesis.

doi: 10.1103/PhysRevC.66.031601
Citations: PlumX Metrics


2002SH12      Phys.Rev. C65, 044310 (2002)

S.Shlomo, A.I.Sanzhur

Isoscalar Giant Dipole Resonance and Nuclear Matter Incompressibility Coefficient

NUCLEAR STRUCTURE 116Sn, 208Pb; calculated isoscalar GDR strength functions. Removal of contributions from spurious state mixing discussed. Hartree-Fock RPA approach.

doi: 10.1103/PhysRevC.65.044310
Citations: PlumX Metrics


2002SH45      Acta Phys.Hung.N.S. 16, 303 (2002)

S.Shlomo, A.I.Sanzhur

Nuclear Equation of State and Compression Modes

NUCLEAR STRUCTURE 116Sn, 208Pb; calculated GDR strength functions, equation of state. Self-consistent RPA.

doi: 10.1556/APH.16.2002.1-4.33
Citations: PlumX Metrics


2001AG09      Phys.Rev. C64, 024305 (2001)

B.K.Agrawal, T.Sil, S.K.Samaddar, J.N.De, S.Shlomo

Coulomb Energy Differences in Mirror Nuclei Revisited

NUCLEAR STRUCTURE 15,16,17O, 32S, 39,40,41,48Ca, 56Ni, 90Zr, 208Pb; calculated radii. 15,17O, 15N, 17F, 39,41Ca, 39K, 41Sc, 55,57Ni, 55Co, 57Cu; calculated Coulomb displacement energies. Relativistic mean-field model, comparison with other models and data.

doi: 10.1103/PhysRevC.64.024305
Citations: PlumX Metrics


2001KO47      Phys.Rev. C64, 024315 (2001)

V.M.Kolomietz, A.I.Sanzhur, S.Shlomo, S.A.Firin

Equation of State and Phase Transitions in Asymmetric Nuclear Matter

doi: 10.1103/PhysRevC.64.024315
Citations: PlumX Metrics


2001KO60      Phys.Rev. C64, 044304 (2001)

V.M.Kolomietz, S.Shlomo

Sound Modes in Hot Nuclear Matter

doi: 10.1103/PhysRevC.64.044304
Citations: PlumX Metrics


2001KO70      Phys.Rev. C64, 054302 (2001)

V.M.Kolomietz, S.V.Radionov, S.Shlomo

Memory Effects on Descent from the Nuclear Fission Barrier

NUCLEAR STRUCTURE 236U; calculated collective variables time evolution for fissioning system, fragment kinetic energies vs relaxation time, role of memory effect in saddle-to-scission time.

doi: 10.1103/PhysRevC.64.054302
Citations: PlumX Metrics


2001SH45      Pramana 57, 557 (2001)

S.Shlomo

Compression Modes and the Nuclear Matter Incompressibility Coefficient

NUCLEAR STRUCTURE 28Si, 40Ca, 58Ni, 116Sn, 208Pb; calculated monopole strength distributions, resonance and incompressibility features. Hartree-Fock-RPA approach.

doi: 10.1007/s12043-001-0062-4
Citations: PlumX Metrics


2000GO38      Phys.Rev. C62, 044301 (2000)

M.L.Gorelik, S.Shlomo, M.H.Urin

Structure and Direct Nucleon Decay Properties of Isoscalar Giant Monopole and Dipole Resonances

NUCLEAR STRUCTURE 90Zr, 116,124Sn, 144Sm, 208Pb; calculated isoscaler giant monopole resonance energies, widths, nucleon escape widths. Continuum RPA, comparisons with data.

doi: 10.1103/PhysRevC.62.044301
Citations: PlumX Metrics


2000KO12      Phys.Rev. C61, 034312 (2000)

A.Kolomiets, O.Pochivalov, S.Shlomo

Microscopic Description of Excitation of Nuclear Isoscalar Giant Resonances by Inelastic Scattering of 240 MeV α Particles

NUCLEAR REACTIONS 28Si, 40Ca, 58Ni, 116Sn(α, α), (α, α'), E=240 MeV; analyzed σ(θ). 28Si, 40Ca, 58Ni, 116Sn deduced isoscalar giant monopole, quadrupole resonance features. Folding model DWBA, microscopic RPA.

doi: 10.1103/PhysRevC.61.034312
Citations: PlumX Metrics


2000KO29      Phys.Rev. C61, 064302 (2000)

V.M.Kolomietz, S.Shlomo

Isoscalar Compression Modes within Fluid Dynamic Approach

NUCLEAR STRUCTURE A=90-210; calculated isoscalar giant monopole, dipole resonance energies. 208Pb; calculated resnonance energies, widths vs incompressibility, damping parameter. Fluid dynamic approach.

