NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 21, 2024.

Search: Author = M.M.Sharma

Found 39 matches.

Back to query form



2015RO13      Eur.Phys.J. A 51, 73 (2015)

R.Rodriguez-Guzman, L.M.Robledo, M.M.Sharma

Microscopic description of quadrupole collectivity in neutron-rich nuclei across the N = 126 shell closure

NUCLEAR STRUCTURE 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216Nd, 184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Sm, 186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220Gd, 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222Dy, 190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224Er, 192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226Yb, 194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228Hf, 196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230W; calculated gs quadrupole deformation, intrinsic deformation, energy potential surfaces, 2n separation energy, mass excess, neutron, proton single-particle energy, J, π using mean field and beyond with Gogny energy density functionals.

doi: 10.1140/epja/i2015-15073-4
Citations: PlumX Metrics


2009SA34      J.Phys.(London) G36, 115103 (2009)

A.A.Saldanha, A.R.Farhan, M.M.Sharma

Superheavy nuclei with the vector self-coupling of the ω-meson in relativistic mean-field theory

doi: 10.1088/0954-3899/36/11/115103
Citations: PlumX Metrics


2009SH01      Nucl.Phys. A816, 65 (2009)

M.M.Sharma

The breathing-mode giant monopole resonance and the surface compressibility in the relativistic mean-field theory

NUCLEAR STRUCTURE 40,48Ca, 90Zr, 120Sn, 208Pb; calculated isoscalar giant monopole resonance energy using relativistic mean-field theory.

doi: 10.1016/j.nuclphysa.2008.11.006
Citations: PlumX Metrics


2008HA13      Nucl.Phys. A803, 159 (2008)

M.M.Haidari, M.M.Sharma

Sigma-omega meson coupling and properties of nuclei and nuclear matter

NUCLEAR STRUCTURE 16O, 40,48Ca, 76Ni, 90Zr, 100,116,124,132Sn, 202,208,214Pb; calculated binding energies and charge radii of spherical nuclei. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated binding energies. 202,208,214Pb; calculated charge radii and isotopic shifts. 36,38,40,42Si, 80,86,88Sr, 108,110Mo, 120Xe, 174Yb; calculated binding energies and quadrupole deformation. 90Zr, 120Sn, 208Pb; calculated GMR energies. Lagrangian model using relativistic mean field theory meson coupling.

doi: 10.1016/j.nuclphysa.2008.02.296
Citations: PlumX Metrics


2006FA04      Phys.Rev. C 73, 045803 (2006)

A.R.Farhan, M.M.Sharma

Strength of nuclear shell effects at N = 126 in the r-process region

NUCLEAR STRUCTURE Z=36-72; calculated two-neutron separation energies for even-even nuclides near neutron shell closures; deduced shell effects. Relativistic mean-field approach, astrophysical implications discussed.

doi: 10.1103/PhysRevC.73.045803
Citations: PlumX Metrics


2005SH19      Phys.Rev. C 71, 054310 (2005)

M.M.Sharma, A.R.Farhan, G.Munzenberg

α-decay properties of superheavy elements Z = 113-125 in the relativistic mean-field theory with vector self-coupling of ω meson

RADIOACTIVITY 307,308125, 303,304123, 299,300121, 295,296119, 291,292Ts, 287,288Mc, 283,284Nh, 279,280Rg, 275,276Mt, 272Bh(α); calculated Qα, β2, T1/2. Relativistic mean-field theory with vector self-coupling of ω meson.

doi: 10.1103/PhysRevC.71.054310
Citations: PlumX Metrics


2003FA13      Nucl.Phys. A719, 221c (2003)

A.R.Farhan, M.M.Sharma

Current status of nuclear shell effects near the r-process path

doi: 10.1016/S0375-9474(03)00922-9
Citations: PlumX Metrics


2003OB04      Nucl.Phys. A719, 283c (2003)

H.Oberhummer, A.Csoto, M.Fairbairn, H.Schlattl, M.M.Sharma

Temporal variation of coupling constants and nucleosynthesis

doi: 10.1016/S0375-9474(03)00933-3
Citations: PlumX Metrics


2002SH11      Phys.Rev. C65, 044301 (2002)

M.M.Sharma, A.R.Farhan

Nuclear Shell Effects Near the r-Process Path in the Relativistic Hartree-Bogoliubov Theory

