NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = Y.F.Niu

Found 69 matches.

Back to query form

2024LI14      J.Phys.(London) G51, 015103 (2024)

W.F.Li, X.Y.Zhang, Y.F.Niu, Z.M.Niu

Comparative study of neural network and model averaging methods in nuclear β-decay half-life predictions

NUCLEAR STRUCTURE Z<100; analyzed β-decay T1/2 using the two-hidden-layer neural network and compared with the model averaging method; deduced half-life predictions of the neural network.

doi: 10.1088/1361-6471/ad0314
Citations: PlumX Metrics

2023GE01      Chin.Phys.C 47, 044102 (2023)

J.Geng, Y.F.Niu, W.H.Long

Unified mechanism behind the even-parity ground state and neutron halo of 11Be

NUCLEAR STRUCTURE 10,11,12Be; calculated binding and one-neutron, two-neutron separation energies, neutron orbits with respect to the deformation, interaction matrix elements between a selected neutron and the core orbits using the axially deformed relativistic Hartree-Fock-Bogoliubov (D-RHFB) model. Comparison with available data.

doi: 10.1088/1674-1137/acb7cd
Citations: PlumX Metrics

2023GU03      Phys.Rev. C 107, 014318 (2023)

L.Guo, W.L.Lv, Y.F.Niu, D.L.Fang, B.S.Gao, K.A.Li, X.D.Tang

Spin-isospin excitations in the direction of β+ decay for 80Zn and 126Ru at finite temperature

RADIOACTIVITY 80Zn, 126Ru(β+); calculated Gamow-Teller (GT+) strength distribution with respect to the ground state of daughter nuclei, spin-dipole (SD) transition strength distributions, sum-rule values of GT and SD transitions. Self consistent finite-temperature proton-neutron relativistic quasiparticle RPA (FT-PNRQRPA) and finite-temperature proton-neutron relativistic RPA (FT-PNRRPA) model.

doi: 10.1103/PhysRevC.107.014318
Citations: PlumX Metrics

2023HA28      Phys.Lett. B 844, 138092 (2023)

Y.W.Hao, Y.F.Niu, Z.M.Niu

Sensitivity of the r-process rare-earth peak abundances to nuclear masses

doi: 10.1016/j.physletb.2023.138092
Citations: PlumX Metrics

2023HA41      Phys.Rev. C 108, L062802 (2023)

Y.-W.Hao, Y.-F.Niu, Z.-M.Niu

Impact of nuclear β-decay rates on the r-process rare-earth peak abundances

doi: 10.1103/PhysRevC.108.L062802
Citations: PlumX Metrics

2023HU09      Phys.Rev. C 107, 034319 (2023)

Y.N.Huang, Z.Z.Li, Y.F.Niu

Correlation between the difference of charge radii in mirror nuclei and the slope parameter of the symmetry energy

NUCLEAR STRUCTURE 14O, 14C, 22Si, 22O, 22Mg, 22Ne, 34Ar, 34S, 36Ca, 36S, 38Ca, 38Ar, 44Cr, 44Ca, 46Fe, 46Ca, 54Ni, 54Fe, 58Zn, 58Ni, 60Ge, 60Ni; analyzed charge radii of mirror nuclei; deduced correlation between difference of charge radii in mirror nuclei and the slope parameter of the symmetry energy. Studied the correlation using 36 functionals including Skyrme and covariant models for 16 pairs of spherical or nearly spherical mirror nuclei.

doi: 10.1103/PhysRevC.107.034319
Citations: PlumX Metrics

2023LI39      Phys.Rev.Lett. 131, 082501 (2023)

Z.Z.Li, Y.F.Niu, G.Colo

Toward a Unified Description of Isoscalar Giant Monopole Resonances in a Self-Consistent Quasiparticle-Vibration Coupling Approach

NUCLEAR STRUCTURE 48Ca, 112,114,116,118,120,122,124Sn, 208Pb; calculated isoscalar giant monopole resonance (ISGMR) strength functions and energies within fully self-consistent quasiparticle random-phase approximation plus quasiparticle-vibration coupling approach based on Skyrme-Hartree-Fock-Bogoliubov.

