NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = A.S.Kadyrov

Found 28 matches.

Back to query form



2023BL01      Eur.Phys.J. A 59, 162 (2023)

L.D.Blokhintsev, A.S.Kadyrov, A.M.Mukhamedzhanov, D.A.Savin

Determination of asymptotic normalization coefficients for the channel 16O → α+12C. II. Excited states 16O(3-, 2+, 1-

RADIOACTIVITY 16O(α); analyzed available data; deduced asymptotic normalization coefficients (ANC) for a virtual decay, the overall normalization of σ of peripheral radiative capture reactions.

doi: 10.1140/epja/s10050-023-01079-4
Citations: PlumX Metrics


2023BR11      Eur.Phys.J. D 77, 194 (2023)

I.Bray, I.Kalinkin, D.V.Fursa, A.S.Kadyrov, H.B.Ambalampitiya, I.I.Fabrikant

Positron-hydrogen scattering: internal consistency and threshold behaviour for excited states

NUCLEAR REACTIONS H(e+, e+), E not given; calculated σ in arbitrary units. The one-centre convergent close-coupling (CCC).

doi: 10.1140/epjd/s10053-023-00778-3
Citations: PlumX Metrics


2023KO18      Eur.Phys.J. D 77, 163 (2023)

A.M.Kotian, C.T.Plowman, A.S.Kadyrov

Electron capture and ionisation in He2+ collisions with H2

NUCLEAR REACTIONS H(He, X), E<1000 keV/nucleon; calculated state-selective non-dissociative electron capture and ionisation σ with the two-centre wave-packet convergent close-coupling approach and the hydrogen molecule as an effective one-electron target. Comparison with experimental data.

doi: 10.1140/epjd/s10053-023-00743-0
Citations: PlumX Metrics


2023PL02      Phys.Rev. A 108, 052809 (2023)

C.T.Plowman, K.H.Spicer, M.Schulz, A.S.Kadyrov

Scattering-angle dependence of doubly differential cross sections for ionization in proton collisions with molecular hydrogen

NUCLEAR REACTIONS H(p, p), E<55 eV; calculated σ(θ) using the wave-packet convergent close-coupling (WP-CCC) approach. Comparison with available data.

doi: 10.1103/PhysRevA.108.052809
Citations: PlumX Metrics


2022BL07      Eur.Phys.J. A 58, 257 (2022)

L.D.Blokhintsev, A.S.Kadyrov, A.M.Mukhamedzhanov, D.A.Savin

Determination of asymptotic normalization coefficients for the channel 16O → α+12C: excited state 16O(0+; 6.05. MeV

RADIOACTIVITY 16O(α); calculated asymptotic normalization coefficients (ANC) for for the virtual decay by approximating scattering data by the sum of polynomials in energy in the physical region and then extrapolated to the pole, and by solving the Schrodinger equation for the two-body α12 C potential, the parameters of which are selected from the requirement of the best description of the phase-shift analysis data at a fixed experimental binding energy.

doi: 10.1140/epja/s10050-022-00909-1
Citations: PlumX Metrics


2021TU01      Nucl.Phys. A1006, 122108 (2021)

E.M.Tursunov, S.A.Turakulov, A.S.Kadyrov

Analysis of the 3He(α, γ)7Be and 3H(α, γ)7Li astrophysical direct capture reactions in a modified potential-model approach

NUCLEAR REACTIONS 3He(α, γ), 3H(α, γ), E(cm)<8 MeV; analyzed available data; deduced S-factors, contributions of the E1, E2 and M1 astrophysical S factors, reaction rates in the framework of a modified two-body potential model.

doi: 10.1016/j.nuclphysa.2020.122108
Citations: PlumX Metrics


2021TU04      Phys.Rev. C 104, 045806 (2021)

E.M.Tursunov, S.A.Turakulov, A.S.Kadyrov, L.D.Blokhintsev

Astrophysical S factor and rate of 7Be (p, γ)8B direct capture reaction in a potential model

NUCLEAR REACTIONS 7Be(p, γ)8B, E(cm)<13 MeV; calculated s-wave-scattering length, phase shift, astrophysical S factor, partial E1, E2, and M1 components of astrophysical S factor. 7Be(p, γ)8B, T9=0.001-10.0; calculated capture reaction rates. Comparison of astrophysical S factor with experimental data, and reaction rates with the results of the NACRE II Collaboration. Two-body potential model using single-channel approximation, with a modified potential.

