NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 22, 2024.

Search: Author = D.Bonatsos

Found 90 matches.

Back to query form



2023BO09      J.Phys.(London) G50, 075105 (2023)

D.Bonatsos, A.Martinou, S.K.Peroulis, T.J.Mertzimekis, N.Minkov

Signatures for shape coexistence and shape/phase transitions in even-even nuclei

NUCLEAR STRUCTURE 40Ar, 40,42Ca, 70,72Ge, 72Se, 96,98Sr, 98,100Zr, 100,102Mo, 104Ru, 110Pd, 112,116Cd, 114,116,118Sn, 126Xe, 148,150Nd, 152,154Sm, 152,154,156,158Gd, 166Er, 172,174Yb, 186,192Os, 196Pt; analyzed available data; deduced systematics of B(E2) transition rates connecting the first excited 0+2 state of the ground state band in even–even nuclei, shape coexistence of the ground state band.

doi: 10.1088/1361-6471/acd70b
Citations: PlumX Metrics


2023HA02      Nucl.Phys. A1030, 122576 (2023)

M.M.Hammad, M.M.Yahia, D.Bonatsos

Triaxial nuclei and analytical solutions of the conformable fractional Bohr Hamiltonian with some exponential-type potentials

NUCLEAR STRUCTURE 114,116Pd, 126,128Xe, 192,194Pt; calculated normalized B(E2) transitions and spectra. Comparison with the experimental data and theoretical predictions of Kratzer potential.

doi: 10.1016/j.nuclphysa.2022.122576
Citations: PlumX Metrics


2022AL19      Phys.Rev. C 106, 054304 (2022)

P.Alexa, M.Abolghasem, G.Thiamova, D.Bonatsos, T.R.Rodriguez, P.-G.Reinhard

Macroscopic and microscopic description of phase transition in cerium isotopes

NUCLEAR STRUCTURE 146,148Ce, 150Ce; calculated levels, J, π, B(E2), ground state deformation. 142,144,146,148,150,152Ce; calculated potential energy surface, potential energy curves. Calculations in the framework of the macroscopic algebraic collective model (ACM) and two microscopic approaches - Skyrme-Hartree-Fock+Bardeen-Cooper-Schrieffer (BCS) and the symmetry conserving configuration mixing method (SCCM) with Gogny energy density functionals. Systematics of the experimental energy ratios for 0+, 2+, 4+, 6+ levels of Ce, Nd, Sm, Gd and Dy isotopes. Comparison with experimental data.

doi: 10.1103/PhysRevC.106.054304
Citations: PlumX Metrics


2022BO05      Phys.Lett. B 829, 137099 (2022)

D.Bonatsos, K.E.Karakatsanis, A.Martinou, T.J.Mertzimekis, N.Minkov

Microscopic origin of shape coexistence in the N=90, Z=64 region

NUCLEAR STRUCTURE 176,178,180,182,184,186,188,190,192,194,196,198Po, 104,106,108,110,112,114,116,118,120,122,124,126,128,130Te, 70,72,74,76,78,80,82,84,86,88Zr; calculated single particle states using standard covariant density functional theory; deduced shape coexistence.

doi: 10.1016/j.physletb.2022.137099
Citations: PlumX Metrics


2022BO16      Phys.Rev. C 106, 044323 (2022)

D.Bonatsos, K.E.Karakatsanis, A.Martinou, T.J.Mertzimekis, N.Minkov

Islands of shape coexistence from single-particle spectra in covariant density functional theory

NUCLEAR STRUCTURE 68,70,90Zn, 70,72,92Ge, 72,74,92,94Se, 74,76,94,96Kr, 68,70,72,74,76,78,80,82,84,86,96,98Sr, 72,74,76,78,80,82,84,86,88,98,100Zr, 100,102Mo, 102,104Ru, 104,106Pd, 106,108Cd, 104,106,108,110,112,114,116,118,120,122,124,126,128,130,142,144,146,148Te, 144,146,148,150Xe, 146,148,150,152Ba, 148,150,152,154Ce, 150,152,154,156Nd, 152,154,156,158Sm, 154,156,158,160Gd, 156,158,160,162Dy, 158,160,162,164Er, 160,162,164,166Yb, 162,164,166,168Hf, 164,166,168,170W, 166,168,170,172Os, 170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200Pt, 172,174,176,178,180,182,184,186,188,190,192,194Hg, 174,176,178,180,182,184,186,188,190,192,194,196Pb, 176,178,180,182,184,186,188,190,192,194,196,198Po; calculated proton single-particle energy levels, potential energy surface. Covariant density functional theory with the DDME2 functional. Searched for regions with p-h excitations which are attributed to the shape coexistence. Islands of shape coexistence are identified at Z=82 and Z=50, and around the relevant neutron midshells N=104 and N=66.

doi: 10.1103/PhysRevC.106.044323
Citations: PlumX Metrics


2022HA30      Nucl.Phys. A1028, 122540 (2022)

M.M.Hammad, A.Martinou, D.Bonatsos

Algebraic solutions for o(12) ← → u(2) (x) u(10) quantum phase transitions in the proton-neutron interacting boson model

doi: 10.1016/j.nuclphysa.2022.122540
Citations: PlumX Metrics


2021BO08      Nucl.Phys. A1009, 122158 (2021)

D.Bonatsos, I.E.Assimakis, A.Martinou, S.Sarantopoulou, S.K.Peroulis, N.Minkov

Energy differences of ground state and γ1ands as a hallmark of collective behavior

doi: 10.1016/j.nuclphysa.2021.122158
Citations: PlumX Metrics


2021MA25      Eur.Phys.J. A 57, 84 (2021)

A.Martinou, D.Bonatsos, T.J.Mertzimekis, K.E.Karakatsanis, I.E.Assimakis, S.K.Peroulis, S.Sarantopoulou, N.Minkov

The islands of shape coexistence within the Elliott and the proxy-SU(3) Models

NUCLEAR STRUCTURE N=120-190; analyzed available data; deduced nucleon number systematics.

doi: 10.1140/epja/s10050-021-00396-w
Citations: PlumX Metrics


2021MA26      Eur.Phys.J. A 57, 83 (2021)

A.Martinou, D.Bonatsos, K.E.Karakatsanis, S.Sarantopoulou, I.E.Assimakis, S.K.Peroulis, N.Minkov

Why nuclear forces favor the highest weight irreducible representations of the fermionic SU(3) symmetry

NUCLEAR STRUCTURE 208Pb; analyzed available data; deduced prolate to oblate shape transitions.