doi: 10.1103/PhysRevLett.131.082501
Citations: PlumX Metrics

2023LU16      Phys.Rev.Lett. 131, 202502 (2023)

Z.-W.Lu, L.Guo, Z.-Z.Li, M.Ababekri, F.-Q.Chen, C.Fu, C.Lv, R.Xu, X.Kong, Y.-F.Niu, J.-X.Li

Manipulation of Giant Multipole Resonances via Vortex γ Photons

doi: 10.1103/PhysRevLett.131.202502
Citations: PlumX Metrics

2023LV01      Phys.Rev. C 108, L051304 (2023)

W.-L.Lv, Y.-F.Niu, D.-L.Fang, J.-M.Yao, C.-L.Bai, J.Meng

0νββ-decay nuclear matrix elements in self-consistent Skyrme quasiparticle random-phase approximation: Uncertainty from pairing interaction

doi: 10.1103/PhysRevC.108.L051304
Citations: PlumX Metrics

2023WA10      Phys.Rev.Lett. 130, 192501 (2023)

M.Wang, Y.H.Zhang, X.Zhou, X.H.Zhou, H.S.Xu, M.L.Liu, J.G.Li, Y.F.Niu, W.J.Huang, Q.Yuan, S.Zhang, F.R.Xu, Y.A.Litvinov, K.Blaum, Z.Meisel, R.F.Casten, R.B.Cakirli, R.J.Chen, H.Y.Deng, C.Y.Fu, W.W.Ge, H.F.Li, T.Liao, S.A.Litvinov, P.Shuai, J.Y.Shi, Y.N.Song, M.Z.Sun, Q.Wang, Y.M.Xing, X.Xu, X.L.Yan, J.C.Yang, Y.J.Yuan, Q.Zeng, M.Zhang

Mass Measurement of Upper fp-Shell N = Z - 2 and N = Z - 1 Nuclei and the Importance of Three-Nucleon Force along the N = Z Line

ATOMIC MASSES 58Zn, 60Ga, 62Ge, 64As, 66Se, 70Kr, 61Ga, 63Ge, 65As, 67Se, 71Kr, 75Sr; measured time-of-flight (TOF); deduced mass excess (ME). A novel method of isochronous mass spectrometry, the Heavy Ion Research Facility in Lanzhou (HIRFL).

doi: 10.1103/PhysRevLett.130.192501
Citations: PlumX Metrics

2023ZH55      Int.J.Mod.Phys. E32, 2340008 (2023)

W.Zhang, J.-K.Huang, Y.-F.Niu

Shape transition around 222Ra based on finite-temperature covariant density functional theory

NUCLEAR STRUCTURE 220,222,224,226,228,230,232,234,236,238,240Ra; calculated the shape evolution and potential energy surfaces in deformation parameters plane by the covariant density functional theory. Comparison with available data.

doi: 10.1142/S0218301323400086
Citations: PlumX Metrics

2022CH18      Phys.Rev. C 105, 034330 (2022)

S.Y.Chang, Z.H.Wang, Yi.F.Niu, W.H.Long

Relativistic random-phase-approximation description of M1 excitations with the inclusion of π mesons

NUCLEAR STRUCTURE 48Ca, 90Zr, 208Pb; calculated GT- and M1 strength distributions, magnetic dipole resonance features, B(GT), B(M1), EWSR for M1 transitions, transitions configurations. 48Ca; calculated proton and neutron single-particle spectra. Random-phase approximation (RPA) based on the relativistic mean-field (RMF) theory, using the density-dependent effective interactions with contribution of π mesons included as residual interaction. Comparison with experimental values.

doi: 10.1103/PhysRevC.105.034330
Citations: PlumX Metrics

2022HA23      Astrophys.J. 933, 3 (2022)

Y.W.Hao, Y.F.Niu, Z.M.Niu

Influence of Spontaneous Fission Rates on the r-process Nucleosynthesis

doi: 10.3847/1538-4357/ac6fdc
Citations: PlumX Metrics

2022HU09      Phys.Lett. B 833, 137345 (2022)

