NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = G.A.Lalazissis

Found 94 matches.

Back to query form



2020KA49      Phys.Rev. C 102, 034311 (2020)

K.E.Karakatsanis, G.A.Lalazissis, V.Prassa, P.Ring

Two-quasiparticle K isomers within the covariant density functional theory

NUCLEAR STRUCTURE 170,172,174,176,178,180,182,184,186Hf, 172,174Er, 174,176Yb, 176,178Hf, 178,180W, 180,182Os, 184Pt, 186Hg, 188,208Pb; calculated Nilsson diagram for neutrons and protons close to the Fermi surface for 176Hf, single-particle energies of neutron and proton states in 208Pb and 176Hf, change in the energies of the 6+ and 8- isomers as function of pairing strength, quasineutron and quasiproton level energies, 6+ 2qp energies in A=170-180 even-even Hf isotopes, and in A=172-180, N=104 even-even isotones, energies of quasineutron levels for Z=172-180, N=104 isotones, energies of quasiproton levels and those of 8- 2qp states in A=170-186 even-A Hf isotopes, energies of 8- 2qp states in A=174-188, N=106 even-A isotones. Self-consistent mean-field approach within the relativistic Hartree-Bogoliubov framework, based on relativistic energy density functionals DD-ME2, DD-PC1, and DD-PC1 currents. Comparison with experimental data for 6+ and 8- low-energy high-K isomers in Z=68-82, N=98-112 even-A nuclei.

doi: 10.1103/PhysRevC.102.034311
Citations: PlumX Metrics


2019LA22      Eur.Phys.J. A 55, 229 (2019)

G.A.Lalazissis, P.Ring

Giant resonances with time dependent covariant density functional theory

doi: 10.1140/epja/i2019-12869-0
Citations: PlumX Metrics


2017KA11      Phys.Rev. C 95, 034318 (2017)

K.Karakatsanis, G.A.Lalazissis, P.Ring, E.Litvinova

Spin-orbit splittings of neutron states in N=20 isotones from covariant density functionals and their extensions

NUCLEAR STRUCTURE 40Ca, 38Ar, 36S, 34Si; calculated proton densities with the functional DD-ME2, sizes and relative reductions of neutron p and f splittings using Skyrme SLy5 and Gogny D1S functionals and tensor extensions of these functionals, radial profiles of 2p1/2 and 1f5/2 neutron state for 40Ca and 34Si, spin-orbit splittings and their relative reductions for f and p neutron states without pairing and with TMR pairing, occupation probabilities of 2s1/2 proton state in 36S and 34Si for TMR pairing force, neutron 2p1/2 to 2p3/2 splitting using NL3, NL3*, FSUGold, DD-ME2, DD-MEδ, DD-PC1 and PC-PF1 functionals, radial dependence of total density and proton density for NL3 with and without pairing, change in single-particle energies of 1f5/2 and 1f7/2 and of 2p1/2 and 2p3/2 neutron states for N=20 isotones. Several relativistic functionals such as nonlinear meson-coupling, density-dependent meson coupling, and density-dependent point-coupling models, with separable TMR pairing force of finite range to determine spin-orbit (SO) splittings. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.034318
Citations: PlumX Metrics


2017MO14      Phys.Rev. C 95, 045801 (2017)

Ch.C.Moustakidis, T.Gaitanos, Ch.Margaritis, G.A.Lalazissis

Bounds on the speed of sound in dense matter, and neutron star structure

doi: 10.1103/PhysRevC.95.045801
Citations: PlumX Metrics


2016GA26      Nucl.Phys. A954, 308 (2016)

T.Gaitanos, Ch.Moustakidis, G.A.Lalazissis, H.Lenske

Multi-strangeness production in hadron induced reactions

doi: 10.1016/j.nuclphysa.2016.04.011
Citations: PlumX Metrics


2015PA15      Acta Phys.Pol. B46, 369 (2015)

N.Paar, Ch.C.Moustakidis, G.A.Lalazissis, T.Marketin, D.Vretenar

Nuclear Energy Density Functionals and Neutron Star Properties

NUCLEAR STRUCTURE 68Ni, 130,132Sn, 208Pb; calculated constraints of the symmetry energy, dipole polarizability, liquid-to-solid transition pressure.

doi: 10.5506/APhysPolB.46.369
Citations: PlumX Metrics


2014PA32      Phys.Rev. C 90, 011304 (2014)

N.Paar, Ch.C.Moustakidis, T.Marketin, D.Vretenar, G.A.Lalazissis

Neutron star structure and collective excitations of finite nuclei

NUCLEAR STRUCTURE 68Ni, 130,132Sn, 208Pb; calculated excitation energies of the isoscalar giant monopole and quadrupole resonances (ISGMR, ISGQR), isovector giant dipole resonance (IVGDR), and anti-analog giant dipole resonance (AGDR), energy-weighted pygmy dipole (PDR) strength, and dipole polarizability. Covariance analysis of based on relativistic nuclear energy density functional (RNEDF). Neutron star crust properties by using collective excitations in finite nuclei. Thermodynamic method using relativistic nuclear energy density functionals, and quasiparticle random-phase approximation (QRPA).

doi: 10.1103/PhysRevC.90.011304
Citations: PlumX Metrics


2012PR09      Phys.Rev. C 86, 024317 (2012)

V.Prassa, T.Niksic, G.A.Lalazissis, D.Vretenar

Relativistic energy density functional description of shape transitions in superheavy nuclei

NUCLEAR STRUCTURE 226,228,230,232,234,236Th, 228,230,232,234,236,238,240,242U, 232,234,236,238,240,242,244,246Pu, 238,240,242,244,246,248,250Cm, 242,244,246,248,250,252,254,256Cf, 242,244,246,248,250,252,254,256Fm, 250,252,254,256,258,260,262No; calculated binding energies, ground-state axial quadrupole moments. 236,238U, 240Pu, 242Cm; calculated constrained energy curves as a function of quadrupole deformation parameter. 298,300120, 294,296Og, 290,292Lv, 286,288Fl, 282,284Cn, 278,280Ds; calculated RHB axially symmetric energy curves, triaxial energy contours in β-γ plane. 284Cn, 292Lv, 300120; calculated proton and neutron density distributions. Microscopic, relativistic energy density functional (REDF)-based, quadrupole collective Hamiltonian model.