NUCLEAR STRUCTURE Zn, Pd, Ru, Mo, Zr, Sr, Kr; calculated two-neutron separation energies, single-particle levels; deduced shell effects. 124Zr; calculated neutron single-particle levels. 120Zr; calculated spin-orbit potential. Relativistic Hartree-Bogoliubov theory.

doi: 10.1103/PhysRevC.65.044301
Citations: PlumX Metrics


2001SH29      Nucl.Phys. A688, 353c (2001)

M.M.Sharma, A.R.Farhan

Nuclear Shell Effects Near the r-Process Path

NUCLEAR STRUCTURE Zn, Mo, Zr, Sr, Kr; calculated mass, 2-neutron separation energy. Comparison with data, effects of nuclear potential discussed.

doi: 10.1016/S0375-9474(01)00726-6
Citations: PlumX Metrics


2000SH16      Phys.Rev. C61, 054306 (2000)

M.M.Sharma, A.R.Farhan, S.Mythili

Shell Effects in Nuclei with Vector Self-Coupling of the ω Meson in the Relativistic Hartree-Bogoliubov Theory

NUCLEAR STRUCTURE Ni, Sn; calculated binding energies, two-neutron separation energies; deduced shell effects. 58,80Ni, 102,134Sn; calculated neutron single-particle level energies. Relativistic mean-field approach, several models compared.

doi: 10.1103/PhysRevC.61.054306
Citations: PlumX Metrics


1999SH16      Phys.Rev. C59, 1379 (1999)

M.M.Sharma, S.Mythili, A.R.Farhan

Carbon Isotopes Near Drip Lines in the Relativistic Mean-Field Theory

NUCLEAR STRUCTURE 10,12,14,16,18,22,24C; calculated binding energies, deformations, radii, single-particle levels. Relativisitic mean-field theory, meson scalar, vector self-coupling.

doi: 10.1103/PhysRevC.59.1379
Citations: PlumX Metrics


1998LA02      Nucl.Phys. A628, 221 (1998)

G.A.Lalazissis, A.R.Farhan, M.M.Sharma

Light Nuclei Near Neutron and Proton Drip Lines in Relativistic Mean-Field Theory

NUCLEAR STRUCTURE 18,20,22,24,26,28,30,32,34,36,38Ne, 20,22,24,26,28,30,32,34,36,38,40,42,44Mg, 22,24,26,28,30,32,34,36,38,40,42,44,46Si, 26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56S, 34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74Ti, 38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80Cr, 28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60Ar; calculated binding energies, radii, densities, deformation, other ground-state properties. Relativistic mean-field theory.

doi: 10.1016/S0375-9474(97)00630-1
Citations: PlumX Metrics


1998RA08      Phys.Rev. C57, 2031 (1998)

T.Rauscher, R.Bieber, H.Oberhummer, K.-L.Kratz, J.Dobaczewski, P.Moller, M.M.Sharma

Dependence of Direct Neutron Capture on Nuclear-Structure Models

NUCLEAR STRUCTURE 124,126,128,130,132,134,136,138,140,142,144Sn, 208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238Pb; calculated neutron capture σ. Several structure models compared.

doi: 10.1103/PhysRevC.57.2031
Citations: PlumX Metrics


1996LA03      Nucl.Phys. A597, 35 (1996)

G.A.Lalazissis, M.M.Sharma, P.Ring

Rare-Earth Nuclei: Radii, isotope-shifts and deformation properties in the relativistic mean-field theory

NUCLEAR STRUCTURE 130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164Sm, 138,140,142,144,146,148,150,152,154,156,158,160,162,164,166Gd, 142,144,146,148,150,152,154,156,158,160,162,164,166,168Dy, 142,144,146,148,150,152,154,156,158,160,162,164,166,168,170Er, 154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184Yb; calculated binding energy, charge, neutron radii, isotope shifts, deformation related features. Relativistic mean field theory.

doi: 10.1016/0375-9474(95)00436-X
Citations: PlumX Metrics


1996LA24      Nucl.Phys. A608, 202 (1996)

G.A.Lalazissis, M.M.Sharma, P.Ring, Y.K.Gambhir

Superheavy Nuclei in the Relativistic Mean-Field Theory

NUCLEAR STRUCTURE Z=102-118; calculated two-nucleon separation energies, α-decay T1/2, β2, β4 deformations. Binding, nucleon single particle-energies, shell corrections calculated for some cases, relativistic mean field theory.