doi: 10.1140/epja/s10050-021-00395-x
Citations: PlumX Metrics


2021SO17      Nucl.Phys. A1013, 122224 (2021)

H.Sobhani, H.Hassanabadi, D.Bonatsos, L.Sihver

An analytical description of the parity-doublet structure in an odd-A nucleus

NUCLEAR STRUCTURE 151Pm; analyzed available data; calculated energylevels, J, π, B(E1).

doi: 10.1016/j.nuclphysa.2021.122224
Citations: PlumX Metrics


2020BO16      Eur.Phys.J. Special Topics 229, 2367 (2020)

D.Bonatsos, A.Martinou, S.Sarantopoulou, I.E.Assimakis, S.Peroulis, N.Minkov

Parameter-free predictions for the collective deformation variables b and γ within the pseudo-SU(3) scheme

NUCLEAR STRUCTURE 142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180Ce, 146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184Sm, 148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186Dy, 154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194Yb, 158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194W, 162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202Pt; calculated distribution of valence protons and valence neutrons, weight of irreducible representations, collective deformation parameters.

doi: 10.1140/epjst/e2020-000034-3
Citations: PlumX Metrics


2020CA27      Phys.Rev. C 102, 054310 (2020)

R.F.Casten, R.B.Cakirli, D.Bonatsos, K.Blaum

Simple new signature of structure in deformed nuclei: Distinguishing the nature of axial asymmetry

NUCLEAR STRUCTURE 154,156,158,160,162Gd, 158,160,162,164,166Dy, 162,164,168,170,172Er, 164,166,168,170,172,174,176Yb, 168,170,172,174,176,178,180Hf, 170,172,174,176,178,180,182,184,186,188W, 182,184,186,188,190,192Os, 186,188,190,192,194,196Pt; analyzed ratios of two γ-band to ground-band experimental transition energies as a function of spin, and ratios of the inertial parameters between the γ bands and the ground bands; deduced a new and robust signature of structure of well-deformed and transitional even-even nuclei.

doi: 10.1103/PhysRevC.102.054310
Citations: PlumX Metrics


2020MA49      Eur.Phys.J. A 56, 239 (2020)

A.Martinou, D.Bonatsos, N.Minkov, I.E.Assimakis, S.K.Peroulis, S.Sarantopoulou, J.Cseh

Proxy-SU(3) symmetry in the shell model basis

doi: 10.1140/epja/s10050-020-00239-0
Citations: PlumX Metrics


2020SO04      Eur.Phys.J. A 56, 29 (2020)

H.Sobhani, H.Hassanabadi, D.Bonatsos, F.Pan, S.Cui, Z.Feng, J.P.Draayer

Analytical study of the γ-unstable Bohr Hamiltonian with quasi-exactly solvable decatic potential

doi: 10.1140/epja/s10050-020-00048-5
Citations: PlumX Metrics


2020SO17      Nucl.Phys. A1002, 121956 (2020)

H.Sobhani, H.Hassanabadi, D.Bonatsos, F.Pan, J.P.Draayer

γ-Unstable Bohr Hamiltonian with sextic potential for odd-A nuclei

NUCLEAR STRUCTURE 187,189,191,193,195Ir; analyzed available data; calculated energy ratios, B(E2) using the collective model of the γ-unstable Bohr Hamiltonian with the quasi exactly solvable sextic potential.

doi: 10.1016/j.nuclphysa.2020.121956
Citations: PlumX Metrics


2017BO11      Phys.Rev. C 95, 064325 (2017)

D.Bonatsos, I.E.Assimakis, N.Minkov, A.Martinou, R.B.Cakirli, R.F.Casten, K.Blaum

Proxy-SU(3) symmetry in heavy deformed nuclei

doi: 10.1103/PhysRevC.95.064325
Citations: PlumX Metrics


2017BO12      Phys.Rev. C 95, 064326 (2017)

D.Bonatsos, I.E.Assimakis, N.Minkov, A.Martinou, S.Sarantopoulou, R.B.Cakirli, R.F.Casten, K.Blaum

Analytic predictions for nuclear shapes, prolate dominance, and the prolate-oblate shape transition in the proxy-SU(3) model

NUCLEAR STRUCTURE 112,114,116,118,120,122,124,126,128,130,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176Ba, 114,116,118,120,122,124,126,128,130,132,134,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178Ce, 116,118,120,122,124,126,128,130,132,134,136,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180Nd, 118,120,122,124,126,128,130,132,134,136,138,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182Sm, 120,122,124,126,128,130,132,134,136,138,140,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184Gd, 122,124,126,128,130,132,134,136,138,140,142,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186Dy, 124,126,128,130,132,134,136,138,140,142,146,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188Er, 126,128,130,132,134,136,138,140,142,146,148,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190Yb, 128,130,132,134,136,138,140,142,146,148,150,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192Hf, 130,132,134,136,138,140,142,146,148,150,152,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194W, 132,134,136,138,140,142,146,148,150,152,154,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196Os, 134,136,138,140,142,146,148,150,152,154,156,178,180,182,184,186,188,190,192,194,196,198Pt; calculated β and γ deformations using a new approximate analytic parameter-free proxy-SU(3) model. Comparison with empirical results.

doi: 10.1103/PhysRevC.95.064326
Citations: PlumX Metrics


2017BO16      Eur.Phys.J. A 53, 148 (2017)

D.Bonatsos

Prolate over oblate dominance in deformed nuclei as a consequence of the SU(3) symmetry and the Pauli principle

doi: 10.1140/epja/i2017-12346-x
Citations: PlumX Metrics


2017KO03      Phys.Rev. C 95, 014309 (2017)

T.Konstantinopoulos, P.Petkov, A.Goasduff, T.Arici, A.Astier, L.Atanasova, M.Axiotis, D.Bonatsos, P.Detistov, A.Dewald, M.J.Eller, V.Foteinou, A.Gargano, G.Georgiev, K.Gladnishki, A.Gottardo, S.Harissopulos, H.Hess, S.Kaim, D.Kocheva, A.Kusoglu, A.Lagoyannis, J.Ljungvall, R.Lutter, I.Matea, B.Melon, T.J.Mertzimekis, A.Nannini, C.M.Petrache, A.Petrovici, G.Provatas, P.Reiter, M.Rocchini, S.Roccia, M.Seidlitz, B.Siebeck, D.Suzuki, N.Warr, H.De Witte, T.Zerrouki