RADIOACTIVITY 234,236,238,240,242,244Pu, 238,240,242,244,246,248,250,252Cm, 242,244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 252,254,256No, 256,258Rf, 260,262Sg, 271,272Bh, 275,276Mt, 278,280Ds, 279,280Rg, 282,284Cn, 283,284Nh, 286,288Fl, 287,288Mc, 290,292Lv, 293,294Ts, 294,296Og, 298,300120(α); calculated Q(α), half-lives. Microscopic, relativistic energy density functional (REDF)-based, quadrupole collective Hamiltonian model. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.024317
Citations: PlumX Metrics


2011RI05      Int.J.Mod.Phys. E20, 235 (2011)

P.Ring, H.Abusara, A.V.Afanasjev, G.A.Lalazissis, T.Niksic, D.Vretenar

Modern applications of Covariant Density Functional theory

NUCLEAR STRUCTURE 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf, 150Nd; calculated potential and deformation energy surfaces, J, π.

doi: 10.1142/S0218301311017570
Citations: PlumX Metrics


2010MO13      Phys.Rev. C 81, 065803 (2010)

Ch.C.Moustakidis, T.Niksic, G.A.Lalazissis, D.Vretenar, P.Ring

Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 196,198,200,202,204,206,208,210,212,214Pb; calculated rms radii using Hartree-Bogoliubov (RHB) model. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.065803
Citations: PlumX Metrics


2010PR03      Nucl.Phys. A832, 88 (2010)

V.Prassa, T.Gaitanos, G.Ferini, M.Di Toro, G.A.Lalazissis, H.H.Wolter

Isospin effects on strangeness in heavy-ion collisions

doi: 10.1016/j.nuclphysa.2009.11.009
Citations: PlumX Metrics


2009LA22      Phys.Rev. C 80, 041301 (2009)

G.A.Lalazissis, S.Karatzikos, M.Serra, T.Otsuka, P.Ring

Covariant density functional theory: The role of the pion

NUCLEAR STRUCTURE 40,48Ca, 48,56Ni, 100,132Sn, 208Pb, Sn A=116-152; calculated binding energies, single particle energies and spin orbit splitting of the doublets using relativistic mean field (RMF) theory and relativistic Hartree-Fock approximation. Discussed the role of the pion in covariant density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.041301
Citations: PlumX Metrics


2009LI19      Phys.Rev. C 79, 054301 (2009)

Z.P.Li, T.Niksic, D.Vretenar, J.Meng, G.A.Lalazissis, P.Ring

Microscopic analysis of nuclear quantum phase transitions in the N ≈ 90 region

NUCLEAR STRUCTURE 144,146,148,150,152,154Nd, 150,152,154Sm, 152,154,156Gd; calculated RMF+BCS quadrupole binding energy parametric plots as a function of β- and γ-deformation, excitation energies, B(E2) transition rates and single-particle states using 5-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom. 150Nd, 152Sm; calculated spectra of ground-state, β and γ bands, B(E2) transition rates using PC-F1 relativistic density functional and X(5) symmetry approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054301
Citations: PlumX Metrics


2008NI01      Phys.Rev. C 77, 034302 (2008)

T.Niksic, D.Vretenar, G.A.Lalazissis, P.Ring

Finite- to zero-range relativistic mean-field interactions

NUCLEAR STRUCTURE 16O, 40,48Ca, 72Ni, 90Zr, 124,132Sn, 204,208,214Pb, 210Po; calculated charge radii, binding energies. Compared with experiment. Finite to zero range relativistic mean field approximation.

doi: 10.1103/PhysRevC.77.034302
Citations: PlumX Metrics


2007LA16      Prog.Part.Nucl.Phys. 59, 277 (2007)

G.A.Lalazissis

Relativistic Hartree-Bogoliubov theory and the isospin dependence of the effective nuclear force

doi: 10.1016/j.ppnp.2006.12.028
Citations: PlumX Metrics


2007MA67      Phys.Rev. C 76, 034304 (2007)

M.Matev, A.V.Afanasjev, J.Dobaczewski, G.A.Lalazissis, W.Nazarewicz

Additivity of effective quadrupole moments and angular momentum alignments in A ∼ 130 nuclei

doi: 10.1103/PhysRevC.76.034304
Citations: PlumX Metrics


2007PR13      Nucl.Phys. A789, 311 (2007)

V.Prassa, G.Ferini, T.Gaitanos, H.H.Wolter, G.A.Lalazissis, M.Di Toro

In-medium effects on particle production in heavy ion collisions

doi: 10.1016/j.nuclphysa.2007.02.014
Citations: PlumX Metrics


2006FO05      Phys.Rev. C 73, 044310 (2006)

R.Fossion, D.Bonatsos, G.A.Lalazissis

E(5), X(5), and prolate to oblate shape phase transitions in relativistic Hartree-Bogoliubov theory

NUCLEAR STRUCTURE 96,98,100,102,104,106,108,110,112,114Pd, 118,120,122,124,126,128,130,132,134Xe, 118,120,122,124,126,128,130,132,134,136,138Ba, 144,146,148,150,152,154,156Nd, 146,148,150,152,154,156,158Sm, 148,150,152,154,156Gd, 150,152,154,156,158Dy, 180Hf, 182,184,186W, 188,190,192,194,196,198,200Os, 184,186W, 188,190,192,194,196,198,200,202Pt, 198,200Hg; calculated potential energy surfaces; deduced symmetry and shape transition features. Relativistic mean-field approach, NL3 force.

doi: 10.1103/PhysRevC.73.044310
Citations: PlumX Metrics


2005DA24      J.Phys.(London) G31, 659 (2005)

J.Daoutidis, G.A.Lalazissis

Superdeformation in Pb isotopes with large neutron excess

NUCLEAR STRUCTURE 208,214,220,226,232,238,244,250,256,262,268,274Pb; calculated potential energy vs quadrupole moment; deduced superdeformed minima. Covariant density functional theory.

doi: 10.1088/0954-3899/31/7/011
Citations: PlumX Metrics


2005LA04      Phys.Rev. C 71, 024312 (2005)

G.A.Lalazissis, T.Niksic, D.Vretenar, P.Ring

New relativistic mean-field interaction with density-dependent meson-nucleon couplings

NUCLEAR STRUCTURE 12,14,16,18,20,22,24O, 40,48Ca, 72Ni, 90Zr, 116,124,132Sn, 190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 210Po, 224,226,228,230Ra, 228,230,232,234Th, 232,234,236,238,240U, 238,240,242,244,246Pu, 244,246,248,250Cm, 250,252,254Cf, 252,254,256Fm, 252,254,256No, 256Rf, 260Sg, 264Hs; calculated binding energies, radii. 116,118,120,124Sn, 208Pb; calculated giant resonance strength distributions. 287,288Mc, 283,284Nh, 279,280Rg, 275,276Mt, 271,272Bh; calculated Qα, deformation parameters. Relativistic mean-field effective interaction with density-dependent meson-nucleon couplings.

doi: 10.1103/PhysRevC.71.024312
Citations: PlumX Metrics


2005VR01      Phys.Rep. 409, 101 (2005)

D.Vretenar, A.V.Afanasjev, G.A.Lalazissis, P.Ring

Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure

doi: 10.1016/j.physrep.2004.10.001
Citations: PlumX Metrics


2005VR03      Eur.Phys.J. A 25, Supplement 1, 555 (2005)

D.Vretenar, G.A.Lalazissis, T.Niksic, P.Ring

Relativistic mean-field models with medium-dependent meson-nucleon couplings

NUCLEAR STRUCTURE Dy, Er, Yb; calculated binding energies, radii, deformation parameters. 116,118,120,124Sn; calculated isovector dipole strength distributions. Density-dependent meson-nucleon coupling.