H.Huang, W.Q.Zhang, A.N.Andreyev, Z.Liu, D.Seweryniak, Z.H.Li, C.Y.Guo, A.E.Barzakh, P.Van Duppen, B.Andel, S.Antalic, M.Block, A.Bronis, M.P.Carpenter, P.Copp, J.G.Cubiss, B.Ding, D.T.Doherty, Z.Favier, F.Giacoppo, T.H.Huang, B.Kindler, F.G.Kondev, T.Lauritsen, J.G.Li, G.S.Li, B.Lommel, H.Y.Lu, M.Al Monthery, P.Mosat, Y.F.Niu, C.Raison, W.Reviol, G.Savard, S.Stolze, G.L.Wilson, H.Y.Wu, Z.H.Wang, F.R.Xu, Q.B.Zeng, X.H.Yu, F.F.Zeng, X.H.Zhou

First observation of the decay of the 13/2+ isomer in 183Hg and B(M2) systematics of neutron transitions across the nuclear chart

RADIOACTIVITY 183Hg(α) [from 187Pb α decay]; 187mPb(α) [from 142Nd(50Cr, 3n2pγ), E=255 MeV, followed by separation of fragments using Argonne gas-filled analyzer (AGFA) at the ATLAS-ANL facility]; measured reaction products, evaporation residues (EVRs), Eα, Iα, (EVR)α-correlations, αγ(t), Eγ, Iγ, x rays, T1/2 using double-sided silicon strip detector (DSSD), and four HPGe clover detectors. 183,183mHg; deduced levels, isomer, J, π, T1/2 of g.s. and isomer, α branching ratio, K-conversion coefficient, multipolarity, B(M2), Nilsson configurations. 187mPb; deduced T1/2. Systematics of decay schemes of 13/2+ isomers in 175,177,179,181,183,185Hg. Systematics of B(M2) values for 7/2-, 9/2+, 11/2- and 13/2+ isomers in even-Z, odd-N nuclei: 25Mg, 33Si, 33,35S, 37Ar, 39Ca, 59Cr, 61Fe, 63,67Ni, 63,65,67Zn, 67,69,71Ge, 69,71Se, 97,99Mo, 99,101,103Ru, 103,105Pd, 107,109Cd, 109,111,113,115Sn, 153Yb, 161Hf, 163W, 163Os, 171,189,191Pt, 181,183,201,203,205Hg, 209Pb, 205,207,211Po, 207,209,213Rn, 209,211Ra, 211,213Th.

doi: 10.1016/j.physletb.2022.137345
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022HU12      Phys.Lett. B 834, 137484 (2022)

M.H.Huang, Z.G.Gan, Z.Y.Zhang, L.Ma, J.G.Wang, M.M.Zhang, H.B.Yang, C.L.Yang, X.Y.Huang, Z.Zhao, S.Y.Xu, L.X.Chen, X.J.Wen, Y.F.Niu, C.X.Yuan, Y.L.Tian, Y.S.Wang, J.Y.Wang, M.L.Liu, Y.H.Qiang, W.Q.Yang, H.B.Zhang, Z.W.Lu, S.Guo, W.X.Huang, Y.He, Z.Z.Ren, S.G.Zhou, X.H.Zhou, H.S.Xu, V.K.Utyonkov, A.A.Voinov, Yu.S.Tsyganov, A.N.Polyakov

α decay of the new isotope 204Ac

RADIOACTIVITY 204,205Ac(α) [from 169Tm(40Ca, xn), E=202, 210, 212, 214 MeV using SHANS2 separator at CAFE2 and SHANS separator at HRIFL, Lanzhou accelerator facility]; 200Fr, 196At(α) [from 204Ac α-decay chain]; measured evaporation residues (ERs), Eα, (ER)α-α-α correlated events, production cross sections, T1/2 of decays using two multiwire proportional counters for implanted events, double-sided silicon strip detectors (DSSSDs) for α particles, and a segmented clover Ge detector for γ radiation. 204,205Ac, 200Fr, 196At; deduced T1/2 of decays of ground-state decays, and Eα values, reduced α-width in Rasmussen formalism, favored α decay for 204Ac decay. 204Ac(p); no proton decay events observed. 201,201m,202,202m,203,204,205Fr, 204,205,206Ra(α); observed α spectra, (ERs)-α-α-correlated events. Comparison with previous available experimental results. Systematics of experimental and theoretical T1/2 and Q(α) values for 196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211At, 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213Fr, 203,204,205,206,207,208,209,210,211,212,213,214,215Ac, 211,212,213,214,215,216,217Pa, using Hartree-Fock-BCS (HFBSC) method, and macroscopic-microscopic (MM) mass formula for theory.