Lifetime measurements in 100Ru

NUCLEAR REACTIONS 88Sr(14C, 2n), E=40, 46 MeV; measured Eγ, half-lives of 2+, 4+, 6+ and 8+ yrast levels by recoil-distance Doppler shift (RDDS) and Doppler-shift attenuation method (DSAM) using ORGAM array and eight detectors from Miniball array at 15 MV Tandem accelerator of the ALTO laboratory in Orsay. 100Ru; deduced levels, B(E2), not the best candidate for E(5) symmetry. Comparison with excited Vampir, shell-model calculations, and theoretical E(5) level scheme.

doi: 10.1103/PhysRevC.95.014309
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2015BO05      Phys.Rev. C 91, 054315 (2015)

D.Bonatsos, A.Martinou, N.Minkov, S.Karampagia, D.Petrellis

Octupole deformation in light actinides within an analytic quadrupole octupole axially symmetric model with a Davidson potential

NUCLEAR STRUCTURE 222,224,226Ra, 224,226Th; calculated levels, J, π, B(E1), BE(2), B(E3). Analytic quadrupole octupole axially (AQOA) symmetric model using Davidson potential. Bohr collective Hamiltonian, and quadrupole plus octupole deformation. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.054315
Citations: PlumX Metrics


2015BO10      J.Phys.(London) G42, 095104 (2015)

D.Bonatsos, N.Minkov, D.Petrellis

Bohr Hamiltonian with a deformation-dependent mass term: physical meaning of the free parameter

doi: 10.1088/0954-3899/42/9/095104
Citations: PlumX Metrics


2015CA17      J.Phys.(London) G42, 095102 (2015)

M.Capak, D.Petrellis, B.Gonul, D.Bonatsos

Analytical solutions for the Bohr Hamiltonian with the Woods-Saxon potential

NUCLEAR STRUCTURE 150Nd, 152,154Sm, 154,156,158Gd, 156,158,160Dy, 160,162,164Er, 162,164,166,168,170,172,174,176Yb, 166,168,170,172,174,176,178Hf, 176,178,180W, 176,178,180,182,184Os, 228Ra, 228,230,232Th, 232,234,236,238U, 240,242Pu, 248Cm, 160,162Gd, 162,164,166Dy, 166,168Er, 178Yb, 180Hf, 182,184,186W, 186,188Os, 238Pu, 118,120,122,124,126,128,130,132,134Xe; calculated nuclear potential parameters. Comparison with available data.

doi: 10.1088/0954-3899/42/9/095102
Citations: PlumX Metrics


2015KA18      Phys.Rev. C 91, 054325 (2015)

S.Karampagia, D.Bonatsos, R.F.Casten

Regularity and chaos in 0+ states of the interacting boson model using quantum measures

doi: 10.1103/PhysRevC.91.054325
Citations: PlumX Metrics


2013BO24      Phys.Rev. C 88, 034316 (2013)

D.Bonatsos, P.E.Georgoudis, N.Minkov, D.Petrellis, C.Quesne

Bohr Hamiltonian with a deformation-dependent mass term for the Kratzer potential

NUCLEAR STRUCTURE 98,100,102,104Ru, 102,104,106,108,110,112,114,116Pd, 106,108,110,112,114,116,118,120Cd, 118,120,122,124,126,128,130,132,134Xe, 130,132,134,136,142Ba, 134,136,138Ce, 140,148,150Nd, 140,142,152,154Sm, 142,144,152,154,156,158,160,162Gd, 154,156,158,160,162,164,166Dy, 156,160,162,164,166,168,170Er, 162,164,166,168,170,172,174,176,178Yb, 166,168,170,172,174,176,178,180Hf, 176,178,180,182,184,186W, 176,178,180,184,186,188,190Os, 186,188,190,192,194,196,198,200Pt, 228Ra, 228,230,232Th, 232,234,236,238U, 238,240,242Pu, 248Cm, 250Cf; calculated levels, J, π, ground, β and γ bands, B(E2), ratios of level energies of yrast bands and low-lying positive-parity levels. Deformation-dependent mass (DDM) Bohr Hamiltonian with Kratzer potential obtained for γ-unstable, axially symmetric prolate deformed, and triaxial nuclei. Techniques of supersymmetric quantum mechanics (SUSYQM).

doi: 10.1103/PhysRevC.88.034316
Citations: PlumX Metrics


2013BO27      Phys.Rev. C 88, 054309 (2013)

D.Bonatsos, S.Karampagia, R.B.Cakirli, R.F.Casten, K.Blaum, L.Amon Susam

Emergent collectivity in nuclei and enhanced proton-neutron interactions

NUCLEAR STRUCTURE Z=50-82, N=82-126; analyzed empirical values of proton-neutron interaction Vpn for even and odd Z nuclei, E(4+)/E(2+) values for even A nuclei; calculated average spatial overlaps (for deformation ϵ=0.22) for proton and neutron orbitals, Nilsson diagrams; deduced enhancement of the large empirical values of p-n interactions along the Z=N line indicative of collectivity, shape changes, and the saturation of deformation. Pseudoshell approach to heavy nuclei.

doi: 10.1103/PhysRevC.88.054309
Citations: PlumX Metrics


2012BO02      Rom.J.Phys. 57, 49 (2012)

D.Bonatsos

Conformal Maps and Group Contractions in Nuclear Structure Models


2012BO21      J.Phys.:Conf.Ser. 366, 012005 (2012)

D.Bonatsos

Group contractions and conformal maps in nuclear structure

doi: 10.1088/1742-6596/366/1/012005
Citations: PlumX Metrics


2012BO22      J.Phys.:Conf.Ser. 366, 012017 (2012)

D.Bonatsos, P.E.Georgoudis, D.Lenis, N.Minkov, C.Quesne

Fixing the moment of inertia in the Bohr Hamiltonian through Supersymmetric Quantum Mechanics

NUCLEAR STRUCTURE 162Dy, 238U; calculated energy levels, J of gs band, deformation of states using Bohr-Mottelson model. Compared with data.

doi: 10.1088/1742-6596/366/1/012017
Citations: PlumX Metrics


2012BO23      J.Phys.:Conf.Ser. 366, 012025 (2012)

D.Bonatsos, S.Karampagia, R.F.Casten

Analytic derivation of the Alhassid-Whelan arc of regularity

doi: 10.1088/1742-6596/366/1/012025
Citations: PlumX Metrics


2011BO12      Phys.Rev. C 83, 044321 (2011)