doi: 10.1140/epjad/i2005-06-091-3
Citations: PlumX Metrics


2004LA04      Phys.Rev. C 69, 017301 (2004)

G.A.Lalazissis, D.Vretenar, P.Ring

Mapping the proton drip line in the suburanium region and for superheavy elements

NUCLEAR STRUCTURE Z=73-119; calculated proton drip line features, ground-state deformations for drip-line nuclei. 160Ta, 166Re, 172Ir, 178Au, 182Tl, 190Bi, 196At, 202Fr, 208Ac, 214Pa; calculated proton separation energies. Relativistic Hartree-Bogoliubov model.

doi: 10.1103/PhysRevC.69.017301
Citations: PlumX Metrics


2004LA24      Eur.Phys.J. A 22, 37 (2004)

G.A.Lalazissis, D.Vretenar, P.Ring

Relativistic Hartree-Bogoliubov description of deformed light nuclei

NUCLEAR STRUCTURE 11,12,13,14Be, 14,15,16,17,18,19B, 14,15,16,17,18,19,20,21,22C, 14,15,16,17,18,19,20,21,22,23N, 18,19,20,21,22,23,24,25,26,27F, 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32Ne, 20,21,22,23,24,25,26,27,28,29,30,31,32Na; calculated radii, quadrupole moments, neutron separation energies. Relativistic Hartree-Bogoliubov approach, comparisons with data.

doi: 10.1140/epja/i2003-10227-7
Citations: PlumX Metrics


2004NI05      Phys.Rev. C 69, 047301 (2004)

T.Niksic, D.Vretenar, G.A.Lalazissis, P.Ring

Ground-state properties of rare-earth nuclei in the relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings

NUCLEAR STRUCTURE Dy, Er, Yb, Nd, Sm, Gd; calculated binding energies, deformation, isotope shifts. Relativistic Hartree-Bogoliubov model.

doi: 10.1103/PhysRevC.69.047301
Citations: PlumX Metrics


2004VR02      Eur.Phys.J. A 20, 75 (2004)

D.Vretenar, T.Niksic, P.Ring, N.Paar, G.A.Lalazissis, P.Finelli

Relativistic Hartree-Bogoliubov and QRPA description of exotic nuclear structure

NUCLEAR STRUCTURE 22O; calculated dipole and quadrupole strength distributions.pairing contributions.

doi: 10.1140/epja/i2002-10325-0
Citations: PlumX Metrics


2003AF02      Phys.Rev. C 67, 024309 (2003)

A.V.Afanasjev, T.L.Khoo, S.Frauendorf, G.A.Lalazissis, I.Ahmad

Cranked relativistic Hartree-Bogoliubov theory: Probing the gateway to superheavy nuclei

NUCLEAR STRUCTURE 252,254No; calculated single-particle levels, quasiparticle energies, rotational bands moments of inertia. Fm, Cm, Cf, No; calculated deformation parameters, pairing correlations, related features. 249,251Cf, 249Bk; calculated quasiparticle energies. 292120; calculated single-particle energies. Cranked relativistic Hartree-Bogoliubov theory, several parameterizations compared, comparisons with data.

doi: 10.1103/PhysRevC.67.024309
Citations: PlumX Metrics


2003LA16      Nucl.Phys. A719, 209c (2003)

G.A.Lalazissis, D.Vretenar, P.Ring

Mapping the proton drip line

NUCLEAR STRUCTURE Z=31-49; Z=73-91; Z=93-119; calculated proton drip line. Relativistic Hartree-Bogoliubov model.

doi: 10.1016/S0375-9474(03)00919-9
Citations: PlumX Metrics


2003MB01      Acta Phys.Hung.N.S. 18, 345 (2003)

C.Mazzocchi, Z.Janas, L.Batist, V.Belleguic, J.Doring, M.Gierlik, M.Kapica, R.Kirchner, G.A.Lalazissis, H.Mahmud, E.Roeckl, P.Ring, K.Schmidt, P.J.Woods, J.Zylicz

Alpha Decay of 114Ba

RADIOACTIVITY 114Ba(α) [from 58Ni(58Ni, 2n)]; measured Qα; deduced cluster decay branching ratio.

doi: 10.1556/APH.18.2003.2-4.38
Citations: PlumX Metrics


2002BE40      Eur.Phys.J. A 14, 23 (2002)

M.Bender, T.Cornelius, G.A.Lalazissis, J.A.Maruhn, W.Nazarewicz, P.-G.Reinhard

The Z = 82 Shell Closure in Neutron-Deficient Pb Isotopes

NUCLEAR STRUCTURE Hg, Pb, Po; calculated single-particle energies, deformation energy, two-proton gap parameters for A ≈ 180-210; deduced shell closure features. Self-consistent mean-field approach.

doi: 10.1007/s10050-002-8785-2
Citations: PlumX Metrics


2002LA09      Phys.Rev.Lett. 88, 152501 (2002)

R.W.Laird, F.G.Kondev, M.A.Riley, D.E.Archer, T.B.Brown, R.M.Clark, M.Devlin, P.Fallon, D.J.Hartley, I.M.Hibbert, D.T.Joss, D.R.LaFosse, P.J.Nolan, N.J.O'Brien, E.S.Paul, J.Pfohl, D.G.Sarantites, R.K.Sheline, S.L.Shepherd, J.Simpson, R.Wadsworth, M.T.Matev, A.V.Afanasjev, J.Dobaczewski, G.A.Lalazissis, W.Nazarewicz, W.Satula

Quadrupole Moments of Highly Deformed Structures in the A ∼ 135 Region: Probing the single-particle motion in a rotating potential

NUCLEAR REACTIONS 105Pd(35Cl, xnypzα), E=173 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin, DSA. 130,131,132Pr, 133,135Nd, 133,134,136Pm, 135,137Sm deduced rotational bands transition quadrupole moments, additivity of single-particle moments. Cranked Skyrme-Hartree-Fock and cranked relativistic mean field calculations. Gammasphere, Microball arrays.

doi: 10.1103/PhysRevLett.88.152501
Citations: PlumX Metrics


2002LA37      Prog.Theor.Phys.(Kyoto), Suppl. 146, 583 (2002)

G.A.Lalazissis, D.Vretenar, P.Ring

The Proton Drip Line between Z = 31 and Z = 49

NUCLEAR STRUCTURE Z=31-49; calculated proton drip line. 63,64As, 68,69Br, 73Rb, 76Y, 81Nb, 84,85Tc, 89Rh, 92,93Ag, 97In; calculated ground-state configurations, proton separation energies, deformation.

doi: 10.1143/PTPS.146.583
Citations: PlumX Metrics


2002MA19      Phys.Lett. 532B, 29 (2002)

C.Mazzocchi, Z.Janas, L.Batist, V.Belleguic, J.Doring, M.Gierlik, M.Kapica, R.Kirchner, G.A.Lalazissis, H.Mahmud, E.Roeckl, P.Ring, K.Schmidt, P.J.Woods, J.Zylicz