doi: 10.1103/PhysRevC.61.064302
Citations: PlumX Metrics


1999KO07      Yad.Fiz. 62, No 1, 91 (1999); Phys.Atomic Nuclei 62, 86 (1999)

V.M.Kolomietz, S.V.Lukyanov, V.A.Plujko, S.Shlomo

Two-Body Contribution to the Relaxation of Collective Excitations in Cold Finite Fermi Systems


1999KO22      Phys.Rev. C59, 3139 (1999)

A.Kolomiets, V.M.Kolomietz, S.Shlomo

Giant Monopole Resonance and Nuclear Incompressibility within the Fermi-Liquid Drop Model

doi: 10.1103/PhysRevC.59.3139
Citations: PlumX Metrics


1999KO40      Phys.Rev. C60, 044612 (1999)

V.M.Kolomietz, S.Shlomo

Low Density Instability in a Nuclear Fermi-Liquid Drop

NUCLEAR STRUCTURE 40Ca, 208Pb; calculated liquid-drop instability features, dependence on multipolarity of particle density fluctuations.

doi: 10.1103/PhysRevC.60.044612
Citations: PlumX Metrics


1999MU06      Phys.Rev. C59, 2040 (1999)

S.E.Muraviev, I.Rotter, S.Shlomo, M.H.Urin

4(h-bar)ω Isoscalar Monopole Giant Resonance in 208Pb and Resonance Trapping

NUCLEAR STRUCTURE 208Pb; calculated 4(h-bar)ω isoscalar giant monopole resonance strength function; deduced continuum coupling role, resonance trapping effect. Continuum-RPA approach.

doi: 10.1103/PhysRevC.59.2040
Citations: PlumX Metrics


1998AB16      Phys.Rev. C57, 2342 (1998)

V.I.Abrosimov, O.I.Davidovskaja, V.M.Kolomietz, S.Shlomo

Free Surface Response in a Finite Fermi System

doi: 10.1103/PhysRevC.57.2342
Citations: PlumX Metrics


1998AG13      Phys.Rev. C58, 3004 (1998)

B.K.Agrawal, S.K.Samaddar, J.N.De, S.Shlomo

Large-Model-Space Calculation of the Nuclear Level Density Parameter at Finite Temperature

NUCLEAR STRUCTURE 40Ca, 56Fe; calculated level density parameter vs temperature; deduced shell effects, continuum corrections, other contributions. Microscopic model.

doi: 10.1103/PhysRevC.58.3004
Citations: PlumX Metrics


1998DE07      Phys.Rev. C57, 1398 (1998)

J.N.De, S.Shlomo, S.K.Samaddar

Level Density Parameter in a Refined Thomas-Fermi Theory

NUCLEAR STRUCTURE 150Sm; calculated level density parameter vs temperature. Thomas-Fermi theory, second-order corrections.

doi: 10.1103/PhysRevC.57.1398
Citations: PlumX Metrics


1998DE12      Nucl.Phys. A630, 192c (1998)

J.N.De, S.K.Samaddar S.Shlomo

Liquid-Gas Phase Transition in Finite Nuclei

NUCLEAR STRUCTURE 150Sm; calculated caloric curve, specific heat; deduced phase transition. Thomas-Fermi theory.

doi: 10.1016/S0375-9474(97)00756-2
Citations: PlumX Metrics


1998KO19      Phys.Rev. C57, R2808 (1998)

A.Kolomiets, V.M.Kolomietz, S.Shlomo

Shell Effects on Nuclear Incompressibility

doi: 10.1103/PhysRevC.57.R2808
Citations: PlumX Metrics


1998KO26      Phys.Rev. C58, 198 (1998)

V.M.Kolomietz, S.V.Lukyanov, V.A.Plujko, S.Shlomo

Collisional Relaxation of Collective Motion in a Finite Fermi Liquid

doi: 10.1103/PhysRevC.58.198
Citations: PlumX Metrics


1998RO21      Phys.Rev. C58, 884 (1998)

Y.Ronen, S.Shlomo

Magnetic Dipole Moments of Odd-Odd N = Z Nuclei

NUCLEAR STRUCTURE 2H, 6Li, 10B, 14N, 18F, 22Na, 26Al, 38K, 46V; calculated ground, low-lying states μ. Core-deuteron cluster model. Comparison with data.

doi: 10.1103/PhysRevC.58.884
Citations: PlumX Metrics


1997DE09      Phys.Rev. C55, R1641 (1997)

