NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 22, 2024.

Search: Author = T.Marketin

Found 21 matches.

Back to query form

2021DI04      Nucl.Data Sheets 173, 144 (2021)

P.Dimitriou, I.Dillmann, B.Singh, V.Piksaikin, K.P.Rykaczewski, J.L.Tain, A.Algora, K.Banerjee, I.N.Borzov, D.Cano-Ott, S.Chiba, M.Fallot, D.Foligno, R.Grzywacz, X.Huang, T.Marketin, F.Minato, G.Mukherjee, B.C.Rasco, A.Sonzogni, M.Verpelli, A.Egorov, M.Estienne, L.Giot, D.Gremyachkin, M.Madurga, E.A.McCutchan, E.Mendoza, K.V.Mitrofanov, M.Narbonne, P.Romojaro, A.Sanchez-Caballero, N.D.Scielzo

Development of a Reference Database for Beta-Delayed Neutron Emission

COMPILATION Z=2-87; compiled β-delayed neutron emission data; deduced total delayed neutron yields, time-dependent group parameters in 6- and 8-group representation, and aggregate delayed neutron spectra.

doi: 10.1016/j.nds.2021.04.006
Citations: PlumX Metrics

2021DO03      Phys.Rev. C 103, 025810 (2021)

A.C.Dombos, A.Spyrou, F.Naqvi, S.J.Quinn, S.N.Liddick, A.Algora, T.Baumann, J.Brett, B.P.Crider, P.A.DeYoung, T.Ginter, J.Gombas, S.Lyons, T.Marketin, P.Moller, W.-J.Ong, A.Palmisano, J.Pereira, C.J.Prokop, P.Sarriguren, D.P.Scriven, A.Simon, M.K.Smith, S.Valenta

Total absorption spectroscopy of the β decay of 101, 102Zr and 109Tc

RADIOACTIVITY 101,102Zr, 109Tc(β-)[from 9Be(124Sn, X), E=120 MeV/nucleon, followed by separation of fragments using A1900 separator at NSCL-MSU]; measured Eγ, Iγ, implanted ions, (implants)γ-correlations using Summing NaI(Tl) (SuN) detector for total absorption spectroscopy; deduced β feedings as function of excitation energy, B(GT). Comparison with theoretical results from three different quasiparticle random-phase approximation (QRPA) models to investigate the ground-state shapes of the parent nuclei, and to test commonly used models that provide β-decay properties in r-process network calculations.

doi: 10.1103/PhysRevC.103.025810
Citations: PlumX Metrics

2021MI17      Phys.Rev. C 104, 044321 (2021)

F.Minato, T.Marketin, N.Paar

β-delayed neutron-emission and fission calculations within relativistic quasiparticle random-phase approximation and a statistical model

RADIOACTIVITY Z=8-110, N=11-209, A=19-318(β-), (β-n); calculated T1/2, β--delayed neutron emission (BDNE) branching ratios (P0n, P1n, P2n, P3n, P4n, P5n, P6n, P7n, P8n, P9n, P10n), mean number of delayed neutrons per beta-decay, and average delayed neutron kinetic energy, total beta-delayed fission and α emission branching ratios for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Z=93-110, N=184-200, A=224-318; calculated T1/2, β--delayed fission (BDF) branching ratios (P0f, P1f, P2f, P3f, P4f, P5f, P6f, P7f, P8f, P9f, P10f), total beta-delayed fission and beta-delayed neutron emission branching ratios for four fission barrier height models 140,162Sn; calculated β strength functions, β--delayed neutron branching ratios from P0n to P10n by pn-RQRPA+HFM and pn-RQRPA methods. 137,138,139,140,156,157,158,159,160,161,162Sb; calculated isotope production ratios as a function of excitation energy. 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156Pd, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159Ag, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250Os, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255Ir; calculated β-delayed one neutron branching ratio P1n by pn-RQRPA+HFM, pn-RQRPA, and FRDM+QRPA+HFM methods, and compared with available experimental data. 89Br, 138I; calculated β-delayed neutron spectrum by pn-RQRPA+HFM method, and compared with experimental spectra. 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330Fm; calculated fission barrier heights for HFB-14, FRDM, ETFSI and SBM models, mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99Ni, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,161,162,163,164,165,166,167,168,169,170Sn; calculated mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. Z=70-110, N=120-190; calculated β--delayed α branching ratios Pα (%) for FRDM fission barrier data. Fully self-consistent covariant density-functional theory (CDFT), with the ground states of all the nuclei calculated with the relativistic Hartree-Bogoliubov (RHB) model with the D3C* interaction, and relativistic proton-neutron quasiparticle random-phase approximation (pn-RQRPA) for β strength functions, with particle evaporations and fission from highly excited nuclear states estimated by Hauser-Feshbach statistical model (pn-RQRPA+HFM) for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Detailed tables of numerical data for β-delayed neutron emission (BDNE), β-delayed fission (BDF) and β-delayed α-particle emission branching ratios are given in the Supplemental Material of the paper.