Alpha Decay of 114Ba

RADIOACTIVITY 114Ba, 110Xe, 106Te(α) [from 58Ni(58Ni, 2n) and subsequent decay]; measured Eα, Iα, T1/2; deduced Qα, branching ratios. 114Ba(12C); deduced Q-value. Mass separator. Comparisons with model predictions, systematics.

doi: 10.1016/S0370-2693(02)01543-5
Citations: PlumX Metrics


2002NI03      Phys.Rev. C65, 054320 (2002)

T.Niksic, D.Vretenar, P.Ring, G.A.Lalazissis

Shape Coexistence in the Relativistic Hartree-Bogoliubov Approach

NUCLEAR STRUCTURE 176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206Hg, 184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated binding energies, deformation effects; deduced role of effective interactions. 208Pb calculated single-particle energies. Relativistic Hartree-Bogoliubov approach.

doi: 10.1103/PhysRevC.65.054320
Citations: PlumX Metrics


2002RI08      Nucl.Phys. A701, 503c (2002)

P.Ring, G.A.Lalazissis, D.Vretenar

Relativistic Description of Medium-Heavy Nuclei Far from Stability

NUCLEAR STRUCTURE Ni, Sn; calculated two-neutron separation energies, neutron density distributions, spin-orbit splitting. Relativistic mean-field approach.

doi: 10.1016/S0375-9474(01)01635-9
Citations: PlumX Metrics


2001LA01      Nucl.Phys. A679, 481 (2001)

G.A.Lalazissis, D.Vretenar, P.Ring

Mapping the Proton Drip Line from Z = 31 to Z = 49

NUCLEAR STRUCTURE Z=31-49; A=60-100; calculated deformations, proton separation energies; deduced proton drip line. 60Ga, 63,64As, 68,69Br, 72,73Rb, 75,76Y, 81Nb, 84,85Tc, 88,89Rh, 92,93Ag, 96,97In; calculated one-proton separation energies, quadrupole deformation. Relativistic Hartree-Bogoliubov theory.

doi: 10.1016/S0375-9474(00)00375-4
Citations: PlumX Metrics


2001LA06      Phys.Rev. C63, 034305 (2001)

G.A.Lalazissis, D.Vretenar, P.Ring

Relativistic Hartree-Bogoliubov Description of Sizes and Shapes of A = 20 Isobars

NUCLEAR STRUCTURE 20N, 20O, 20F, 20Ne, 20Na, 20Mg; calculated ground-state binding energies, radii, deformation. Relativistic Hartree-Bogoliubov theory, comparisons with data.

doi: 10.1103/PhysRevC.63.034305
Citations: PlumX Metrics


2001RI20      Acta Phys.Pol. B32, 2683 (2001)

M.A.Riley, R.W.Laird, F.G.Kondev, D.J.Hartley, D.E.Archer, T.B.Brown, R.M.Clark, M.Devlin, P.Fallon, I.M.Hibbert, D.T.Joss, D.R.LaFosse, P.J.Nolan, N.J.O'Brien, E.S.Paul, J.Pfohl, D.G.Sarantites, R.K.Sheline, S.L.Shepherd, J.Simpson, R.Wadsworth, M.T.Matev, A.V.Afanasjev, J.Dobaczewski, G.A.Lalazissis, W.Nazarewicz, W.Satula

Global Lifetime Measurements of Highly-Deformed and Other Rotational Structures in the A ∼ 135 Light Rare-Earth Region: Probing the single-particle motion in a rotating potential

NUCLEAR REACTIONS 105Pd(35Cl, xnypzα), E=173 MeV; measured Eγ, Iγ, γγ-, (charged particle)γ-coin, DSA. 130,131,132,133Pr, 132,133,134,135Nd, 133,134,136Pm, 135,136,137Sm deduced rotational bands T1/2, transition quadrupole moments. Gammasphere, Microball arrays. Comparisons with model predictions.


2001VR01      Phys.Rev. C63, 047301 (2001)

D.Vretenar, N.Paar, P.Ring, G.A.Lalazissis

Pygmy Dipole Resonances in the Relativistic Random Phase Approximation

NUCLEAR STRUCTURE 208Pb; calculated isovector dipole strength distribution, pygmy resonance features.

doi: 10.1103/PhysRevC.63.047301
Citations: PlumX Metrics


2001VR02      Nucl.Phys. A692, 496 (2001)

D.Vretenar, N.Paar, P.Ring, G.A.Lalazissis

Collectivity of the Low-Lying Dipole Strength in Relativistic Random Phase Approximation

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,54,60Ca, 48,56,68,78Ni, 100,114,120,132Sn, 122Zr, 208Pb; calculated isovector dipole strength distributions, transition densities. Relativistic RPA.

doi: 10.1016/S0375-9474(01)00653-4
Citations: PlumX Metrics


2000GA47      Phys.Rev. C62, 054610 (2000)

Y.K.Gambhir, J.P.Maharana, G.A.Lalazissis, C.P.Panos, P.Ring

Temperature Dependent Relativistic Mean Field for Highly Excited Hot Nuclei

NUCLEAR STRUCTURE 168Er, 168Yb, 150Sm, 208Pb, 298Fl; calculated binding energies, radii, deformations vs temperature. Temperature-dependent relativistic mean field approach.

doi: 10.1103/PhysRevC.62.054610
Citations: PlumX Metrics


2000MI08      Phys.Rev. C61, 044326 (2000)

S.Mizutori, J.Dobaczewski, G.A.Lalazissis, W.Nazarewicz, P.-G.Reinhard

Nuclear Skins and Halos in the Mean-Field Theory

NUCLEAR STRUCTURE Sn, Ni, Pb; calculated neutron, proton densities, radii, related features. Z=4-124; calculated neutron halo parameters, proton surface thickness. 20,34,38Ne; calculated form factors. Spherical self-consistent mean-field theory.

doi: 10.1103/PhysRevC.61.044326
Citations: PlumX Metrics


2000VR02      Phys.Rev. C61, 064307 (2000)

D.Vretenar, P.Finelli, A.Ventura, G.A.Lalazissis, P.Ring

Parity Violating Elastic Electron Scattering and Neutron Density Distributions in the Relativistic Hartree-Bogoliubov Model

NUCLEAR STRUCTURE 106,108,110,112,114,116,118,120,122,124Sn, 23,24,25,26,27,28,29,30,31,32Na, 30,32,34Ne, 58,60,62,64,66,68,70,72,74,76Ni; calculated neutron density distributions, radii. Relativistic Hartree-Bogloliubov model.