doi: 10.1016/j.physletb.2022.137484
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022LV05      Phys.Rev. C 105, 044331 (2022)

W.L.Lv, Y.F.Niu, D.L.Fang, C.L.Bai

Single-state or low-lying-states dominance mechanism of 2νββ-decay nuclear matrix elements

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 136Xe, 150Nd, 238U(2β-); calculated matrix elements, isoscalar pairing strength parameter, Gamow-teller transition amplitudes. Spherical Skyrme HFB + QRPA model. Single-state dominance (SSD) and low-lying-states dominance (LLD) hypothesis. Comparison to experimental values.

doi: 10.1103/PhysRevC.105.044331
Citations: PlumX Metrics

2022XU09      Phys.Lett. B 833, 137333 (2022)

J.-Y.Xu, Z.-Z.Li, B.-H.Sun, Y.-F.Niu, X.Roca-Maza, H.Sagawa, I.Tanihata

Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei

NUCLEAR STRUCTURE 30Si, 30S; analyzed available data; calculated the charge changing σ difference for both the Skyrme-Hartree-Fock theory (SHF) and covariant (relativistic) density functionals (CDF).

doi: 10.1016/j.physletb.2022.137333
Citations: PlumX Metrics

2022YA15      Phys.Rev. C 105, L051302 (2022)

H.B.Yang, Z.G.Gan, Z.Y.Zhang, M.H.Huang, L.Ma, M.M.Zhang, C.X.Yuan, Y.F.Niu, C.L.Yang, Y.L.Tian, L.Guo, Y.S.Wang, J.G.Wang, H.B.Zhou, X.J.Wen, H.R.Yang, X.H.Zhou, Y.H.Zhang, W.X.Huang, Z.Liu, S.G.Zhou, Z.Z.Ren, H.S.Xu, V.K.Utyonkov, A.A.Voinov, Yu.S.Tsyganov, A.N.Polyakov, D.I.Solovyev

New isotope 207Th and odd-even staggering in α-decay energies for nuclei with Z > 82 and N < 126

RADIOACTIVITY 207Th(α)[from 176Hf(36Ar, 5n), E=197-199 MeV]; 208Th(α)[from 176Hf(36Ar, 4n), E=197-199 MeV]; 203Ra, 199Rn, 195Po(α)[from 207Th α-decay chain]; 204Ra, 200Rn, 196Po(α)[from 208Th α-decay chain]; measured evaporation residues (ERs), Eα, and ER-α1234 correlated α-decay chain from the decays of 207Th and208Th. 207,208Th; deduced α-decay T1/2, production σ. Z=84-92, N=102-126; discussed systematics of experimental and theoretically calculated (by relativistic Hartree-Fock-Bogoliubov and large-scale shell-model approaches) odd-even staggering (OES) of Q(α), Q(proton) and Q(neutron). Position-sensitive silicon strip detectors (PSSDs), non-position sensitive Si detectors, and SHANS gas-filled recoil separator at the sector focusing cyclotron facility of HIRFL, Lanzhou.

doi: 10.1103/PhysRevC.105.L051302
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022YA24      Prog.Part.Nucl.Phys. 126, 103965 (2022)

J.M.Yao, J.Meng, Y.F.Niu, P.Ring

Beyond-mean-field approaches for nuclear neutrinoless double beta decay in the standard mechanism

RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn, 130Te, 136Xe, 148,150Nd, 160Gd, 232Th, 238U(2β-); analyzed available data; calculated nuclear matrix elements using beyond-mean-field approaches. Comparison with available data.

doi: 10.1016/j.ppnp.2022.103965
Citations: PlumX Metrics

2022YA27      Phys.Rev. C 106, 064311 (2022)