doi: 10.1103/PhysRevC.104.044321
Citations: PlumX Metrics

2019PE18      J.Phys.(London) G46, 085103 (2019)

J.Petkovic, T.Marketin, G.Martinez-Pinedo, N.Paar

Self-consistent calculation of the reactor antineutrino spectra including forbidden transitions

NUCLEAR REACTIONS 235,238U, 239,241Pu(n, F)ν-bar/E, E thermal; calculated electron and antineutrino spectra.

doi: 10.1088/1361-6471/ab28f5
Citations: PlumX Metrics

2019YU02      Phys.Rev. C 99, 034318 (2019)

E.Yuksel, T.Marketin, N.Paar

Optimizing the relativistic energy density functional with nuclear ground state and collective excitation properties

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56Ca, 54,56,58,60,62,64,66,68,70,72Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 90Zr; calculated binding energies using DD-PCX, DD-PC1, and DD-ME2 interactions, charge radii. 90Zr, 120Sn, 208Pb; calculated isoscalar GMR energies. 48Ca, 68Ni, 208Pb, 112,116,118,120,122,124Sn; calculated dipole polarizabilities using RHB+(Q)RPA with DD-PCX, DD-PC1, and DD-ME2 interactions. 208Pb; calculated neutron skin thickness. Relativistic energy density functional with DD-PCX interaction, based on the RHB plus (Q)RPA, supplemented with the covariance analysis. Comparison with experimental data.

doi: 10.1103/PhysRevC.99.034318
Citations: PlumX Metrics

2017MA16      Acta Phys.Pol. B48, 641 (2017)

T.Marketin, A.Sieverding, M.-R.Wu, N.Paar, G.Martinez-Pinedo

Microscopic Calculations of β-decay Rates for r-process

COMPILATION Z=8-110; compiled contribution of first-forbidden β-decay of neutron-rich nuclei to their total β-decay rate, T1/2

RADIOACTIVITY Z=8-110(β-), (β+); calculated T1/2, β-delayed neutron multiplicity using relativistic Hartree-Bogoliubov model with spherical symmetry and D3C parameter set; deduced ratio calculated to experimental T1/2 vs experimental T1/2.

doi: 10.5506/APhysPolB.48.641
Citations: PlumX Metrics

2016CA25      Phys.Rev.Lett. 117, 012501 (2016)

R.Caballero-Folch, C.Domingo-Pardo, J.Agramunt, A.Algora, F.Ameil, A.Arcones, Y.Ayyad, J.Benlliure, I.N.Borzov, M.Bowry, F.Calvino, D.Cano-Ott, G.Cortes, T.Davinson, I.Dillmann, A.Estrade, A.Evdokimov, T.Faestermann, F.Farinon, D.Galaviz, A.R.Garcia, H.Geissel, W.Gelletly, R.Gernhauser, M.B.Gomez Hornillos, C.Guerrero, M.Heil, C.Hinke, R.Knobel, I.Kojouharov, J.Kurcewicz, N.Kurz, Yu.A.Litvinov, L.Maier, J.Marganiec, T.Marketin, M.Marta, T.Martinez, G.Martinez-Pinedo, F.Montes, I.Mukha, D.R.Napoli, C.Nociforo, C.Paradela, S.Pietri, Zs.Podolyak, A.Prochazka, S.Rice, A.Riego, B.Rubio, H.Schaffner, Ch.Scheidenberger, K.Smith, E.Sokol, K.Steiger, B.Sun, J.L.Tain, M.Takechi, D.Testov, H.Weick, E.Wilson, J.S.Winfield, R.Wood, P.Woods, A.Yeremin