doi: 10.1103/PhysRevC.104.045806
Citations: PlumX Metrics


2020MU14      Eur.Phys.J. A 56, 233 (2020)

A.M.Mukhamedzhanov, A.S.Kadyrov, D.Y.Pang

Trojan horse method as an indirect approach to study resonant reactions in nuclear astrophysics

doi: 10.1140/epja/s10050-020-00214-9
Citations: PlumX Metrics


2020TU03      Nucl.Phys. A1000, 121884 (2020)

E.M.Tursunov, S.A.Turakulov, A.S.Kadyrov

Comparative study of the direct α + d → 6Li + γ astrophysical capture reaction in few-body models

doi: 10.1016/j.nuclphysa.2020.121884
Citations: PlumX Metrics


2019BL07      Phys.Rev. C 100, 024627 (2019)

L.D.Blokhintsev, A.S.Kadyrov, A.M.Mukhamedzhanov, D.A.Savin

New method of analytic continuation of elastic-scattering data to the negative-energy region, and asymptotic normalization coefficients for 17O and 13C

NUCLEAR REACTIONS 12C(n, n), E=0.050, 0.100, 0.157, 0.207, 0.257, 0.307, 0.357, 0.407, 0.457, 0.507, 0.530, 0.630, 0.730, 0.830, 0.930, 1.040 MeV; 16O(n, n), E=0.20, 0.30, 0.40, 0.51, 0.60, 0.698, 0.73, 1.00, 1.21, 1.50, 1.75, 1.833, 2.15, 2.250, 2.353, 3.000 MeV; calculated asymptotic normalization coefficients (ANC) for excited s-states in 13C and 17O populated by elastic n-scattering using a new method based on analytic approximation of the modulus-squared of the partial-wave scattering amplitude. Comparison with theoretical results from traditional effective-range function approach.

doi: 10.1103/PhysRevC.100.024627
Citations: PlumX Metrics


2019MU11      Phys.Rev. C 99, 064618 (2019)

A.M.Mukhamedzhanov, D.Y.Pang, A.S.Kadyrov

Astrophysical factors of 12C + 12C fusion extracted using the Trojan horse method

NUCLEAR REACTIONS 12C(14N, d)24Mg*, E(cm)=13.85 MeV; calculated differential σ(θ), and bin wave functions using DWBA. 12C(12C, p)23Na*, (12C, α)20Ne*, E=0.8-2.7 MeV; calculated astrophysical S factors using Trojan horse method. Comparison with calculations using plane-wave approximation. Relevance to carbon-carbon burning in stellar environments.

doi: 10.1103/PhysRevC.99.064618
Citations: PlumX Metrics


2018BL01      Phys.Rev. C 97, 024602 (2018)

L.D.Blokhintsev, A.S.Kadyrov, A.M.Mukhamedzhanov, D.A.Savin

Extrapolation of scattering data to the negative-energy region. II. Applicability of effective range functions within an exactly solvable model

NUCLEAR REACTIONS 2H, 12C(α, α'), E not given; investigated the applicability of the effective range function (ERF) and the Δ function for scattering data to the negative-energy region in order to determine asymptotic normalization coefficients (ANCs); search for the parameters of the excited 0+ state in α+12C system using exactly solvable model.

doi: 10.1103/PhysRevC.97.024602
Citations: PlumX Metrics


2018BL06      Phys.Rev. C 98, 064610 (2018)

L.D.Blokhintsev, A.S.Kadyrov, A.M.Mukhamedzhanov, D.A.Savin

Extrapolation of scattering data to the negative-energy region. III. Application to the p - 16O system

NUCLEAR REACTIONS 16O(p, p)17F, E(cm)=0-2 MeV; calculated asymptotic normalization coefficients (ANCs) for g.s. and excited state of 17F, polynomial approximation of Κ0(E), Κ2(E), Δ0(E), and Δ2(E) functions using the effective-range function (ERF) and the Δ methods. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.064610
Citations: PlumX Metrics


2018TU04      Phys.Rev. C 97, 035802 (2018)

E.M.Tursunov, S.A.Turakulov, A.S.Kadyrov

Astrophysical 3He(α, γ)7Be and 3H(α, γ)7Li direct capture reactions in a potential-model approach