NUCLEAR REACTIONS 106,108,110,112,114,116,118,120,122,124Sn, 23,24,25,26,27,28,29,30,31,32Na, 30,32,34Ne(e, e), E=850 MeV; 58,60,62,64,66,68,70,72,74,76Ni(e, e), E=500, 850 MeV; calculated parity violating asymmetry parameters vs momentum transfer, θ. Relativistic Hartree-Bogloliubov model.

doi: 10.1103/PhysRevC.61.064307
Citations: PlumX Metrics


2000VR04      Phys.Rev. C62, 045502 (2000)

D.Vretenar, G.A.Lalazissis, P.Ring

Neutron Density Distributions for Atomic Parity Nonconservation Experiments

NUCLEAR STRUCTURE 202,208,214Pb, 170,172,174,176Yb, 132,134,136,138Ba, 129,131,133,135Cs; calculated neutron, proton density distributions, radii, deformations, binding energies. Relativistic mean-field theory. Implications for parity nonconservation experiments discussed.

doi: 10.1103/PhysRevC.62.045502
Citations: PlumX Metrics


1999LA08      At.Data Nucl.Data Tables 71, 1 (1999)

G.A.Lalazissis, S.Raman, P.Ring

Ground-State Properties of Even-Even Nuclei in the Relativistic Mean-Field Theory

NUCLEAR STRUCTURE Z=10-98; calculated ground-state binding energies, neutron, proton, charge radii, quadrupole moments, deformation parameters. Relativistic mean-field theory.

doi: 10.1006/adnd.1998.0795
Citations: PlumX Metrics


1999LA10      Nucl.Phys. A650, 133 (1999)

G.A.Lalazissis, D.Vretenar, P.Ring

Ground-State Properties of Deformed Proton Emitters in the Relativistic Hartree-Bogoliubov Model

NUCLEAR STRUCTURE Z=53-69; calculated one-proton separation energy, ground-state deformations for odd-Z nuclei near drip line. 107,108,109I, 111,112,113Cs, 115,116La, 119,120Pr, 124,125Pm, 130,131Eu, 135,136Tb, 140,141Ho, 145,146,147Tm; calculated ground-state deformation, configurations, single-particle levels. Relativistic Hartree-Bogoliubov model. Comparisons with data, other models.

doi: 10.1016/S0375-9474(99)00121-9
Citations: PlumX Metrics


1999LA18      Phys.Rev. C60, 014310 (1999)

G.A.Lalazissis, D.Vretenar, P.Ring, M.Stoitsov, L.M.Robledo

Relativistic Hartree + Bogoliubov Description of the Deformed N = 28 Region

NUCLEAR STRUCTURE 34,36,38,40,42,44Mg, 36,38,40,42,44,46Si, 38,40,42,44,46,48S, 40,42,44,46,48,50Ar; calculated binding energies, radii, deformations; 42Si, 44S, 46Ar; calculated neutron single-particle levels; deduced neutron shell gap suppression. Relativistic Hartree plus Bogoliubov theory. Comparisons with data.

doi: 10.1103/PhysRevC.60.014310
Citations: PlumX Metrics


1999LA23      Phys.Rev. C60, 051302 (1999)

G.A.Lalazissis, D.Vretenar, P.Ring

Transitional Lu and Spherical Ta Ground-State Proton Emitters in the Relativistic Hartree-Bogoliubov Model

NUCLEAR STRUCTURE 149,150,151Lu; calculated proton separation energies, single-particle levels, deformation. 155,156,157Ta; calculated proton separation energies, single-particle levels, spectroscopic factors. 144,145,146,147,148Ho, 146,147,149,150,151Tm, 149,150,151,152,153Lu; calculated ground-state deformation. Relativistic Hartree-Bogoliubov model.

doi: 10.1103/PhysRevC.60.051302
Citations: PlumX Metrics


1999VR01      Phys.Rev.Lett. 82, 4595 (1999)

D.Vretenar, G.A.Lalazissis, P.Ring

Relativistic Hartree-Bogoliubov Description of the Deformed Ground-State Proton Emitters

NUCLEAR STRUCTURE Pr, Pm, Eu, Tb, Ho, Tm; calculated one-proton separation energies, quadrupole deformation for proton-rich isotopes. Relativistic HFB theory. Comparison with data.

doi: 10.1103/PhysRevLett.82.4595
Citations: PlumX Metrics


1999VR02      Nucl.Phys. A649, 29c (1999)

D.Vretenar, P.Ring, G.A.Lalazissis, N.Paar

Relativistic Mean-Field Description of the Dynamics of Giant Resonances

NUCLEAR STRUCTURE 208Pb; calculated isovector, isoscalar monopole resonance spectra. Relativistic mean-field theory.

doi: 10.1016/S0375-9474(99)00035-4
Citations: PlumX Metrics


1998AF02      Nucl.Phys. A634, 395 (1998)

A.V.Afanasjev, G.A.Lalazissis, P.Ring

Relativistic Mean Field Theory in Rotating Frame: Single-particle properties at superdeformation

NUCLEAR STRUCTURE 145,150,151,152Tb, 144,148,149,150Gd, 143Eu, 151,152,153,154,155Dy; calculated superdeformed bands collective, single-particle properties. Cranked relativistic mean-field theory, effective alignment approach.

doi: 10.1016/S0375-9474(98)00156-0
Citations: PlumX Metrics


1998LA02      Nucl.Phys. A628, 221 (1998)

G.A.Lalazissis, A.R.Farhan, M.M.Sharma

Light Nuclei Near Neutron and Proton Drip Lines in Relativistic Mean-Field Theory

NUCLEAR STRUCTURE 18,20,22,24,26,28,30,32,34,36,38Ne, 20,22,24,26,28,30,32,34,36,38,40,42,44Mg, 22,24,26,28,30,32,34,36,38,40,42,44,46Si, 26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56S, 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74Ti, 38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80Cr, 28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60Ar; calculated binding energies, radii, densities, deformation, other ground-state properties. Relativistic mean-field theory.

doi: 10.1016/S0375-9474(97)00630-1
Citations: PlumX Metrics


1998LA06      Phys.Lett. 418B, 7 (1998)

G.A.Lalazissis, D.Vretenar, W.Poschl, P.Ring

Reduction of the Spin-Orbit Potential in Light Drip-Line Nuclei

NUCLEAR STRUCTURE Ne, Mg; calculated even isotopes spin-orbit potentials, radii; deduced spin-orbit interaction isospin dependence. Relativistic, nonrelativistic mean-field models.

doi: 10.1016/S0370-2693(97)01473-1
Citations: PlumX Metrics


1998LA08      Nucl.Phys. A632, 363 (1998)

G.A.Lalazissis, D.Vretenar, W.Poschl, P.Ring

Relativistic Hartree-Bogoliubov Description of the Neutron Drip-Line in Light Nuclei

NUCLEAR STRUCTURE Z=6-12; calculated level energies, mass radii for neutron-rich nuclei. Relativistic Hartree-Bogoliubov approach.

doi: 10.1016/S0375-9474(98)00009-8
Citations: PlumX Metrics


1998LA09      Phys.Rev. C57, 2294 (1998)

G.A.Lalazissis, D.Vretenar, P.Ring

Relativistic Hartree-Bogoliubov Description of Ground-State Properties of Ni and Sn Isotopes