First Measurement of Several β-Delayed Neutron Emitting Isotopes Beyond N = 126

RADIOACTIVITY 204,205,206Au, 208,209,210,211Hg, 211,212,213Tl, 214,215,216Tl, 215,216,217,218Pb, 218,219,220Bi(β-n) [from Be(238U, X), E=1 GeV/nucleon]; measured decay products, Eβ, Iβ, En, In, β-n coinc.; deduced T1/2, neutron branching ratios. Comparison with available data, theoretical calculations.

doi: 10.1103/PhysRevLett.117.012501
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset23395. Data from this article have been entered in the XUNDL database. For more information, click here.

2016MA12      Phys.Rev. C 93, 025805 (2016)

T.Marketin, L.Huther, G.Martinez-Pinedo

Large-scale evaluation of β-decay rates of r-process nuclei with the inclusion of first-forbidden transitions

RADIOACTIVITY Z=8-110, N=11-236, A=19-339(β-); calculated decay rates for Gamow-Teller and first-forbidden transitions, total decay rates, P0n, P1n, P3n, P4n, P5n delayed-neutron emission probabilities, average energies of electrons antineutrinos and photons after decay. Z=47-48, A=114-154; calculated Q(β-). Z=36-43, A=93-117; Z=37-50, N=65-88; Z=24-32, N=50; Z=42-49, N=82; Z=6-73, N=126; 194,195,196Re, 199,200Os, 198,199,201,202Ir, 203,204Pt, 204Au, 211,212,213Tl, 218,219Bi(β-); calculated half-lives for β- decay. Fully self-consistent covariant density functional theory (CDFT) framework with the ground states calculated with relativistic Hartree-Bogoliubov (RHB) model, and excited states within the proton-neutron relativistic quasiparticle random phase approximation (pn-RQRPA). Comparison with experimental Q values and half-lives. Calculated abundances of heavy nuclei, and evolution of neutron-to-seed ratio resulting from hot and cold r-processes using half-lives from the FRDM and the current model. Supplementary file contains theoretical values of half-lives and Pxn for 5409 neutron-rich nuclei.

doi: 10.1103/PhysRevC.93.025805
Citations: PlumX Metrics

2015PA15      Acta Phys.Pol. B46, 369 (2015)

N.Paar, Ch.C.Moustakidis, G.A.Lalazissis, T.Marketin, D.Vretenar

Nuclear Energy Density Functionals and Neutron Star Properties

NUCLEAR STRUCTURE 68Ni, 130,132Sn, 208Pb; calculated constraints of the symmetry energy, dipole polarizability, liquid-to-solid transition pressure.

doi: 10.5506/APhysPolB.46.369
Citations: PlumX Metrics

2015PA42      Int.J.Mod.Phys. E24, 1541004 (2015)

N.Paar, T.Marketin, D.Vale, D.Vretenar

Modeling nuclear weak-interaction processes with relativistic energy density functionals

NUCLEAR STRUCTURE 56Fe, 18,20,22O, 42Ca; calculated Gamow-Teller transition strength distribution, contributions of the multipole transitions to the inclusive σ. Comparison with available data.

doi: 10.1142/S0218301315410049
Citations: PlumX Metrics

2014PA32      Phys.Rev. C 90, 011304 (2014)