D.Bonatsos, P.E.Georgoudis, D.Lenis, N.Minkov, C.Quesne

Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential

NUCLEAR STRUCTURE 98,100,102,104Ru, 102,104,106,108,110,112,114,116Pd, 106,108,110,112,114,116,118,120Cd, 118,120,122,124,126,128,130,132,134Xe, 130,132,134,136,142Ba, 134,136,138Ce, 140,148,150Nd, 140,142,152,154Sm, 142,144,152,154,156,158,160,162Gd, 154,156,158,160,162,164,166Dy, 156,160,162,164,166,168,170Er, 162,164,166,168,170,172,174,176,178Yb, 166,168,170,172,174,176,178,180Hf, 176,178,180,182,184,186W, 176,178,180,184,186,188,190Os, 186,188,190,192,194,196,198,200Pt, 228Ra, 228,230,232Th, 232,234,236,238U, 238,240,242Pu, 248Cm, 250Cf; calculated levels, J, π, B(E2). Bohr collective Hamiltonian, β2 deformation dependent mass, curved space, Davidson potential. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.044321
Citations: PlumX Metrics


2011BO15      Phys.Rev. C 83, 054313 (2011)

D.Bonatsos, S.Karampagia, R.F.Casten

Analytic derivation of an approximate SU(3) symmetry inside the symmetry triangle of the interacting boson approximation model

doi: 10.1103/PhysRevC.83.054313
Citations: PlumX Metrics


2011IN03      Phys.Rev. C 84, 024309 (2011)

I.Inci, D.Bonatsos, I.Boztosun

Electric quadrupole transitions of the Bohr Hamiltonian with the Morse potential

NUCLEAR STRUCTURE 98,100,102,104Ru, 102,104,106,108Pd, 108,110,112,114,116,118Cd, 118,120,124,128Xe, 130,132,134,142Ba, 148Nd, 152Gd, 154Dy, 192,194,196,198Pt, 154Sm, 156Gd, 158Gd, 158,160Dy, 162Dy, 164Dy, 156,162,164,166,168,170Er, 166,168,170,172,174,176Yb, 174,176,178Hf, 182,184,186W, 186,188Os, 230,232Th, 234,236,238U, 238Pu, 250Cf; calculated B(E2) ratios for ground-state bands and interband transitions in γ-soft and deformed nuclei. Asymptotic iteration method (AIM) for collective Bohr Hamiltonian with the Morse potential. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.024309
Citations: PlumX Metrics


2011YI01      Phys.Rev. C 83, 014303 (2011)

I.Yigitoglu, D.Bonatsos

Bohr Hamiltonian with Davidson potential for triaxial nuclei

NUCLEAR STRUCTURE 128,130,132Xe; calculated levels, J, π, B(E2). Bohr collective Hamiltonian, Davidson potential in β and a steep harmonic oscillator in γ. Shape transition from a triaxial vibrator to the rigid triaxial rotator. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.014303
Citations: PlumX Metrics


2010BO01      Phys.Rev.Lett. 104, 022502 (2010)

D.Bonatsos, E.A.McCutchan, R.F.Casten

SU(3) Quasidynamical Symmetry Underlying the Alhassid-Whelan Arc of Regularity

doi: 10.1103/PhysRevLett.104.022502
Citations: PlumX Metrics


2010BO25      J.Phys.:Conf.Ser. 205, 012020 (2010)

D.Bonatsos, I.Boztosun, I.Inci

A long sought result: Closed analytical solutions of the Bohr Hamiltonian with the Morse potential

NUCLEAR STRUCTURE 98,100,102,104Ru, 102,104,106,108,110,112,114,116Pd, 106,108,110,112,114,116,118,120Cd, 118,120,122,124,126,128,130,132,134Xe, 130,132,134,136,142Ba, 134,136,138Ce, 140,148,150Nd, 140,142,152,154Sm, 142,144,152,154,156,158,160,162Gd, 158,160,162,164,166Dy, 156,160,162,164,166,168,170Er, 164,166,168,170,172,174,176,178Yb, 168,170,172,174,176,178,180Hf, 176,178,180,182,184,186W, 178,180,184,186,188Os, 186,188,190,192,194,196,198,200Pt, 228Ra, 228,230,232Th, 232,234,236,238U, 238,240,242,248Cm, 250Cf; calculated low-lying 0+, 2+, 4+ states, β and γ bandheads, deformation using Bohr Hamiltonian with Morse potential; deduced Morse potential shapes. Compared with data.

doi: 10.1088/1742-6596/205/1/012020
Citations: PlumX Metrics


2009BO23      Phys.Rev. C 80, 034311 (2009); Erratum Phys.Rev. C 80, 049902 (2009)

D.Bonatsos, E.A.McCutchan, R.F.Casten, R.J.Casperson, V.Werner, E.Williams

Regularities and symmetries of subsets of collective 0+ states

doi: 10.1103/PhysRevC.80.034311
Citations: PlumX Metrics


2008BO13      Phys.Rev.Lett. 100, 142501 (2008)

D.Bonatsos, E.A.McCutchan, R.F.Casten, R.J.Casperson

Simple Empirical Order Parameter for a First-Order Quantum Phase Transition in Atomic Nuclei

doi: 10.1103/PhysRevLett.100.142501
Citations: PlumX Metrics


2008BO15      Phys.Rev. C 77, 044302 (2008)

I.Boztosun, D.Bonatsos, I.Inci

Analytical solutions of the Bohr Hamiltonian with the Morse potential

NUCLEAR STRUCTURE 98,100,102,104Ru, 102,104,106,108,110,112,114,116Pd, 106,108,110,112,114,116,118,120Cd, 118,120,122,124,126,128,130,132,134Xe, 130,132,134,136,142Ba, 134,136,138Ce, 140,148,150Nd, 140,142,152,154Sm, 142,144,152,154,156,158,160,162Gd, 154,158,160,162,164,166Dy, 156,160,162,164,166,168,170Er, 164,166,168,170,172,174,176,178Yb, 168,170,172,174,176,178,180Hf, 176,178,180,182,184,186W, 186,188,190,192,194,196,198,200Pt; 178,180,184,186,188Os, 228Ra, 228,230,232Th, 232,234,236,238U, 238,240,242Pu, 248Cm, 250Cf, calculated Bohr Hamilton and Morse Potential, angular momenta, bandheads and energy spacings of g.s., first 2+ and 4+ states.

doi: 10.1103/PhysRevC.77.044302
Citations: PlumX Metrics


2008BO22      Phys.Rev.Lett. 101, 022501 (2008)

D.Bonatsos, E.A.McCutchan, R.F.Casten

Unified Description of 0+ States in a Large Class of Nuclear Collective Models

NUCLEAR STRUCTURE 150Nd, 152Sm, 154,156,158Gd; calculated level energies for 0+ states using collective models. Compared results to data.

doi: 10.1103/PhysRevLett.101.022501
Citations: PlumX Metrics


2007BO45      Rom.J.Phys. 52, 779 (2007)

D.Bonatsos, D.Lenis, D.Petrellis, P.A.Terziev, I.Yigitoglu

γ-Rigid Solution of the Bohr Hamiltonian for γ=30 degrees Compared to the E(5) Critical Point Symmetry

NUCLEAR STRUCTURE 128,130,132Xe; calculated level energies and B(E2) using the Z(4) model.