NUCLEAR STRUCTURE Ni, Sn; calculated binding energies, radii, pairing features, other ground-state properties. Relativistic Hartree-Bogoliubov theory.

doi: 10.1103/PhysRevC.57.2294
Citations: PlumX Metrics


1998LA12      Phys.Lett. 427B, 225 (1998)

G.A.Lalazissis, P.Ring

Excitation Energy of Superdeformed Bands in Relativistic Mean Field Theory

NUCLEAR STRUCTURE 142Sm, 144,146,148,150Gd, 148,150,152,154Dy; calculated superdeformed bands excitation energies. Constrained relativistic mean-field theory.

doi: 10.1016/S0370-2693(98)00368-2
Citations: PlumX Metrics


1998LA13      Phys.Rev. C58, R45 (1998)

G.A.Lalazissis, Y.K.Gambhir, J.P.Maharana, C.S.Warke, P.Ring

Relativistic Mean Field Approach and the Pseudospin Symmetry

NUCLEAR STRUCTURE 154Dy, 208Pb; calculated single-particle levels; deduced quasidegenerate pseudospin doublets. Spherical, deformed relativistic mean field.

doi: 10.1103/PhysRevC.58.R45
Citations: PlumX Metrics


1998LA15      Phys.Rev. C58, 243 (1998)

G.A.Lalazissis, K.Hara

Analysis of Superdeformed Rotational Bands

NUCLEAR STRUCTURE 131,132,133Ce, 147,148,149Gd, 148Eu, 154Er, 191,194Hg, 192Tl, 195Pb; analyzed superdeformed bands transition energies; deduced possible origins of irregularities. Extended one-point formula.

doi: 10.1103/PhysRevC.58.243
Citations: PlumX Metrics


1998LA18      Phys.Rev. C58, 1467 (1998)

G.A.Lalazissis, S.Raman

Proton Drip-Line Nuclei in Relativistic Mean-Field Theory

NUCLEAR STRUCTURE Z=10-82; calculated even-even nuclei two-proton separation energy, radii, deformation parameters; deduced position of two-proton drip line. Relativistic mean field theory.

doi: 10.1103/PhysRevC.58.1467
Citations: PlumX Metrics


1998LA21      Int.J.Mod.Phys. E7, 485 (1998)

G.A.Lalazissis, S.E.Massen, C.P.Panos, S.S.Dimitrova

Information Entropy as a Measure of the Quality of a Nuclear Density Distribution

NUCLEAR STRUCTURE 16O, 32S, 40Ca, 90Zr, 116Sn, 208Pb; calculated information entropy based on various density distribution models.

doi: 10.1142/S0218301398000257
Citations: PlumX Metrics


1998ST18      Phys.Rev. C58, 2086 (1998)

M.Stoitsov, P.Ring, D.Vretenar, G.A.Lalazissis

Solution of Relativistic Hartree-Bogoliubov Equations in Configurational Representation: Spherical neutron halo nuclei

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40Ne; calculated proton, neutron rms radii, densities. Relativistic Hartree-Bogoliubov equations, transformed harmonic oscillator basis.

doi: 10.1103/PhysRevC.58.2086
Citations: PlumX Metrics


1998VR02      Phys.Rev. C57, R1060 (1998)

D.Vretenar, W.Poschl, G.A.Lalazissis, P.Ring

Relativistic Mean-Field Description of Light Λ Hypernuclei with Large Neutron Excess

NUCLEAR STRUCTURE 28,30,32,34,36,38,40,42Ne; calculated normal, hypernuclei neutron single-particle levels; deduced Λ hyperon effect. Relativistic Hartree Bogoliubov model.

doi: 10.1103/PhysRevC.57.R1060
Citations: PlumX Metrics


1998VR03      Phys.Rev. C57, 3071 (1998)

D.Vretenar, G.A.Lalazissis, P.Ring

Proton Drip-Line Nuclei in Relativistic Hartree-Bogoliubov Theory

NUCLEAR STRUCTURE Z=14-28; calculated binding energies, single-particle levels, proton radii for even-Z, N=18, 20, 22 nuclei. Relativistic Hartree-Bogoliubov theory.

doi: 10.1103/PhysRevC.57.3071
Citations: PlumX Metrics


1998ZH37      Phys.Rev. C58, R2663 (1998)

J.-Y.Zhang, Y.Sun, M.Guidry, L.L.Riedinger, G.A.Lalazissis

Single Particle and Collective Structure for Nuclei Near 132Sn

NUCLEAR STRUCTURE 136Te, 142Xe; calculated rotational bands transition energies. 131,133Sn, 131In, 133Sb; calculated single-particle levels. Cd, Te, Xe; calculated ground-state deformations for N=62-102. Nilsson model, new parameter set. Comparisons with data.

doi: 10.1103/PhysRevC.58.R2663
Citations: PlumX Metrics


1997AF02      Acta Phys.Hung.N.S. 6, 299 (1997)

A.V.Afanasjev, G.A.Lalazissis, P.Ring

Cranked Relativistic Mean Field Description of Superdeformed Rotational Bands

NUCLEAR STRUCTURE 151Tb; calculated superdeformed bands configurations, alignments, moments of inertia. Cranked relativistic mean field.


1997HA14      Phys.Rev. C55, 1789 (1997)

K.Hara, G.A.Lalazissis

Analysis of Δ I = 2 Staggering in Nuclear Rotational Spectra

NUCLEAR STRUCTURE 149Gd, 154Er, 191,194Hg, 195Pb; analyzed superdeformed band. 160Yb; analyzed deformed band; deduced staggering may not always imply bifurcation occurrence.

doi: 10.1103/PhysRevC.55.1789
Citations: PlumX Metrics


1997LA01      Phys.Rev. C55, 540 (1997)

G.A.Lalazissis, J.Konig, P.Ring

New Parametrization for the Lagrangian Density of Relativistic Mean Field Theory

NUCLEAR STRUCTURE 16O, 40,48Ca, 58Ni, 90Zr, 116,124,132Sn, 208,214Pb; analyzed binding energy, neutron, charge radii; deduced model parameters. 152Sm, 158Gd, 162Dy, 166Er, 174Yb, 232Th, 236,238U; calculated total binding energies, charge radii, quadrupole deformation parameters, proton quadrupole, hexadecupole moments. 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated experimental, theoretical mass differences. 194Hg; calculated superdeformed minimum. Relativistic mean field theory, new parametrization of effective nonlinear Lagrangian density.

doi: 10.1103/PhysRevC.55.540
Citations: PlumX Metrics


1997LA15      Phys.Rev. C55, 2427 (1997)

G.A.Lalazissis, S.E.Massen

Influence of Short and Long Range Correlations on the Charge Densities and Radii of Ca Nuclei

NUCLEAR STRUCTURE 40,42,46,48Ca; calculated charge distribution differences relative to 40Ca; analyzed data; deduced short, long range correlations role. Phenomenological model.

doi: 10.1103/PhysRevC.55.2427
Citations: PlumX Metrics


1997LA16      Z.Phys. A357, 429 (1997)