doi: 10.1016/S0375-9474(96)00273-4
Citations: PlumX Metrics


1995LA07      Nucl.Phys. A586, 201 (1995)

G.A.Lalazissis, M.M.Sharma

Ground-State Properties of Exotic Nuclei Near Z = 40 in the Relativistic Mean-Field Theory

NUCLEAR STRUCTURE 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110Sr, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110Zr, 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Kr; calculated binding energy, rms charge, neutron radii, isotope shifts, neutron skin thickness, shape coexistence (in some cases), quadrupole deformations. Relativistic mean field theory.

doi: 10.1016/0375-9474(94)00519-S
Citations: PlumX Metrics


1995SH13      Phys.Rev.Lett. 74, 3744 (1995)

M.M.Sharma, G.Lalazissis, J.Konig, P.Ring

Isospin Dependence of the Spin-Orbit Force and Effective Nuclear Potentials

NUCLEAR MOMENTS 200,202,204,206,208,210,212Pb; analyzed charge radii isotope shifts. Effective nuclear potentials, density dependent Hartree-Fock approach, effective Skyrme-like energy functional, spin-orbit potential iso-spin dependence.

doi: 10.1103/PhysRevLett.74.3744
Citations: PlumX Metrics


1994SH09      Phys.Rev.Lett. 72, 1431 (1994)

M.M.Sharma, G.A.Lalazissis, W.Hillebrandt, P.Ring

Shell Effects in Nuclei Near the Neutron-Drip Line

NUCLEAR STRUCTURE 110,112,114,116,118,120,122,124,128,132,134,136Zr; calculated binding energy, quadrupole deformation, single particle levels. Relativistic mean field theory.

doi: 10.1103/PhysRevLett.72.1431
Citations: PlumX Metrics


1994SH25      Phys.Rev.Lett. 73, 1870 (1994)

M.M.Sharma, G.A.Lalazissis, W.Hillebrandt, P.Ring

Sharma et al. Reply:

NUCLEAR STRUCTURE A=116-136; analyzed structure calculation. Skyrme approach, relativistic mean field approach comparison.

doi: 10.1103/PhysRevLett.73.1870
Citations: PlumX Metrics


1994SH36      Ann.Phys.(New York) 231, 110 (1994)

M.M.Sharma, M.A.Nagarajan, P.Ring

The Relativistic Mean-Field, Effective Mass and the Compression Properties of Nuclei

NUCLEAR STRUCTURE 16O; calculated p-shell spin-orbit splitting vs m(σ). Relativistic mean field, effective mass, compression properties.

doi: 10.1006/aphy.1994.1035
Citations: PlumX Metrics


1994ST14      Phys.Rev. C50, 1445 (1994)

M.V.Stoitsov, P.Ring, M.M.Sharma

Generator Coordinate Calculations for Breathing-Mode Giant Monopole Resonance in the Relativistic Mean-Field Theory

NUCLEAR STRUCTURE 16O, 40Ca, 90Zr, 208Pb; calculated giant monopole resonance, ground state energy, mass rms radii. Relativistic mean field theory, generator coordinate method.

doi: 10.1103/PhysRevC.50.1445
Citations: PlumX Metrics


1994ST22      J.Phys.(London) G20, L149 (1994)

M.V.Stoitsov, M.L.Cescato, P.Ring, M.M.Sharma

Nuclear Breathing Mode in the Relativistic Mean-Field Theory

NUCLEAR STRUCTURE 208Pb, 90Zr, 40Ca, 16O; calculated breathing mode collective mass incompressibility. Relativistic mean field theory.

doi: 10.1088/0954-3899/20/12/003
Citations: PlumX Metrics


1993SH13      Phys.Lett. 312B, 377 (1993)

M.M.Sharma, M.A.Nagarajan, P.Ring

Rho Meson Coupling in the Relativistic Mean Field Theory and Description of Exotic Nuclei

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 116,124Sn, 208Pb; calculated binding energy, charge, neutron radii percentage deviations, neutron skin thickness. 112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142Xe; calculated binding energy, charge radii, deformations; deduced ρ-meson coupling role. Relativistic mean field theory.