2007BO46      Phys.Rev. C 76, 064312 (2007)

D.Bonatsos, E.A.McCutchan, N.Minkov, R.F.Casten, P.Yotov, D.Lenis, D.Petrellis, I.Yigitoglu

Exactly separable version of the Bohr Hamiltonian with the Davidson potential

NUCLEAR STRUCTURE 154Sm, 156,158,160,162Gd, 158,160,162,164,166Dy, 160,162,164,166,168,170Er, 164,166,168,170,172,174,176,178Yb, 168,170,172,174,176,178,180Hf, 176,178,180,182,184,186W, 180,182,184,186,188Os, 228Ra, 228,230,232Th, 232,234,236,238U, 238,240,242Pu, 248Cm, 250Cf; calculated excitation energy ratios, angular momenta, B(E2) ratios, bandhead energies, deformation parameters using Bohr Hamiltonian with Davidson Potential, compared with experimental values.

doi: 10.1103/PhysRevC.76.064312
Citations: PlumX Metrics


2007MC03      Phys.Rev. C 76, 024306 (2007)

E.A.McCutchan, D.Bonatsos, N.V.Zamfir, R.F.Casten

Staggering in γ-band energies and the transition between different structural symmetries in nuclei

doi: 10.1103/PhysRevC.76.024306
Citations: PlumX Metrics


2007MC04      Phys.Atomic Nuclei 70, 1462 (2007)

E.A.McCutchan, D.Bonatsos, N.V.Zamfir

Connecting the X(5)-β2, X(5)-β4, and X(3) models to the shape/phase transition region of the interacting boson model

NUCLEAR STRUCTURE 146Ce, 158Er, 172,174,176Os, 186Pt; calculated level energies, B(E2) using geometric models and IBA. Compared the results from the models to each other and to experimental data.

doi: 10.1134/S1063778807080236
Citations: PlumX Metrics


2007MI30      Phys.Atomic Nuclei 70, 1470 (2007)

N.Minkov, S.B.Drenska, P.Yotov, D.Bonatsos, W.Scheid

Collective states of odd nuclei in a model with quadrupole-octupole degrees of freedom

NUCLEAR STRUCTURE 219,221,223,225Fr, 223,225Th; calculated level energies of positive and negative parity bands using the collective axial quadrupole-octupole Hamiltonian.

doi: 10.1134/S1063778807080248
Citations: PlumX Metrics


2007MI33      Phys.Rev. C 76, 034324 (2007)

N.Minkov, S.Drenska, P.Yotov, S.Lalkovski, D.Bonatsos, W.Scheid

Coherent quadrupole-octupole modes and split parity-doublet spectra in odd-A nuclei

NUCLEAR STRUCTURE Nd, Pm, Sm, eu, Gd, Tb, Dy, Ho, Fr, Ra, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk; calculated level energies, parity doublet splittings, B(E1), B(E2) using a collective model. Compared results to available data.calculated energies.

doi: 10.1103/PhysRevC.76.034324
Citations: PlumX Metrics


2006BO02      Phys.Lett. B 632, 238 (2006)

D.Bonatsos, D.Lenis, D.Petrellis, P.A.Terziev, I.Yigitoglu

X(3): an exactly separable γ-rigid version of the X(5) critical point symmetry

NUCLEAR STRUCTURE 186Pt, 172Os, 156Dy, 154Gd, 152Sm, 150Nd; calculated ground and vibrational bands level energies, B(E2), critical point symmetry, shape transition features. Analytic quadrupole octupole axially symmetric model, comparison with data.

doi: 10.1016/j.physletb.2005.10.060
Citations: PlumX Metrics


2006BO24      Phys.Rev. C 74, 044306 (2006)

D.Bonatsos, D.Lenis, N.Pietralla, P.A.Terziev

γ-soft analog of the confined β-soft rotor model

NUCLEAR STRUCTURE 128,130Xe; calculated levels, J, π, B(E2), symmetry features. γ-soft analog of the confined β-soft rotor model.

doi: 10.1103/PhysRevC.74.044306
Citations: PlumX Metrics


2006FO05      Phys.Rev. C 73, 044310 (2006)

R.Fossion, D.Bonatsos, G.A.Lalazissis

E(5), X(5), and prolate to oblate shape phase transitions in relativistic Hartree-Bogoliubov theory

NUCLEAR STRUCTURE 96,98,100,102,104,106,108,110,112,114Pd, 118,120,122,124,126,128,130,132,134Xe, 118,120,122,124,126,128,130,132,134,136,138Ba, 144,146,148,150,152,154,156Nd, 146,148,150,152,154,156,158Sm, 148,150,152,154,156Gd, 150,152,154,156,158Dy, 180Hf, 182,184,186W, 188,190,192,194,196,198,200Os, 184,186W, 188,190,192,194,196,198,200,202Pt, 198,200Hg; calculated potential energy surfaces; deduced symmetry and shape transition features. Relativistic mean-field approach, NL3 force.

doi: 10.1103/PhysRevC.73.044310
Citations: PlumX Metrics


2006LE09      Phys.Lett. B 633, 474 (2006)

D.Lenis, D.Bonatsos

Parameter-free solution of the Bohr Hamiltonian for actinides critical in the octupole mode

NUCLEAR STRUCTURE 218,220,222,224,226,228Ra, 220,222,224,226,228,230,232,234Th; calculated ground and vibrational bands level energies, B(E1), B(E2), B(E3), critical point symmetry, shape transition features. Analytic quadrupole octupole axially symmetric model, comparison with data.

doi: 10.1016/j.physletb.2005.12.016
Citations: PlumX Metrics


2006MC04      Phys.Rev. C 74, 034306 (2006)

E.A.McCutchan, D.Bonatsos, N.V.Zamfir

Connecting the X(5)-β2, X(5)-β4, and X(3) models to the shape/phase-transition region of the interacting boson model

NUCLEAR STRUCTURE 146Ce, 158Er, 172,174,176Os, 186Pt; calculated levels, J, π, symmetry features.