NUCLEAR REACTIONS 3He, 3H(α, γ), E(cm)<6 MeV; calculated s-wave phase-shifts, contributions of the partial and total E1, E2, and M1 components to the astrophysical S factor, astrophysical S factor using two-body potential model with potentials of a simple Gaussian form. Comparison with experimental data from LUNA collaboration, and other studies.

doi: 10.1103/PhysRevC.97.035802
Citations: PlumX Metrics


2018TU11      Phys.Rev. C 98, 055803 (2018)

E.M.Tursunov, S.A.Turakulov, A.S.Kadyrov, I.Bray

Theoretical study of the α + d → 6Li + γ astrophysical capture process in a three-body model. II. Reaction rates and primordial abundance

NUCLEAR REACTIONS 2H(α, γ)6Li, E=0.01-3 MeV; calculated partial E1 and E2 astrophysical S factors, overlap integral, astrophysical reaction rate in 0.001 to 10 GK range, and primordial 6Li abundance using three body model. Comparison with experimental data from LUNA Collaboration, and from NACRE 1999 database.

doi: 10.1103/PhysRevC.98.055803
Citations: PlumX Metrics


2017BL04      Phys.Rev. C 95, 044618 (2017)

L.D.Blokhintsev, A.S.Kadyrov, A.M.Mukhamedzhanov, D.A.Savin

Extrapolation of scattering data to the negative-energy region

doi: 10.1103/PhysRevC.95.044618
Citations: PlumX Metrics


2017FR05      Phys.Rev. C 96, 014619 (2017)

P.R.Fraser, K.Massen-Hane, A.S.Kadyrov, K.Amos, I.Bray, L.Canton

Effective two-body model for spectra of clusters of 2H, 3H, 3He and 4He with 4He, and 2H - 4He scattering

NUCLEAR REACTIONS 4He(t, X)7Li, 4He(3He, X)7Be, 4He(α, X)8Be, 4He(d, X)6Li; calculated low-energy spectra of 6Li, 7Li, 7Be and 8Be, considering 7Li as cluster of 4He with 3H, 7Be as cluster of 4He with 3He, 8Be as cluster of 4He with 4He, and 6Li as cluster of 4He with 2H. 4He(d, d), E=0.6-11 MeV; calculated σ(E, θ). Comparison with experimental data. Solution of single-channel Lippmann-Schwinger equations.

doi: 10.1103/PhysRevC.96.014619
Citations: PlumX Metrics


2016FR07      J.Phys.(London) G43, 095104 (2016)

P.R.Fraser, A.S.Kadyrov, K.Massen-Hane, K.Amos, L.Canton, S.Karataglidis, D.van der Knijff, I.Bray

Structure of 23Al from a multi-channel algebraic scattering model based on mirror symmetry

NUCLEAR REACTIONS 22Mg(p, X)23Al, E(cm)<4 MeV; calculated σ(θ). Comparison with experimental data.

NUCLEAR STRUCTURE 23Al; calculated energy levels, J, π. Comparison with experimental data.

doi: 10.1088/0954-3899/43/9/095104
Citations: PlumX Metrics


2016FR09      Phys.Rev. C 94, 034603 (2016)

P.R.Fraser, K.Massen-Hane, K.Amos, I.Bray, L.Canton, R.Fossion, A.S.Kadyrov, S.Karataglidis, J.P.Svenne, D.van der Knijff

Importance of resonance widths in low-energy scattering of weakly bound light-mass nuclei

NUCLEAR STRUCTURE 9Be; calculated levels, resonances J, π, widths of a compound nucleus with 8Be+n cluster by solving the Lippmann-Schwinger equations in momentum space. Comparison with multichannel algebraic scattering (MCAS) calculations with target states.