H.B.Yang, Z.G.Gan, Z.Y.Zhang, M.H.Huang, L.Ma, M.M.Zhang, C.L.Yang, Y.L.Tian, Y.S.Wang, H.B.Zhou, X.J.Wen, J.G.Wang, Z.Zhao, S.Y.Xu, L.X.Chen, X.Y.Huang, C.X.Yuan, Y.F.Niu, H.R.Yang, W.X.Huang, Z.Liu, X.H.Zhou, Y.H.Zhang, S.G.Zhou, Z.Z.Ren, H.S.Xu, V.K.Utyonkov, A.A.Voinov, Yu.S.Tsyganov, A.N.Polyakov, D.I.Solovyev

Examining the impact of α-decay energies on the odd-even staggering in half-lives: α-decay spectroscopy of 207-209Ac

RADIOACTIVITY 207,208,208m,209Ac(α)[from 176Hf(36Ar, X), E=197-199 MeV]; measured evaporation residues (ER), Eα, Iα, αα-coin, (ER)αα-coin; deduced T1/2, Q values, decay branches. 204mFr(IT) [from 208Ac(α)]; deduced T1/2, isomer level energy, tentative J and π for the newly found 80-keV isomer. 204Fr(α)[from 208,208mAc(α)]; deduced T1/2. Found new α-decay branching 208Ac and assigned to the transition from ground state to the excited (2+, 4+) state. Comparison to the calculations performed in the framework of Wentzel-Kramers-Brillouin approximation. Spectrometer for Heavy Atoms and Nuclear Structure (SHANS) at Sector Focusing Cyclotron of the Heavy Ion Research Facility in Lanzhou (HIRFL).

doi: 10.1103/PhysRevC.106.064311
Citations: PlumX Metrics

2022ZH22      Phys.Lett. B 829, 137129 (2022)

W.Q.Zhang, A.N.Andreyev, Z.Liu, D.Seweryniak, H.Huang, Z.H.Li, J.G.Li, C.Y.Guo, D.T.Doherty, A.E.Barzakh, P.Van Duppen, J.G.Cubiss, B.Andel, S.Antalic, M.Block, A.Bronis, M.P.Carpenter, P.Copp, B.Ding, Z.Favier, F.Giacoppo, T.H.Huang, X.H.Yu, B.Kindler, F.G.Kondev, T.Lauritsen, G.S.Li, B.Lommel, H.Y.Lu, M.Al Monthery, P.Mosat, Y.F.Niu, C.Raison, W.Reviol, G.Savard, S.Stolze, G.L.Wilson, H.Y.Wu, Z.H.Wang, F.R.Xu, Q.B.Zeng, X.H.Zhou

First observation of a shape isomer and a low-lying strongly-coupled prolate band in neutron-deficient semi-magic 187Pb

NUCLEAR REACTIONS 142Nd(50Cr, 3n2p)187Pb, E=255 MeV beam from ATLAS-ANL facility, followed by separation of evaporation residues (EVRs) using Argonne Gas-Filled Analyzer; measured Eα, Eγ, Iγ, x rays, αγ-coin, γγ-coin, T1/2 of a new low-energy microsec-isomer by αγ(t) using Gammasphere for γ detection and double-sided silicon strip detector (DSSD) for EVRs and α particles. Recoil-decay tagging (RDT) and isomer-decay tagging (IDT) methods. 187Pb; deduced high-spin levels, J, π, isomer, K-conversion coefficient, multipolarity, bands, B(E2), B(M1)/B(E2), triple-shape coexistence at low energy. Comparison with band structure in 185Hg. Systematics of aligned angular momenta plots and experimental Routhians for bands in 183,185Hg, 187Pb. 184Hg, 186Pb, 187Tl; observed γ rays. 186,187m,188Pb; observed α-decay peaks.

doi: 10.1016/j.physletb.2022.137129
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022ZH45      Phys.Rev. C 106, 024305 (2022)