doi: 10.1103/PhysRevC.74.034306
Citations: PlumX Metrics


2006MI11      Phys.Rev. C 73, 044315 (2006)

N.Minkov, P.Yotov, S.Drenska, W.Scheid, D.Bonatsos, D.Lenis, D.Petrellis

Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes

NUCLEAR STRUCTURE 150Nd, 152Sm, 154Gd, 156Dy; calculated energy vs spin, transition probabilities for alternating-parity rotational bands, coupling of quadrupole and octupole degrees of freedom.

doi: 10.1103/PhysRevC.73.044315
Citations: PlumX Metrics


2005BO18      Phys.Rev. C 71, 064309 (2005)

D.Bonatsos, D.Lenis, N.Minkov, D.Petrellis, P.Yotov

Analytic description of critical-point actinides in a transition from octupole deformation to octupole vibrations

NUCLEAR STRUCTURE 220,222,224,226,228,230,232,234Th, 218,220,222,224,226,228,230Ra; calculated ground and vibrational bands level energies, B(E1), B(E2), critical point symmetry, shape transition features.Analytic quadrupole octupole axially symmetric model, comparison with data.

doi: 10.1103/PhysRevC.71.064309
Citations: PlumX Metrics


2005BO30      Phys.Lett. B 621, 102 (2005)

D.Bonatsos, D.Lenis, D.Petrellis, P.A.Terziev, I.Yigitoglu

γ-rigid solution of the Bohr Hamiltonian for γ = 30 degrees compared to the E(5) critical point symmetry

NUCLEAR STRUCTURE 128,130,132Xe; analyzed levels, J, π, B(E2); deduced symmetry features.

doi: 10.1016/j.physletb.2005.06.047
Citations: PlumX Metrics


2004BO02      Phys.Rev. C 69, 014302 (2004)

D.Bonatsos, D.Lenis, N.Minkov, P.P.Raychev, P.A.Terziev

Sequence of potentials lying between the U(5) and X(5) symmetries

NUCLEAR STRUCTURE 148Nd, 160Yb, 158Er; calculated ground and vibrational bands level energies, J, π, B(E2). Harmonic oscillator, X(5) symmetries.

doi: 10.1103/PhysRevC.69.014302
Citations: PlumX Metrics


2004BO14      Phys.Rev. C 69, 044316 (2004)

D.Bonatsos, D.Lenis, N.Minkov, P.P.Raychev, P.A.Terziev

Sequence of potentials interpolating between the U(5) and E(5) symmetries

NUCLEAR STRUCTURE 100Pd, 98Ru; calculated levels, J, π, B(E2). Bohr collective Hamiltonian, extensions of E(5) model.

doi: 10.1103/PhysRevC.69.044316
Citations: PlumX Metrics


2004BO15      Phys.Lett. B 588, 172 (2004)

D.Bonatsos, D.Lenis, D.Petrellis, P.A.Terziev

Z(5): critical point symmetry for the prolate to oblate nuclear shape phase transition

NUCLEAR STRUCTURE 192,194,196Pt; analyzed transitions B(E2); critical point symmetry, shape transition features.

doi: 10.1016/j.physletb.2004.03.029
Citations: PlumX Metrics


2004BO19      Phys.Lett. B 584, 40 (2004)

D.Bonatsos, D.Lenis, N.Minkov, D.Petrellis, P.P.Raychev, P.A.Terziev

Ground state bands of the E(5) and X(5) critical symmetries obtained from Davidson potentials through a variational procedure

doi: 10.1016/j.physletb.2004.01.018
Citations: PlumX Metrics


2004BO33      Phys.Rev. C 70, 024305 (2004)

D.Bonatsos, D.Lenis, N.Minkov, D.Petrellis, P.P.Raychev, P.A.Terziev

E(5) and X(5) critical point symmetries obtained from Davidson potentials through a variational procedure

doi: 10.1103/PhysRevC.70.024305
Citations: PlumX Metrics


2004BO38      Yad.Fiz. 67, 1795 (2004); Phys.Atomic Nuclei 67, 1767 (2004)

D.Bonatsos, D.Lenis, N.Minkov, P.P.Raychev, P.A.Terziev

Extended E(5) and X(5) Symmetries: Series of Models Providing Parameter-Independent Predictions

doi: 10.1134/1.1811176
Citations: PlumX Metrics


2002BO48      Phys.Rev. C 66, 054306 (2002)

D.Bonatsos, B.A.Kotsos, P.P.Raychev, P.A.Terziev

Rotationally invariant Hamiltonians for nuclear spectra based on quantum algebras

NUCLEAR STRUCTURE 222,224,226,228,230,232,234Th; calculated level energies. Quantum algebra, rotationally invariant Hamiltonian. Comparison with data.

doi: 10.1103/PhysRevC.66.054306
Citations: PlumX Metrics


2001MI10      Phys.Rev. C63, 044305 (2001)

N.Minkov, S.B.Drenska, P.P.Raychev, R.P.Roussev, D.Bonatsos

' Beat ' Patterns for the Odd-Even Staggering in Octupole Bands from a Quadrupole-Octupole Hamiltonian

doi: 10.1103/PhysRevC.63.044305
Citations: PlumX Metrics


2001MI26      Yad.Fiz. 64, No 6, 1173 (2001); Phys.Atomic Nuclei 64, 1098 (2001)

N.Minkov, S.B.Drenska, P.P.Raychev, R.P.Roussev, D.Bonatsos

Rotations of Nuclei with Reflection Asymmetry Correlations

doi: 10.1134/1.1383624
Citations: PlumX Metrics


2000BO34      Phys.Rev. C62, 024301 (2000); Erratum Phys.Rev. C63, 049902 (2001)

D.Bonatsos, C.Daskaloyannis, S.B.Drenska, N.Karoussos, N.Minkov, P.P.Raychev, R.P.Roussev

ΔI = 1 Staggering in Octupole Bands of Light Actinides: ' Beat ' Patterns

NUCLEAR STRUCTURE 218,220,222Rn, 218,220,222,224,226Ra, 220,222,224,226,228Th; analyzed octupole bands transition energies; deduced beat patterns, possible mechanisms. Predictions of algebraic models discussed.

doi: 10.1103/PhysRevC.62.024301
Citations: PlumX Metrics


2000BO44      Trans.Bulg.Nucl.Soc. 5, 18 (2000)

D.Bonatsos, N.Karoussos, C.Daskaloyannis, S.B.Drenska, N.Minkov, P.P.Raychev, R.P.Roussev, J.Maruani