doi: 10.1016/0370-2693(93)90970-S
Citations: PlumX Metrics


1993SH24      Phys.Lett. 317B, 9 (1993)

M.M.Sharma, G.A.Lalazissis, P.Ring

Anomaly in the Charge Radii of Pb Isotopes

NUCLEAR STRUCTURE 190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated binding energies, charge radii, isotope shifts; deduced anomalous behavior explanation. Relativistic mean field theory.

doi: 10.1016/0370-2693(93)91561-Z
Citations: PlumX Metrics


1992SH10      Phys.Rev. C45, 2514 (1992)

M.M.Sharma, P.Ring

Neutron Skin of Spherical Nuclei in Relativistic and Nonrelativistic Mean-Field Approaches

NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sn; calculated charge radii. 40,48Ca, 58,64Ni, 90Zr, 116,124Sn, 140Ce, 208Pb; calculated neutron rms radii, neutron-proton radius ratio to matter radius; deduced neutron rms radius increase with isospin. Relativistic mean-field approach, Hartree approximation.

doi: 10.1103/PhysRevC.45.2514
Citations: PlumX Metrics


1992SH18      Phys.Rev. C46, 1715 (1992)

M.M.Sharma, P.Ring

Relativistic Mean-Field Description of Neutron-Deficient Platinum Isotopes

NUCLEAR STRUCTURE 184,186,188,190,192,194,196,198Pt; calculated binding energy per nucleon, deformation parameters, rms charge radii changes, neutron skin thickness. Relativistic mean field approach.

doi: 10.1103/PhysRevC.46.1715
Citations: PlumX Metrics


1991CI04      Phys.Rev. C43, 2622 (1991)

O.Civitarese, A.G.Dumrauf, M.Reboiro, P.Ring, M.M.Sharma

Effect of Pairing on Breathing Mode and Nuclear Matter Compressibility

NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sn; calculated giant resonance strength distribution; deduced pairing effect role on breathing mode excitation. Quasiparticle RPA.

doi: 10.1103/PhysRevC.43.2622
Citations: PlumX Metrics


1991KO23      Nucl.Phys. A533, 95 (1991)

W.Koepf, M.M.Sharma, P.Ring

Scalar Coupling in Relativistic Mean Field Theory and Properties of Nuclei and Nuclear Matter

NUCLEAR STRUCTURE 208Pb; calculated proton baryon density, effective mass, neutron, proton, charge, rms radii, binding energy per particle. 16O; calculated effective mass, neutron, proton, charge, rms radii, binding energy per particle. Relativistic mean field theory.

doi: 10.1016/0375-9474(91)90821-M
Citations: PlumX Metrics


1991KO36      Z.Phys. A340, 119 (1991)

W.Koepf, Y.K.Gambhir, P.Ring, M.M.Sharma

Neutron Halo in Lithium Nuclei: A relativistic mean-field approach

NUCLEAR STRUCTURE 6,7,8,9,10,11Li; calculated binding energy matter, charge radii, two-neutron separation energies, quadrupole, hexadecapole moments. Relativisitic mean field approach.

doi: 10.1007/BF01303823
Citations: PlumX Metrics


1990BO25      Nucl.Phys. A515, 173 (1990)

W.T.A.Borghols, S.Brandenburg, J.H.Meier, J.M.Schippers, M.M.Sharma, A.van der Woude, M.N.Harakeh, A.Lindholm, L.Nilsson, S.Crona, A.Hakansson, L.P.Ekstrom, N.Olsson, R.de Leo

Neutron Decay of the Giant Resonance Region in 124Sn and Especially of the Giant Monopole Resonance

NUCLEAR REACTIONS 124Sn(α, α'), E=120 MeV; measured σ(θα, θn) vs excitation energy. 124Sn deduced giant resonance, neutron decay characteristics. Statistical model calculations. 124Sn(d, t), E=50 MeV; measured σ(Et). 123Sn deduced level structure, low lying hole states.

doi: 10.1016/0375-9474(90)90365-S
Citations: PlumX Metrics


1989BO34      Nucl.Phys. A504, 231 (1989)

W.T.A.Borghols, S.Brandenburg, J.H.Meier, J.M.Schippers, M.M.Sharma, A.van der Woude, M.N.Harakeh, A.Lindholm, L.Nilsson, S.Crona, A.Hakansson, L.P.Ekstrom, N.Olsson, R.De Leo