M.M.Zhang, Y.L.Tian, Y.S.Wang, Z.Y.Zhang, Z.G.Gan, H.B.Yang, M.H.Huang, L.Ma, C.L.Yang, J.G.Wang, C.X.Yuan, C.Qi, A.N.Andreyev, X.Y.Huang, S.Y.Xu, Z.Zhao, L.X.Chen, J.Y.Wang, M.L.Liu, Y.H.Qiang, G.S.Li, W.Q.Yang, R.F.Chen, H.B.Zhang, Z.W.Lu, X.X.Xu, L.M.Duan, H.R.Yang, W.X.Huang, Z.Liu, X.H.Zhou, Y.H.Zhang, H.S.Xu, N.Wang, H.B.Zhou, X.J.Wen, S.Huang, W.Hua, L.Zhu, X.Wang, Y.C.Mao, X.T.He, S.Y.Wang, W.Z.Xu, H.W.Li, Y.F.Niu, L.Guo, Z.Z.Ren, S.G.Zhou

Fine structure in the α decay of the 8+ isomer in 216, 218U

RADIOACTIVITY 216,216m,218,218mU(α)[218U from 182W(40Ar, 4n), E=190 MeV, 184W(40Ca, 2nα), E=206 MeV, 216U from 180W(40Ar, 4n), E=191 MeV]; measured evaporation residues (EVRs), Eα, Iα, (EVR)α12-correlations, T1/2 using position-sensitive strip detectors (PSSDs) for α detection, and SHANS separator at HIRFL-Lanzhou. 216,216m,218,218mU; deduced T1/2, Q-values, α-branching ratio, α-decay hindrance factors. 204Rn, 208,210Ra, 212,214Th(α)[from 216,218U α-decay chains]; measured Eα, T1/2. 212Th; deduced level, J, π, identification of the first 2+ state. 215Ra, 212,213,216Ac, 211,212,213,214,216,216m,217Th, 216,217,217m,218Pa, 217,218,219U; observed Eα from their decays from (EVR)α-correlations. Comparison with previous experimental data.

doi: 10.1103/PhysRevC.106.024305
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2022ZH46      Phys.Rev. C 106, 024317 (2022)

W.Q.Zhang, A.N.Andreyev, Z.Liu, D.Seweryniak, H.Huang, Z.H.Li, J.G.Li, C.Y.Guo, A.E.Barzakh, P.Van Duppen, M.Al Monthery, B.Andel, S.Antalic, M.Block, A.Bronis, M.P.Carpenter, P.Copp, J.G.Cubiss, B.Ding, D.T.Doherty, Z.Favier, F.Giacoppo, T.H.Huang, B.Kindler, F.G.Kondev, T.Lauritsen, G.S.Li, B.Lommel, H.Y.Lu, P.Mosat, Y.F.Niu, C.Raison, W.Reviol, G.Savard, S.Stolze, G.L.Wilson, H.Y.Wu, Z.H.Wang, F.R.Xu, X.H.Yu, Q.B.Zeng, X.H.Zhou

Identification of excited states in 188Bi and 188Po

NUCLEAR REACTIONS 142Nd(50Cr, 3np)188Bi, (50Cr, 4n)188Po, E=255 MeV; measured evaporation residues (EVRs), Eα, Eγ, Iγ, x rays, (EVR)γ-coin, αγ-coin, γγ-coin, using four clover HPGe detectors, Gammasphere array with 64 Compton-suppressed HPGe detectors, and DSSD and DSSD+Sibox at the ATLAS-ANL accelerator facility. 186,187,187m,188Pb, 189,189mBi; deduced recoil-decay tagging (RDT) γ-ray yields. 188Bi; deduced levels, J, π, isomer, T1/2 and decay modes of isomer, K-conversion coefficients, multipolarities, configurations. 188Po; deduced energy of the first 2+ level. 186Pb; deduced levels, J, π. 183,184,186Hg, 186,187,187m,188Pb, 188,189,189mBi; observed Eα. Systematics of 9/2-, 1/2+, 7/2- and 13/2+ level energies in 185,187,189,191,193,195Bi, and those of first 2+, 4+, 6+ and 8+, second 0+, 2+ and 4+ in 188,190,192,194,196,198,200,202,204,206,208,210Po.

doi: 10.1103/PhysRevC.106.024317
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2021BE28      Phys.Rev. C 104, 044332 (2021)

A.Berceanu, Y.Xu, Y.F.Niu

Temperature effects on neutron-capture cross sections and rates through electric dipole transitions in hot nuclei