G.A.Lalazissis, C.P.Panos, M.E.Grypeos, Y.K.Gambhir

Semi-Phenomenological Neutron Density Distributions

NUCLEAR STRUCTURE 58,64Ni, 116Sn, 208Pb; calculated neutron density distribution, rms radii. 24Mg, 27Al, 28Si, 32S, 40Ar, 40,48Ca, 56Fe, 63Cu, 75As, 90Zr, 124Sn, 195Pt, 197Au, 208Pb; calculated rms radii. Semi-phenomenological approach, comparison to other models.

doi: 10.1007/s002180050263
Citations: PlumX Metrics


1997PO13      Nucl.Phys. A624, 349 (1997)

K.Pomorski, P.Ring, G.A.Lalazissis, A.Baran, Z.Lojewski, B.Nerlo-Pomorska, M.Warda

Ground State Properties of the β Stable Nuclei in Various Mean Field Theories

NUCLEAR STRUCTURE A=16-256; calculated even-even stable nucleus proton, neutron separation energies, charge radii, other ground state properties. Several models compared. Comparisons with data.

doi: 10.1016/S0375-9474(97)00367-9
Citations: PlumX Metrics


1997PO14      Phys.Rev.Lett. 79, 3841 (1997)

W.Poschl, D.Vretenar, G.A.Lalazissis, P.Ring

Relativistic Hartree-Bogoliubov Theory with Finite Range Pairing Forcces in Coordinate Space: Neutron halo in light nuclei

NUCLEAR STRUCTURE 12,14,16,18,20,22,24,26C, 20,22,24,26,28,30,32,34,36,38,40,42Ne; calculated proton, neutron, mass rms radii, single-particle levels, neutron, proton densities, pairing field for some Ne isotopes; deduced neutron halo features. Relativistic Hartree Bogoliubov model.

doi: 10.1103/PhysRevLett.79.3841
Citations: PlumX Metrics


1997VR01      Nucl.Phys. A621, 853 (1997)

D.Vretenar, G.A.Lalazissis, R.Behnsch, W.Poschl, P.Ring

Monopole Giant Resonances and Nuclear Compressibility in Relativistic Mean Field Theory

NUCLEAR STRUCTURE 90Zr, 114Sn, 208Pb, 40,48Ca, 16O; calculated isoscalar monopole states, nuclear compressibilities, isovector monopole moments in some cases. Relativistic mean field theory.

doi: 10.1016/S0375-9474(97)00192-9
Citations: PlumX Metrics


1996GO08      Phys.Lett. 379B, 13 (1996)

T.Gonzalez-Llarena, J.L.Egido, G.A.Lalazissis, P.Ring

Relativistic Hartree-Bogoliubov Calculations with Finite Range Pairing Forces

NUCLEAR STRUCTURE 202,204,206,208,210,212,214Pb; calculated binding energy per nucleon, isotope shifts. 118,120,122,124,126Zr; calculated binding energies; 112,114,116,118,120,122,124,126,128,130,132Sn; calculated binding energy per nucleon. Relativistic Hartree-Bogoliubov calculations, finite-range pairing forces.

doi: 10.1016/0370-2693(96)00461-3
Citations: PlumX Metrics


1996LA03      Nucl.Phys. A597, 35 (1996)

G.A.Lalazissis, M.M.Sharma, P.Ring

Rare-Earth Nuclei: Radii, isotope-shifts and deformation properties in the relativistic mean-field theory

NUCLEAR STRUCTURE 130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164Sm, 138,140,142,144,146,148,150,152,154,156,158,160,162,164,166Gd, 142,144,146,148,150,152,154,156,158,160,162,164,166,168Dy, 142,144,146,148,150,152,154,156,158,160,162,164,166,168,170Er, 154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184Yb; calculated binding energy, charge, neutron radii, isotope shifts, deformation related features. Relativistic mean field theory.

doi: 10.1016/0375-9474(95)00436-X
Citations: PlumX Metrics


1996LA08      Phys.Rev. C53, 1599 (1996)

G.A.Lalazissis, S.E.Massen

Effects of Short-Range Correlations on Ca Isotopes

NUCLEAR STRUCTURE 40,41,42,43,44,45,46,47,48Ca; calculated charge distribution differences, form factors, densities; deduced short-range correlations role.

doi: 10.1103/PhysRevC.53.1599
Citations: PlumX Metrics


1996LA24      Nucl.Phys. A608, 202 (1996)

G.A.Lalazissis, M.M.Sharma, P.Ring, Y.K.Gambhir

Superheavy Nuclei in the Relativistic Mean-Field Theory

NUCLEAR STRUCTURE Z=102-118; calculated two-nucleon separation energies, α-decay T1/2, β2, β4 deformations. Binding, nucleon single particle-energies, shell corrections calculated for some cases, relativistic mean field theory.

doi: 10.1016/S0375-9474(96)00273-4
Citations: PlumX Metrics


1996LA31      Int.J.Mod.Phys. E5, 669 (1996)

G.A.Lalazissis, C.P.Panos

Isospin Dependent Oscillator Spacing for Neutrons and Protons in Nuclei using HF-BCS Radii

NUCLEAR STRUCTURE 14,15,16,17,18,19,20O, 21,22,23,24,25,26,27,28Mg, 25,26,27,28,29,30,31Si, 38,40,42,44,46,48Ca, 56,58,60,62,64,66,68Ni, 108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 82,84,86,88,90,92,94,96,98Zr, 57,59,61,63,65,67Ni, 109,111,113,115,117,119,121,123,125,127,129,131Sn, 83,85,87,89,91,93,95,97Zr, 194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214Pb; calculated nucleon oscillator spacings; deduced isospin dependence related features. Hartree-Fock-BCS calculations.

doi: 10.1142/S0218301396000372
Citations: PlumX Metrics


1995LA03      Phys.Rev. C51, 1247 (1995)

G.A.Lalazissis, C.P.Panos

Isospin Dependence of the Oscillator Spacing

NUCLEAR STRUCTURE 16,17,18,19,20,21,22,23,24,25,26O, 34,36,38,40,42,44,46,48,50,52Ca; calculated oscillator spacing for these and Sn, Pb isotopes. 18O, 44Ca, 68Ni, 106Zr, 132Sn, 208Pb; calculated (h-bar x omega). Data on mean square radii analyzed.

doi: 10.1103/PhysRevC.51.1247
Citations: PlumX Metrics


1995LA07      Nucl.Phys. A586, 201 (1995)

G.A.Lalazissis, M.M.Sharma

Ground-State Properties of Exotic Nuclei Near Z = 40 in the Relativistic Mean-Field Theory

NUCLEAR STRUCTURE 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110Sr, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110Zr, 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Kr; calculated binding energy, rms charge, neutron radii, isotope shifts, neutron skin thickness, shape coexistence (in some cases), quadrupole deformations. Relativistic mean field theory.

doi: 10.1016/0375-9474(94)00519-S
Citations: PlumX Metrics


1994AN19      Phys.Rev. C50, 1936 (1994)