Particle Decay of the Giant Resonance Region in 90Zr and Especially of the Giant Monopole Resonance

NUCLEAR REACTIONS 90Zr(α, α'n), (α, α'p), E=120 MeV; measured α'p-, α'n-coin. 90Zr deduced giant resonance neutron, proton decay characteristics. Statistical model calculation.

doi: 10.1016/0375-9474(89)90344-8
Citations: PlumX Metrics


1989SH29      Nucl.Phys. A504, 337 (1989)

M.M.Sharma, W.Stocker, P.Gleissl, M.Brack

Nuclear Matter Incompressibility from a Semi-Empirical Analysis of Breathing-Mode Energies

NUCLEAR STRUCTURE A=20-200; analyzed breathing mode energies, incompressibilities; deduced liquid drop model parameters.

doi: 10.1016/0375-9474(89)90349-7
Citations: PlumX Metrics


1988SH38      Phys.Rev. C38, 2562 (1988)

M.M.Sharma, W.T.A.Borghols, S.Brandenburg, S.Crona, A.van der Woude, M.N.Harakeh

Giant Monopole Resonance in Sn and Sm Nuclei and the Compressibility of Nuclear Matter

NUCLEAR REACTIONS 112,114,116,120,124Sn, 144,148,150,152Sm(α, α'), E=120 MeV; measured σ(E, θ); deduced compressibility of nuclear matter. 112,114,116,120,124Sn, 144,148,150,152Sm deduced GQR, GMR, Γ, sum rule strength. DWBA analysis.

doi: 10.1103/PhysRevC.38.2562
Citations: PlumX Metrics


1987BO37      Phys.Lett. 197B, 37 (1987)

W.T.A.Borghols, S.Brandenburg, S.Crona, R.De Leo, L.P.Ekstrom, A.Hakansson, M.N.Harakeh, A.Lindholm, J.H.Meier, L.Nilsson, N.Olsson, J.M.Schippers, M.M.Sharma, A.van der Woude

Neutron Decay of the Giant Monopole Resonance in 124Sn

NUCLEAR REACTIONS 124Sn(α, α'n), E=120 MeV; measured σ(θα', θn). 124Sn deduced isoscalar giant monopole resonance neutron decay. 123Sn deduced hole state J, π, spectroscopic strength.

doi: 10.1016/0370-2693(87)90337-6
Citations: PlumX Metrics


1987VA10      Phys.Rev.Lett. 58, 2383 (1987)

A.van der Woude, W.T.A.Borghols, S.Brandenburg, M.M.Sharma

Comment on ' Compression Modulus of Nuclear Matter and Charge-Distribution Differences '

NUCLEAR STRUCTURE 28Si, 64,66Zn, 112,116,118,120,124Sn, 142Nd, 144Sm, 197Au, 208Pb; analyzed giant monople resonance data, E0 transition EWSR; deduced nuclear matter compression modulus parameters.

doi: 10.1103/PhysRevLett.58.2383
Citations: PlumX Metrics


1986SH17      Radiat.Eff. 93, 53 (1986)

M.M.Sharma, G.K.Mehta

Angular Distribution of Polar Light Particles in the Fission of 235-U

NUCLEAR REACTIONS 235U(n, F), E=thermal; measured σ(θα), σ(θt) following fission.

doi: 10.1080/00337578608207428
Citations: PlumX Metrics


1985SH10      Pramana 24, 131 (1985)

M.M.Sharma, G.K.Mehta

Angular Distribution in Ternary Fission

NUCLEAR REACTIONS 235U(n, F), E=0.1-1 MeV; measured σ(θα), anisotropy following fission. Particle telescope.

doi: 10.1007/BF02894824
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset33078.


1982SI08      J.Phys.(London) G8, L85 (1982)

A.K.Sinha, M.M.Sharma, S.C.L.Sharma, G.K.Mehta, D.M.Nadkarni

Polar and Equatorial Emission of Light Charged Particles in keV Neutron-Induced Fission

NUCLEAR REACTIONS, Fission 235U(n, F), E=thermal, 600 keV; measured proton, triton, α yields, polar, equatorial emission; deduced polar emission mechanism. E-ΔE telescope.

doi: 10.1088/0305-4616/8/6/006
Citations: PlumX Metrics


Back to query form