NUCLEAR REACTIONS 8Be(n, n), E<5.5 MeV; 12C(n, n), (n, X), E<6.5 MeV; calculated elastic and reaction σ(E) coupled to first 0+, 2+ and 4+ states in 8Be, reaction σ with particle emission widths of 12C coupled to g.s., first 2+ and first excited 0+ states in 12C; deduced effect of particle-emitting resonances on the scattering cross section. Method involved choosing an appropriate target-state resonance shape, modifying a Lorentzian by use of widths dependent on projectile energy, with a correction to target-state centroid energy.

doi: 10.1103/PhysRevC.94.034603
Citations: PlumX Metrics


2016TU06      Phys.Rev. C 94, 015801 (2016)

E.M.Tursunov, A.S.Kadyrov, S.A.Turakulov, I.Bray

Theoretical study of the α + d → 6Li + γ astrophysical capture process in a three-body model

NUCLEAR REACTIONS 2H(α, γ)6Li, E=0.05-3 MeV; calculated contribution of E1-transition operator from the isosinglet states to the isotriplet components of the final 6Li(1+) bound state, astrophysical S(E) factors and compared with experimental data from the LUNA Collaboration. Three-body (α+n+p) model with hyperspherical Lagrange-mesh method.

doi: 10.1103/PhysRevC.94.015801
Citations: PlumX Metrics


2014MU10      Phys.Rev. C 90, 034604 (2014)

A.M.Mukhamedzhanov, D.Y.Pang, C.A.Bertulani, A.S.Kadyrov

Surface-integral formalism of deuteron stripping

NUCLEAR REACTIONS 14C(d, p), E=23.4 MeV; 16O(d, p), E=36 MeV; calculated differential σ(θ), spectroscopic factors, neutron widths for deuteron stripping reactions to bound and resonant states. Distorted-wave Born approximation (DWBA), continuum-discretized coupled channels (CDCC), and surface-integral formalism.

doi: 10.1103/PhysRevC.90.034604
Citations: PlumX Metrics


2010MU11      Phys.Rev. C 82, 051601 (2010)

A.M.Mukhamedzhanov, A.S.Kadyrov

Unitary correlation in nuclear reaction theory: Separation of nuclear reactions and spectroscopic factors

doi: 10.1103/PhysRevC.82.051601
Citations: PlumX Metrics


2008MU07      J.Phys.(London) G35, 014016 (2008)

A.M.Mukhamedzhanov, L.D.Blokhintsev, B.F.Irgaziev, A.S.Kadyrov, M.La Cognata, C.Spitaleri, R.E.Tribble

Trojan Horse as an indirect technique in nuclear astrophysics

NUCLEAR REACTIONS 15N(p, α), E=0-0.85 MeV; calculated astrophysical S-factor. Comparisons with experimental data. Trojan Horse Method.

doi: 10.1088/0954-3899/35/1/014016
Citations: PlumX Metrics


2005MU27      J.Phys.(London) G31, S1413 (2005)

A.M.Mukhamedzhanov, E.O.Alt, L.D.Blokhintsev, S.Cherubini, B.F.Irgaziev, A.S.Kadyrov, D.Miljanic, A.Musumarra, M.G.Pellegriti, F.Pirlepesov, C.Rolfs, S.Romano, C.Spitaleri, N.K.Timofeyuk, R.E.Tribble, A.Tumino

Few-body problems in nuclear astrophysics

doi: 10.1088/0954-3899/31/10/005
Citations: PlumX Metrics


2001AL17      Nucl.Phys. A684, 693c (2001)

E.O.Alt, A.S.Kadyrov, A.M.Mukhamedzhanov

Importance of Two-Body Coulomb Rescattering and Cross-Channel Coupling in Proton-Hydrogen Collisions

doi: 10.1016/S0375-9474(01)00464-X
Citations: PlumX Metrics


2001AL26      Nucl.Phys. A689, 525c (2001)

E.O.Alt, A.S.Kadyrov, A.M.Mukhamedzhanov

Protons in Collision with Hydrogen Atoms: Influence of unitarity and multiple scattering

doi: 10.1016/S0375-9474(01)00896-X
Citations: PlumX Metrics


2001KA27      Nucl.Phys. A684, 669c (2001)

A.S.Kadyrov, I.Bray

Expansion Approach to a Three-Body Problem: Model positron-hydrogen scattering

doi: 10.1016/S0375-9474(01)00518-8
Citations: PlumX Metrics


1998AL06      Nucl.Phys. A631, 709c (1998)

E.O.Alt, A.S.Kadyrov, A.M.Mukhamedzhanov

Energetic Collisions of Charged Projectiles with Atomic Bound States

ATOMIC PHYSICS 1H(e+, e+), (p-bar, p-bar), E not given; calculated direct, exchange amplitudes.

doi: 10.1016/S0375-9474(98)00096-7
Citations: PlumX Metrics


Back to query form