J.N.De, S.Das Gupta, S.Shlomo, S.K.Samaddar

Caloric Curve for Finite Nuclei in Thomas-Fermi Theory

NUCLEAR STRUCTURE 150Sm; calculated proton density profile vs temperature, volume, temperature vs excitation energy per particle, specific heat per particle vs temperature. 85Kr; calculated temperature vs excitation energy per particle, specific heat per particle vs temperature. Finite temperature Thomas-Fermi theory.

doi: 10.1103/PhysRevC.55.R1641
Citations: PlumX Metrics


1997KO03      Phys.Rev. C55, 1376 (1997)

A.Kolomiets, V.M.Kolomietz, S.Shlomo

Determination of the Temperature of a Disassembling Nucleus from Fragment Yields

doi: 10.1103/PhysRevC.55.1376
Citations: PlumX Metrics


1997SA62      Phys.Rev.Lett. 79, 4962 (1997)

S.K.Samaddar, J.N.De, S.Shlomo

Effect of Flow on the Caloric Curve for Finite Nuclei

NUCLEAR STRUCTURE 150Sm; calculated energy, specific heat per nucleon vs temperature, proton rms radius, density; deduced liquid-gas phase transition. Finite temperature Thomas-Fermi theory.

doi: 10.1103/PhysRevLett.79.4962
Citations: PlumX Metrics


1997SH15      Phys.Rev. C55, 1972 (1997)

S.Shlomo, V.M.Kolomietz, H.Dejbakhsh

Single Particle Level Density in a Finite Depth Potential Well

doi: 10.1103/PhysRevC.55.1972
Citations: PlumX Metrics


1997SH17      Phys.Rev. C55, R2155 (1997)

S.Shlomo, J.N.De, A.Kolomiets

Effect of Flow on the Freeze-Out Density and Temperature of Disassembling Hot Nuclei

doi: 10.1103/PhysRevC.55.R2155
Citations: PlumX Metrics


1997WA01      Phys.Rev. C55, 227 (1997)

R.Wada, R.Tezkratt, K.Hagel, F.Haddad, A.Kolomiets, Y.Lou, J.Li, M.Shimooka, S.Shlomo, D.Utley, B.Xiao, N.Mdeiwayeh, J.B.Natowitz, Z.Majka, J.Cibor, T.Kozik, Z.Sosin

Excitation Energies and Temperatures of Hot Nuclei Produced in the Reactions of 63Cu + 197Au at 35A MeV

NUCLEAR REACTIONS 197Au(63Cu, X), E=35 MeV/nucleon; measured energy, multiplicity of n, p, d, t, 3He, α, intermediate mass fragment (Z ≤ 10) heavy fragments (60 ≤ A ≤ 170)-coin, mass and velocity of heavy fragments; deduced temperatures, excitation energies of primary heavy fragments. Dynamical plus statistical model, QMD model simulations.

doi: 10.1103/PhysRevC.55.227
Citations: PlumX Metrics


1996BO05      Phys.Rev. C53, 855 (1996)

Ye.A.Bogila, V.M.Kolomietz, A.I.Sanzhur, S.Shlomo

Preequilibrium Decay in the Exciton Model for Nuclear Potential with a Finite Depth

NUCLEAR STRUCTURE 40Ca; calculated transition, total decay rates for given exciton state, preequilibrium nucleon emission particle spectra. Exciton model, particle-hole level density.

doi: 10.1103/PhysRevC.53.855
Citations: PlumX Metrics


1996KI16      Nucl.Phys. A608, 32 (1996)

D.Kiderlen, V.M.Kolomietz, S.Shlomo

Nuclear Shape Fluctuations in Fermi-Liquid Drop Model

doi: 10.1016/S0375-9474(96)00274-6
Citations: PlumX Metrics


1996KO14      Phys.Rev. C54, R472 (1996)

A.Kolomiets, E.Ramakrishnan, H.Johnston, F.Gimeno-Nogues, B.Hurst, D.O'Kelly, D.J.Rowland, S.Shlomo, T.White, J.Winger, S.J.Yennello

Nuclear Temperature of the Disassembling Source in Central Heavy-Ion Collisions from Isotope Yields

NUCLEAR REACTIONS 58Ni, 58Fe(40Ca, X), (40Ar, X), E=33 MeV/nucleon; analyzed isotopic yields for Z=2-6 isotopes; deduced nuclear temperature. Statistical model approach.

doi: 10.1103/PhysRevC.54.R472
Citations: PlumX Metrics


Back to query form    [Next]


Note: The following list of authors and aliases matches the search parameter S.Shlomo: , S.K.SHLOMO