NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 21, 2024.

Search: Author = R.Fossion

Found 14 matches.

Back to query form

2020BU15      Phys.Rev. C 102, 044301 (2020)

D.A.L.Bustillos, L.Lopez-Hernandez, N.Ramirez-Cruz, E.M.Hernandez, R.Fossion, E.Lopez-Moreno, C.E.Vargas, V.Velazquez

Nuclear energy level complexity: Fano factor signature of chaotic behavior of nearest-neighbor time-series analysis

NUCLEAR STRUCTURE 48Ca, 46,48Ti; calculated eigenvalue sequence as function of the number of 3+ states for different quadrupole strengths, Wigner distribution and Fourier power spectrum of the energy level spacings, Fano factor as function of the quadrupole intensity, and this factor corresponding to the quantum chaos for the energy levels in the nuclear spectra.

doi: 10.1103/PhysRevC.102.044301
Citations: PlumX Metrics

2016FR09      Phys.Rev. C 94, 034603 (2016)

P.R.Fraser, K.Massen-Hane, K.Amos, I.Bray, L.Canton, R.Fossion, A.S.Kadyrov, S.Karataglidis, J.P.Svenne, D.van der Knijff

Importance of resonance widths in low-energy scattering of weakly bound light-mass nuclei

NUCLEAR STRUCTURE 9Be; calculated levels, resonances J, π, widths of a compound nucleus with 8Be+n cluster by solving the Lippmann-Schwinger equations in momentum space. Comparison with multichannel algebraic scattering (MCAS) calculations with target states.

NUCLEAR REACTIONS 8Be(n, n), E<5.5 MeV; 12C(n, n), (n, X), E<6.5 MeV; calculated elastic and reaction σ(E) coupled to first 0+, 2+ and 4+ states in 8Be, reaction σ with particle emission widths of 12C coupled to g.s., first 2+ and first excited 0+ states in 12C; deduced effect of particle-emitting resonances on the scattering cross section. Method involved choosing an appropriate target-state resonance shape, modifying a Lorentzian by use of widths dependent on projectile energy, with a correction to target-state centroid energy.

doi: 10.1103/PhysRevC.94.034603
Citations: PlumX Metrics

2007FO08      Phys.Rev. C 76, 014316 (2007)

R.Fossion, C.E.Alonso, J.M.Arias, L.Fortunato, A.Vitturi

Shape-phase transitions and two-particle transfer intensities

doi: 10.1103/PhysRevC.76.014316
Citations: PlumX Metrics

2006FO05      Phys.Rev. C 73, 044310 (2006)

R.Fossion, D.Bonatsos, G.A.Lalazissis

E(5), X(5), and prolate to oblate shape phase transitions in relativistic Hartree-Bogoliubov theory

NUCLEAR STRUCTURE 96,98,100,102,104,106,108,110,112,114Pd, 118,120,122,124,126,128,130,132,134Xe, 118,120,122,124,126,128,130,132,134,136,138Ba, 144,146,148,150,152,154,156Nd, 146,148,150,152,154,156,158Sm, 148,150,152,154,156Gd, 150,152,154,156,158Dy, 180Hf, 182,184,186W, 188,190,192,194,196,198,200Os, 184,186W, 188,190,192,194,196,198,200,202Pt, 198,200Hg; calculated potential energy surfaces; deduced symmetry and shape transition features. Relativistic mean-field approach, NL3 force.

doi: 10.1103/PhysRevC.73.044310
Citations: PlumX Metrics

2005FO02      Acta Phys.Pol. B36, 1351 (2005)

R.Fossion, V.Hellemans, S.De Baerdemacker, K.Heyde

Shape coexistence in the lead isotopes using algebraic models: description of spectroscopic and ground-state related properties

NUCLEAR STRUCTURE 186,188,190,192,194,196Pb; calculated levels, J, π, two-neutron separation energies. Interacting boson model, three-configuration mixing.