A.N.Antonov, M.V.Stoitsov, L.P.Marinova, M.E.Grypeos, G.A.Lalazissis, K.N.Ypsilantis

Generator Coordinate Method Calculations for 4He and 16O Nuclei

NUCLEAR STRUCTURE 4He, 16O; calculated levels, nucleon momentum, density distribution. Generator coordinate method.

doi: 10.1103/PhysRevC.50.1936
Citations: PlumX Metrics


1994LA03      Phys.Rev. C49, 1412 (1994)

G.A.Lalazissis

Dependence on the Mass Number of Energy Quantities of a (Lambda) in Hypernuclei with the Cosh and the Gaussian Potential

NUCLEAR STRUCTURE A=16-208; calculated lambda hypernuclei single particle binding energies. A=13-51; calculated double lambda hypernuclei binding energies; deduced mass dependence. Gaussian, cosh potentials.

doi: 10.1103/PhysRevC.49.1412
Citations: PlumX Metrics


1994LA18      Z.Phys. A348, 257 (1994)

G.A.Lalazissis, S.E.Massen, C.P.Panos

The Influence of State Dependent Short Range Correlations on the Depletion of the Nuclear Fermi Sea

NUCLEAR STRUCTURE 16O, 40Ca; calculated charge form factor, occupation numbers, probabilities; deduced state dependent short range correlations role in Fermi sea depletion.

doi: 10.1007/BF01305882
Citations: PlumX Metrics


1994SH09      Phys.Rev.Lett. 72, 1431 (1994)

M.M.Sharma, G.A.Lalazissis, W.Hillebrandt, P.Ring

Shell Effects in Nuclei Near the Neutron-Drip Line

NUCLEAR STRUCTURE 110,112,114,116,118,120,122,124,128,132,134,136Zr; calculated binding energy, quadrupole deformation, single particle levels. Relativistic mean field theory.

doi: 10.1103/PhysRevLett.72.1431
Citations: PlumX Metrics


1994SH25      Phys.Rev.Lett. 73, 1870 (1994)

M.M.Sharma, G.A.Lalazissis, W.Hillebrandt, P.Ring

Sharma et al. Reply:

NUCLEAR STRUCTURE A=116-136; analyzed structure calculation. Skyrme approach, relativistic mean field approach comparison.

doi: 10.1103/PhysRevLett.73.1870
Citations: PlumX Metrics


1993LA03      J.Phys.(London) G19, 283 (1993)

G.A.Lalazissis, C.P.Panos

Oscillator Spacing and Its A Dependence

NUCLEAR STRUCTURE A=10-130; calculated nucleon oscillator spacing; deduced mass dependence. Semi-phenomenological density distribution derived from last nucleon separation energy.

doi: 10.1088/0954-3899/19/2/010
Citations: PlumX Metrics


1993LA08      J.Phys.(London) G19, 695 (1993)

G.A.Lalazissis

(Lambda)-Particle Energies from the (π+, K+) Associated Production Reaction on Nuclei and the State Dependence of the (Lambda)-Nucleus Potential

NUCLEAR REACTIONS 16O, 28Si, 40Ca, 51V, 89Y(π+, K+), E not given; analyzed hypernuclear production σ data; deduced 1s-, 1p-lambda state energies, potential radii, volume integrals for residuals.

doi: 10.1088/0954-3899/19/5/004
Citations: PlumX Metrics


1993LA11      Phys.Rev. C48, 198 (1993)

G.A.Lalazissis

Analytic Expressions for the (Lambda) Energy in the Lower Nodeless (Lambda) Single Particle States

NUCLEAR STRUCTURE A=12-208; calculated s-, p-, d-lambda energies, hypernuclei. Woods-Saxon potential.

doi: 10.1103/PhysRevC.48.198
Citations: PlumX Metrics


1993LA15      Phys.Rev. C48, 944 (1993)

G.A.Lalazissis, S.E.Massen, C.P.Panos

Short-Range Correlations and Fractional Occupation Probabilities

NUCLEAR STRUCTURE 12C, 16O, 28Si, 32S, 40Ca; calculated occupation probabilities. Natural orbital representation.

doi: 10.1103/PhysRevC.48.944
Citations: PlumX Metrics


1993SH24      Phys.Lett. 317B, 9 (1993)

M.M.Sharma, G.A.Lalazissis, P.Ring

Anomaly in the Charge Radii of Pb Isotopes

NUCLEAR STRUCTURE 190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated binding energies, charge radii, isotope shifts; deduced anomalous behavior explanation. Relativistic mean field theory.

doi: 10.1016/0370-2693(93)91561-Z
Citations: PlumX Metrics


1992LA11      Phys.Rev. C46, 201 (1992)

G.A.Lalazissis, S.E.Massen, C.P.Panos

Systematic Study of the Effect of Short Range Correlations on the Occupation Numbers of the Shell Model Orbits in Light Nuclei

NUCLEAR STRUCTURE 4He, 12C, 16O, 24Mg, 28Si, 31P, 32S, 39K, 40Ca; calculated single particle orbitals occupational probabilities; deduced short range correlations role in Fermi sea depletion.

doi: 10.1103/PhysRevC.46.201
Citations: PlumX Metrics


1992LA23      Z.Phys. A344, 17 (1992)

G.A.Lalazissis, C.P.Panos

The Harmonic Oscillator Energy Level Spacing for Neutrons and Protons in Nuclei

NUCLEAR STRUCTURE Z=10-90; N ≤ 130; calculated harmonic oscillator energy level spacing; deduced behavior at closed shells.

doi: 10.1007/BF01291013
Citations: PlumX Metrics


1991GR08      J.Phys.(London) G17, 1093 (1991)

M.E.Grypeos, G.A.Lalazissis, S.E.Massen, C.P.Panos

The ' Cosh ' or Symmetrized Woods-Saxon Nuclear Potential

NUCLEAR STRUCTURE A=12-58; calculated symmetrized Woods-Saxon potential parameters. Alternative formulation to ' cosh ' potential.

doi: 10.1088/0954-3899/17/7/008
Citations: PlumX Metrics


1990GR13      J.Phys.(London) G16, 1627 (1990)

M.E.Grypeos, G.A.Lalazissis, S.E.Massen, C.P.Panos

Relative Probability of Recoilless (Lambda)-Production in Nuclei in the Plane-Wave Impulse Approximation

NUCLEAR STRUCTURE A=12-208; calculated Lambda production probability in (K-, π-).

doi: 10.1088/0954-3899/16/11/013
Citations: PlumX Metrics


1989GR19      Nuovo Cim. 102A, 445 (1989)

M.E.Grypeos, G.A.Lalazissis, S.E.Massen, C.P.Panos

A New Approach for the Determination of the Variation with the Mass Number of the (Lambda)-Oscillator Spacing

NUCLEAR STRUCTURE A=11-208; calculated lambda-hyperon oscillator spacing. Square well, Woods-Saxon potentials.

doi: 10.1007/BF02734863
Citations: PlumX Metrics


Back to query form