Symmetries in Nuclei, Molecules and Atomic Clusters


2000MI18      Phys.Rev. C61, 064301 (2000)

N.Minkov, S.B.Drenska, P.P.Raychev, R.P.Roussev, D.Bonatsos

Ground-γ Band Mixing and Odd-Even Staggering in Heavy Deformed Nuclei

NUCLEAR STRUCTURE 156Gd, 156,160,162Dy, 162,164,166Er, 170Yb, 228,232Th; analyzed vibrational bands odd-even staggering effect, role of band mixing. Vector boson model with SU(3) dynamical symmetry.

doi: 10.1103/PhysRevC.61.064301
Citations: PlumX Metrics


2000MI29      Trans.Bulg.Nucl.Soc. 5, 192 (2000)

N.Minkov, S.Drenska, P.Raychev, R.Roussev, D.Bonatsos

Ground-γ Band Mixing and ΔL = 1 Staggering in Heavy Deformed Nuclei

NUCLEAR STRUCTURE 164,166Er; analyzed rotational band level staggering; deduced ground-γ band mixing. Vector boson model.


1999BO43      Prog.Part.Nucl.Phys. 43, 537 (1999)

D.Bonatsos, C.Daskaloyannis

Quantum Groups and Their Applications in Nuclear Physics

doi: 10.1016/S0146-6410(99)00100-3
Citations: PlumX Metrics


1999MI23      Phys.Rev. C60, 034305 (1999)

N.Minkov, S.B.Drenska, P.P.Raychev, R.P.Roussev, D.Bonatsos

Ground-γ Band Coupling in Heavy Deformed Nuclei and SU(3) Contraction Limit

NUCLEAR STRUCTURE 152,154Sm, 154,156,158,160Gd, 158,160,162,164Dy, 162,164,166,168,170Er, 168,170,172,174,176Yb, 174,178Hf, 182,184,186W, 230,232Th, 234,238U; analyzed ground, vibrational bands levels, interband, intraband transitions B(E2); deduced band mixing features. Vector-boson model with SU(3) dynamical symmetry.

doi: 10.1103/PhysRevC.60.034305
Citations: PlumX Metrics


1997MI10      Phys.Rev. C55, 2345 (1997)

N.Minkov, S.B.Drenska, P.P.Raychev, R.P.Roussev, D.Bonatsos

Broken SU(3) Symmetry in Deformed Even-Even Nuclei

NUCLEAR STRUCTURE 164Dy, 164,166,168Er, 168,172Yb, 176,178Hf, 238U; calculated levels, transition ratios, energy rms factor. Collective vector-boson model.

doi: 10.1103/PhysRevC.55.2345
Citations: PlumX Metrics


1996BO31      Roum.J.Phys. 41, 109 (1996)

D.Bonatsos, C.Daskaloyannis, P.Kolokotronis, D.Lenis

Quantum Algebras in Nuclear Structure


1996MI19      J.Phys.(London) G22, 1633 (1996)

N.Minkov, S.B.Drenska, P.P.Raychev, R.P.Roussev, D.Bonatsos

The SU(q)(2) Rotator Model in Excited Collective Bands of Even Deformed Nuclei

NUCLEAR STRUCTURE 152,154Sm, 154,156,158,160Gd, 160,162,164Dy, 160,162,164,166,168,170Er, 166,168,170,172Yb, 172,174,176,178,180Hf, 178,180,182,184W, 232Th, 232,234U; analyzed (β)-, (γ)-bands levels, B(λ) data. Rotator SU(q)(2) model.

doi: 10.1088/0954-3899/22/11/010
Citations: PlumX Metrics


1994BO21      Phys.Rev. C50, 497 (1994)

D.Bonatsos, C.Daskaloyannis, A.Faessler, P.P.Raychev, R.P.Roussev

Quantum Algebraic Description of Vibrational and Transitional Nuclear Spectra

NUCLEAR STRUCTURE 150,152,154Sm, 152,154,158Gd, 154,156,162Dy, 156,158,166Er; calculated levels. Quantum algebraic description, SU(q)(2) model.

doi: 10.1103/PhysRevC.50.497
Citations: PlumX Metrics


1994PR07      J.Phys.(London) G20, 1209 (1994); Erratum J.Phys.(London) G21, 591 (1995)

C.Providencia, L.Brito, J.da Providencia, D.Bonatsos, D.P.Menezes

The q-Deformed Moszkowski Model: High-spin states

doi: 10.1088/0954-3899/20/8/011
Citations: PlumX Metrics


1992BO04      Nucl.Phys. A539, 189 (1992)

M.Borromeo, D.Bonatsos, H.Muther, A.Polls

Effects of Short-Range Correlations on the Self-Energy in the Optical Model of Finite Nuclei

NUCLEAR STRUCTURE 16O; calculated interacting nucleon self-energy real, imaginary parts. Realistic one-boson-exchange potential, G-matrix approach.

doi: 10.1016/0375-9474(92)90266-M
Citations: PlumX Metrics


1991BO05      Phys.Rev. C43, R952 (1991)

D.Bonatsos, L.D.Skouras, J.Rikovska

Successive Energy Ratios in Medium- and Heavy-Mass Nuclei as Indicators of Different Kinds of Collectivity

NUCLEAR STRUCTURE A=74-248; analyzed level energy ratio systematics; deduced different kinds of collectivity.

doi: 10.1103/PhysRevC.43.R952
Citations: PlumX Metrics


1991BO06      J.Phys.(London) G17, 63 (1991)

D.Bonatsos, L.D.Skouras, J.Rikovska

Tests of Phenomenological Collective Models Based on Energy Ratios and Staggering Systematics

NUCLEAR STRUCTURE A=74-248; analyzed band structure, level systematics; deduced collective models applicability.

doi: 10.1088/0954-3899/17/1/006
Citations: PlumX Metrics


1991BO11      J.Phys.(London) G17, L67 (1991)

D.Bonatsos, S.B.Drenska, P.P.Raychev, R.P.Roussev, Yu.F.Smirnov

Description of Superdeformed Bands by the Quantum Algebra SU(q)(2)

NUCLEAR STRUCTURE 134,136Nd, 150Gd, 162,152Dy, 192,194Hg, 174Yb, 248Cm; analyzed level data; deduced superdeformed band features. Quantum SU(q)(2) algebra.

doi: 10.1088/0954-3899/17/5/003
Citations: PlumX Metrics


1991BO13      J.Phys.(London) G17, 865 (1991)