2005GA58      Eur.Phys.J. A 26, 221 (2005)

J.E.Garcia-Ramos, K.Heyde, R.Fossion, V.Hellemans, S.De Baerdemacker

A theoretical description of energy spectra and two-neutron separation energies for neutron-rich zirconium isotopes

NUCLEAR STRUCTURE 94,96,98,100,102,104Zr; calculated level energies, B(E2), two-neutron separation energies. Interacting boson model.

doi: 10.1140/epja/i2005-10176-1
Citations: PlumX Metrics

2005HE09      Phys.Rev. C 71, 034308 (2005)

V.Hellemans, R.Fossion, S.De Baerdemacker, K.Heyde

Configuration mixing in 188Pb: Band structure and electromagnetic properties

NUCLEAR STRUCTURE 188Pb; calculated rotational bands level energies, J, π, B(E2), monopole transition strengths, quadrupole moments, deformation, configuration mixing features. Interacting boson model, collective rotational model, comparisons with data.

doi: 10.1103/PhysRevC.71.034308
Citations: PlumX Metrics

2004HE12      Phys.Rev. C 69, 054304 (2004)

K.Heyde, J.Jolie, R.Fossion, S.De Baerdemacker, V.Hellemans

Phase transitions versus shape coexistence

NUCLEAR STRUCTURE 110Ru, 114Cd, 118Te, 122Ba, 182,184,186,188,190,192,194,196,198,200,202,204,206Pb; analyzed levels, J, π, B(E2), phase transition and shape coexistence features.

doi: 10.1103/PhysRevC.69.054304
Citations: PlumX Metrics

2003FO02      Phys.Rev. C 67, 024306 (2003)

R.Fossion, K.Heyde, G.Thiamova, P.Van Isacker

Intruder bands and configuration mixing in lead isotopes

NUCLEAR STRUCTURE 186,188,190,192,194,196Pb; calculated levels, J, π, configurations. Interacting boson model, three-configuration mixing calculation, comparisons with data.

doi: 10.1103/PhysRevC.67.024306
Citations: PlumX Metrics

2002FO02      Nucl.Phys. A697, 703 (2002)

R.Fossion, C.De Coster, J.E.Garcia-Ramos, T.Werner, K.Heyde

Nuclear Binding Energies: Global collective structure and local shell-model correlations

NUCLEAR STRUCTURE Z=50-82; analyzed binding energies, two-neutron separation energies; deduced possible shell, deformation, or configuration-mixing effects. Liquid drop model, shell model, interacting boson model.

doi: 10.1016/S0375-9474(01)01270-2
Citations: PlumX Metrics

2002FO04      Phys.Rev. C65, 044309 (2002)

R.Fossion, C.De Coster, J.E.Garcia-Ramos, K.Heyde

Proton-Neutron Quadrupole Interactions: An effective contribution to the pairing field

doi: 10.1103/PhysRevC.65.044309
Citations: PlumX Metrics

2002HE07      Eur.Phys.J. A 13, 401 (2002)

K.Heyde, R.Fossion, J.E.Garcia-Ramos, C.De Coster, R.F.Casten

Differences between Pairing and Zero-Range Effective Interactions for Nuclear Binding Energies

doi: 10.1007/s10050-002-8769-2
Citations: PlumX Metrics

2001GA33      Nucl.Phys. A688, 735 (2001)

J.E.Garcia-Ramos, C.De Coster, R.Fossion, K.Heyde

Two-Neutron Separation Energies, Binding Energies and Phase Transitions in the Interacting Boson Model

NUCLEAR STRUCTURE Sm, Gd, Ru, Pd, Os, Pt; calculated binding energies. 150,152,154,156,158,160,162Gd, 100,102,104,106,108,110,112Pd, 184,186,188,190,192,194,196Pt; calculated level energies, two-neutron separation energies. Interacting boson model, comparisons with data.

doi: 10.1016/S0375-9474(00)00592-3
Citations: PlumX Metrics

2001SC41      Nucl.Phys. A693, 533 (2001)

S.Schwarz, F.Ames, G.Audi, D.Beck, G.Bollen, C.De Coster, J.Dilling, O.Engels, R.Fossion, J.-E.Garcia Ramos, S.Henry, F.Herfurth, K.Heyde, A.Kellerbauer, H.-J.Kluge, A.Kohl, E.Lamour, D.Lunney, I.Martel, R.B.Moore, M.Oinonen, H.Raimbault-Hartmann, C.Scheidenberger, G.Sikler, J.Szerypo, C.Weber, and the ISOLDE Collaboration

Accurate Masses of Neutron-Deficient Nuclides Close to Z = 82

ATOMIC MASSES 179,180,181,182,183,184,185,185m,186,187,187m,188,189m,190,191,191m,192,193,193m,194,195,196,197,197m,200Hg, 196,198,204Pb, 197Bi, 198Po, 203At; measured masses. Penning trap.

doi: 10.1016/S0375-9474(01)00881-8
Citations: PlumX Metrics

Back to query form