N.Paar, Ch.C.Moustakidis, T.Marketin, D.Vretenar, G.A.Lalazissis

Neutron star structure and collective excitations of finite nuclei

NUCLEAR STRUCTURE 68Ni, 130,132Sn, 208Pb; calculated excitation energies of the isoscalar giant monopole and quadrupole resonances (ISGMR, ISGQR), isovector giant dipole resonance (IVGDR), and anti-analog giant dipole resonance (AGDR), energy-weighted pygmy dipole (PDR) strength, and dipole polarizability. Covariance analysis of based on relativistic nuclear energy density functional (RNEDF). Neutron star crust properties by using collective excitations in finite nuclei. Thermodynamic method using relativistic nuclear energy density functionals, and quasiparticle random-phase approximation (QRPA).

doi: 10.1103/PhysRevC.90.011304
Citations: PlumX Metrics

2013PA06      Phys.Rev. C 87, 025801 (2013)

N.Paar, H.Tutman, T.Marketin, T.Fischer

Large-scale calculations of supernova neutrino-induced reactions in Z=8-82 target nuclei

NUCLEAR REACTIONS 12C, 56Fe, Ni, Sn, Pb(ν, e-), E<100 MeV; calculated inclusive neutrino-nucleus cross sections for supernova neutrino-induced reactions on targets of Z=8-82, N=8-182. Self-consistent theory framework based on relativistic nuclear energy density functional. Comparison with experimental data. Relevance to element abundance patterns.

doi: 10.1103/PhysRevC.87.025801
Citations: PlumX Metrics

2012MA16      Phys.Rev. C 85, 054313 (2012)

T.Marketin, G.Martinez-Pinedo, N.Paar, D.Vretenar

Role of momentum transfer in the quenching of Gamow-Teller strength

NUCLEAR REACTIONS 90Zr(p, n), (n, p), E=300 MeV; analyzed differential cross section data; deduced pn-RQRPA strengths in β- and β+ channels obtained with the Gamow-Teller (GT) operator, GT+IVSM operator, and full L=0 operator, momentum transfer. Relativistic Hartree-Bogoliubov model. Comparison with Ikeda sum rule.

NUCLEAR STRUCTURE 48Ca, 90Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150Sn, 208Pb; analyzed L=0 β- strength functions, GT and IVSM centroids using Relativistic Hartree-Bogoliubov (RHB) plus proton-neutron relativistic quasiparticle random-phase approximation (pn-RQRPA) with GT operator, the GT plus isovector spin monopole (IVSM) mode term, and the operator that contains the full momentum-transfer dependence.

doi: 10.1103/PhysRevC.85.054313
Citations: PlumX Metrics

2012ST22      J.Phys.:Conf.Ser. 381, 012096 (2012)

L.Stuhl, A.Krasznahorkay, M.Csatlos, T.Marketin, E.Litvinova, T.Adachi, A.Algora, J.Daeven, E.Estevez, H.Fujita, Y.Fujita, C.Guess, J.Gulyas, K.Hatanaka, K.Hirota, H.J.Ong, D.Ishikawa, H.Matsubara, R.Meharchand, F.Molina, H.Okamura, G.Perdikakis, B.Rubio, C.Scholl, T.Suzuki, G.Susoy, A.Tamii, J.Thies, R.Zegers, J.Zenihiro

Soft spin-dipole resonances in 40Ca

NUCLEAR REACTIONS 40,42,44,48Ca(3He, t), E=420 MeV; measured E(triton), I(triton, θ) using magnetic spectrometer Grand Riden at forward angles; deduced unnormalized σ(θ) to IAS and some excited states using GASPAN program package. 40,42,44,48Sc deduced dipole transition strength distribution, periodic spin-dipole strength distribution (most in 40Sc) resembling multi-phonon vibrational band; calculated isospin-flip, spin-isospin-flip dipole transition strength functions using RRPA (relativistic RPA).

doi: 10.1088/1742-6596/381/1/012096
Citations: PlumX Metrics

2011PA29      Phys.Rev. C 84, 047305 (2011)

N.Paar, T.Suzuki, M.Honma, T.Marketin, D.Vretenar

Uncertainties in modeling low-energy neutrino-induced reactions on iron-group nuclei

NUCLEAR REACTIONS 54,56Fe, 58,60Ni(ν, X), E=40, 60, 80 MeV; calculated Gamow-Teller transition strengths B(GT), cross sections. Cross sections averaged over Michel flux and Fermi-Dirac distribution. Relativistic and Skyrme energy-density functionals and the shell model approach. Comparison with experimental data for 56Fe(ν, e)56Co.