D.Bonatsos, L.D.Skouras, J.Rikovska

Systematics of Energy Differences as Signs of Intruder Bands and Parameter Independent Tests of Interacting Boson Models for Octupole States

NUCLEAR STRUCTURE 160,162,164Dy, 164,166,168Er, 166,168Yb, 232Th, 234U; calculated energy level difference ratio; analyzed systematics; deduced intruder bands role.

doi: 10.1088/0954-3899/17/6/009
Citations: PlumX Metrics


1991BO45      J.Phys.(London) G17, 1803 (1991)

D.Bonatsos, L.D.Skouras, P.Van Isacker, M.A.Nagarajan

An Application of the Democratic Mapping to the sd and fp Shells

NUCLEAR STRUCTURE 20Ne, 42Sc, 44Ti; calculated levels. Democratic mapping method.

doi: 10.1088/0954-3899/17/12/004
Citations: PlumX Metrics


1990BO12      Nucl.Phys. A510, 55 (1990)

D.Bonatsos, H.Muther

Microscopic Calculation of the Optical-Model Potential for 40Ca

NUCLEAR REACTIONS 40Ca(p, p), (n, n), E not given; calculated optical potential. Microscopic method, momentum space, realistic one-boson exchange potential.

doi: 10.1016/0375-9474(90)90287-V
Citations: PlumX Metrics


1990BO47      Phys.Lett. 251B, 477 (1990)

D.Bonatsos, E.N.Argyres, S.B.Drenska, P.P.Raichev, R.P.Roussev, Yu.F.Smirnov

SU(q)(2) Description of Rotational Spectra and Its Relation to the Variable Moment of the Inertia Model

NUCLEAR STRUCTURE 176Yb, 178Hf, 232U, 238Pu; calculated levels. SU(q)(2) description.

doi: 10.1016/0370-2693(90)90782-2
Citations: PlumX Metrics


1989BO17      Nucl.Phys. A496, 23 (1989)

D.Bonatsos, H.Muther

Microscopic Calculation of the Optical-Model Potential for 16O

NUCLEAR STRUCTURE 16O; calculated optical potential. Microscopic approach.

doi: 10.1016/0375-9474(89)90214-5
Citations: PlumX Metrics


1988BO02      Phys.Lett. 200B, 1 (1988)

D.Bonatsos

Systematics of Odd-Even Staggering in γ-Bands as a Test for Phenomenological Collective Models

NUCLEAR STRUCTURE 152,154,158,160Gd, 154,156,158,160,162Dy, 146,148,150,152,154Sm, 156,158,160,162,164,166,168Er, 160,162,164,166,168,170,172,174Yb, 190,188,186,184,182Os; analyzed levels, band structure; deduced γ-band staggering systematics. 232Th, 166Yb, 164Er, 178Hf; calculated odd spin to even spin level displacements. Phenomenological collective models.

doi: 10.1016/0370-2693(88)91098-2
Citations: PlumX Metrics


1988BO11      J.Phys.(London) G14, 351 (1988)

D.Bonatsos

Unified Description of Deformed Even Nuclei in the SU(3) Limit of the Hybrid Model

NUCLEAR STRUCTURE 230,232Th, 232,234,236,238U, 242,244Pu, 248Cm, 184,180W, 160,162,164Dy, 168,170,172Yb, 164,166,168,170Er, 180,174,176,178Hf; calculated levels. Moshinsky hybrid model.

doi: 10.1088/0305-4616/14/3/011
Citations: PlumX Metrics


1988BO17      J.Phys.(London) G14, 569 (1988)

D.Bonatsos

Variable Moment of Inertia Models in the N(p)N(n) Scheme

NUCLEAR STRUCTURE Z ≈ 50-100; analyzed ground state moment of inertia systematics; deduced model parameter dependence. Variable moment of inertia models.

doi: 10.1088/0305-4616/14/5/015
Citations: PlumX Metrics


1988RI07      Phys.Lett. 211B, 259 (1988)

J.Rikovska, D.Bonatsos

Structure of Even-Even Actinides in the Interacting Boson Model and the N = 152 Subshell Closure

NUCLEAR STRUCTURE 224,226,228,230Ra, 226,228,230,232,234Th, 232,234,236,238U, 238,240,242,246Pu, 244,246,248Cm, 250Cf; calculated levels, B(E2). Interacting boson model.

doi: 10.1016/0370-2693(88)90899-4
Citations: PlumX Metrics


1987BO05      Phys.Lett. 187B, 1 (1987)

D.Bonatsos

Parameter Systematics of Variable Moment of Inertia Models in the N(p)N(n) Scheme

NUCLEAR STRUCTURE 166,168,170,172,174,176,178,180,182Hf, 172,174,176,178,180,182,184,186W, 172,174,176,178,180,182,184,186,188,190,192Os, 182,184,186,188,190,192,194,196,198Pt; analyzed variable moment of inertia parameters vs valence proton-neutron product; deduced parameter systematics. VMI models.

doi: 10.1016/0370-2693(87)90061-X
Citations: PlumX Metrics


1985BO20      Phys.Rev. C31, 2256 (1985)

D.Bonatsos

Simple Model for Backbending

NUCLEAR STRUCTURE 154Gd, 162,156,164Er, 156Dy, 104Pd, 126Ba, 244Pu, 186Os; analyzed yrast level systematics; deduced aligned angular momentum increase, VMI, rotational superband parameters, interband interaction strengths.

doi: 10.1103/PhysRevC.31.2256
Citations: PlumX Metrics


1984BO01      At.Data Nucl.Data Tables 30, 27 (1984)

D.Bonatsos, A.Klein

Energies of Ground-State Bands of Even Nuclei from Generalized Variable Moment of Inertia Models

NUCLEAR STRUCTURE A=78-256; analyzed ground state band levels; deduced best fit parameters. Generalized variable moment of inertia models.

doi: 10.1016/0092-640X(84)90007-X
Citations: PlumX Metrics


1984BO16      Phys.Rev. C29, 1879 (1984)

D.Bonatsos, A.Klein

Generalized Phenomenological Models of the Yrast Band

NUCLEAR STRUCTURE 122,124,126,130,132,144,146Ba, 156,158,160,162,164,166,168,170Er, 152,154,156,158,160Gd, 158,160,162,164,166,168,170,172,174Yb, 172,174,176,178,180,182,184,186,188,190,192Os, 172,174,176,178,180,182,184,186,188W, 118,120,122,124,126,128Xe; analyzed yrast band systematics; deduced model parameter dependences. Generalized phenomenological models.

doi: 10.1103/PhysRevC.29.1879
Citations: PlumX Metrics


Back to query form