doi: 10.1103/PhysRevC.84.047305
Citations: PlumX Metrics

2009MA20      Phys.Rev. C 79, 054323 (2009)

T.Marketin, N.Paar, T.Niksic, D.Vretenar

Relativistic quasiparticle random-phase approximation calculation of total muon capture rates

NUCLEAR STRUCTURE Z=6-96, A=12-244; calculated muon transition energies and muon capture rates using relativistic proton-neutron quasiparticle random phase approximation. Relativistic Hartree-Bogoliubov model. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054323
Citations: PlumX Metrics

2008PA05      Phys.Rev. C 77, 024608 (2008)

N.Paar, D.Vretenar, T.Marketin, P.Ring

Inclusive charged-current neutrino-nucleus reactions calculated with the relativistic quasiparticle random-phase approximation

NUCLEAR REACTIONS 12C, 16O, 56Fe, 208Pb(ν, e-), E=0-100 MeV; calculated neutron-nucleus cross sections.

doi: 10.1103/PhysRevC.77.024608
Citations: PlumX Metrics

2008VR01      J.Phys.(London) G35, 014039 (2008)

D.Vretenar, N.Paar, T.Marketin, P.Ring

Relativistic QRPA description of nuclear excitations

NUCLEAR STRUCTURE 32Ar, Ar, 132Sn; calculated dipole strength distributions using the RRPA formalism. 108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated energy spacings between GT resonances and the respective isobaric analog states using the RQRPA formalism. Comparison with data.

RADIOACTIVITY Fe, Ni, Zn(β-); calculated T1/2 using the RQRPA formalism. Comparison with data.

doi: 10.1088/0954-3899/35/1/014039
Citations: PlumX Metrics

2007MA09      Phys.Rev. C 75, 024304 (2007)

T.Marketin, D.Vretenar, P.Ring

Calculation of β-decay rates in a relativistic model with momentum-dependent self-energies

RADIOACTIVITY 64,66,68,70,72,74,76Fe, 70,72,74,76,78Ni, 76,78,80,82Zn, 122,124,126,128,130,132Cd, 134,136,138,140,142Sn, 136,138,140,142,144,146Te(β-); calculated β-decay T1/2. Relativistic proton-neutron quasiparticle RPA.

doi: 10.1103/PhysRevC.75.024304
Citations: PlumX Metrics

2005NI02      Phys.Rev. C 71, 014308 (2005)

T.Niksic, T.Marketin, D.Vretenar, N.Paar, P.Ring

β-decay rates of r-process nuclei in the relativistic quasiparticle random phase approximation

NUCLEAR STRUCTURE 69,71,73,75,77,79Cu, 78Ni, 132Sn; calculated neutron and proton single-particle energy levels. Relativistic quasiparticle RPA.

RADIOACTIVITY 64,66,68,70,74,76Fe, 70,72,74,76,78Ni, 76,78,80,82Zn, 82Ge, 72Ti, 74Cr, 122,124,126,128,130,132Cd, 134,136,138,140,142Sn, 136,138,140,142,144,146Te(β-); calculated T1/2. Relativistic quasiparticle RPA, comparisons with data.

doi: 10.1103/PhysRevC.71.014308
Citations: PlumX Metrics

2005PA71      Eur.Phys.J. A 25, Supplement 1, 531 (2005)

N.Paar, T.Niksic, T.Marketin, D.Vretenar, P.Ring

Self-consistent relativistic QRPA studies of soft modes and spin-isospin resonances in unstable nuclei

NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sn, 200,202,204,206,208,210,212,214Pb; calculated resonance energies. 122Zr, 124Mo, 126Ru, 128Pd, 130Cd, 134,136,138,140,142Sn, 136,138,140,142,144,146Te; calculated T1/2. Self-consistent relativistic quasiparticle RPA, relativistic Hartree-Bogoliubov model.

doi: 10.1140/epjad/i2005-06-057-5
Citations: PlumX Metrics

Back to query form