NUCLEAR STRUCTURE 126,128,130,132,134,136,138,140,142,144,146Sn; calculated E1 transition strengths as a function of excitation energy for temperatures T=0 MeV, ratio between neutron-capture rate using relativistic quasiparticle random phase approximation (RQRPA) model, and for T=1 and 2 MeV using self-consistent finite-temperature relativistic random-phase approximation (FTRRPA) model, based on DD-ME2 energy density functional. 126,136,146Sn; calculated transition densities of neutrons and protons for the low-lying peaks at T=0 for 8.33-MeV peak in 126Sn, 6.04- and 8.28-MeV peaks in 136Sn, and 5.11- and 7.54-MeV peaks in 146Sn using RQRPA model based on DD-ME2 energy density functional, main single-particle transition configurations for selected low-lying dipole states, E1 transition strength as function of excitation energy. Self-consistent QRPA and finite-temperature RPA model based on relativistic energy density functionals.

doi: 10.1103/PhysRevC.104.044332
Citations: PlumX Metrics

2021LI28      Phys.Rev. C 103, 064301 (2021)

Z.Z.Li, Y.F.Niu, W.H.Long

Electric dipole polarizability in neutron-rich Sn isotopes as a probe of nuclear isovector properties

NUCLEAR STRUCTURE 100,110,120,130,140,150,160,164Sn; calculated Pearson coefficient between the product of dipole polarizability and saturated symmetry energy, slope parameter of symmetry energy, and neutron-skin thickness versus dipole polarizability for 150,160Sn by quasiparticle random-phase approximation (QRPA) based on Hartree-Fock-Bogoliubov (HFB) using 24 different Skyrme density functionals, with and without the pairing correlations. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164Sn; calculated dipole polarizabilities as functions of mass number by QRPA and RPA using Skyrme functional SLy4, and with contributions from pygmy dipole resonances (PDR) for A=130-164 Sn nuclei. 48Ca, 68Ni, 112,114,116,118,120,124Sn, 208Pb; analyzed slope parameter of symmetry energy from experimental dipole polarizabilities by Skyrme QRPA calculations using 24 Skyrme functionals. 140,142,144,146,148,150,152,154,156,158,160Sn; calculated dipole polarizabilities and neutron-skin thickness of neutron-rich Sn isotopes from experimental dipole polarizabilities of 208Pb. Relevance to probe of nuclear isovector properties.

doi: 10.1103/PhysRevC.103.064301
Citations: PlumX Metrics

2021LV02      Phys.Rev. C 103, 064321 (2021)

W.L.Lv, Y.F.Niu, G.Colo

Learning about the structure of giant resonances from their γ decay

NUCLEAR STRUCTURE 208Pb, 56Ni; calculated energies, B(E2) and B(E3) of the first 2+ and 3- states, centroid energies and B(E1) and B(E2) of giant dipole resonance (GDR) and giant quadrupole resonance (GQR), Γγ, Γ, cumulative γ-decay widths and relative γ-branching ratio of giant resonances (GRs) to low-lying states. Random phase approximation plus particle-vibration coupling (RPA+PVC) model with the lowest-order nuclear field theory (NFT) diagrams. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.064321
Citations: PlumX Metrics

2021RA26      Phys.Rev. C 104, 054318 (2021)

A.Ravlic, E.Yuksel, Y.F.Niu, N.Paar

Evolution of β-decay half-lives in stellar environments

RADIOACTIVITY 52,54,56,58,60Ti, 62,64,66,68,70Fe, 120,122,124,126,128Cd, 130,132,134,136,138Sn(β-); Z=8-82, N=12-184; calculated β-decay half-lives of even-even nuclei as a function of temperature and density, Gamow-Teller strength as a function of temperature. Relativistic nuclear energy density functional framework with D3C* parametrization, and finite-temperature proton-neutron relativistic quasiparticle random-phase approximation (FT-PNRQRPA). Relevance to initial stages of the r-process or other astrophysical processes such as rp-process, dense thermonuclear explosions, and supernovae simulations.

doi: 10.1103/PhysRevC.104.054318
Citations: PlumX Metrics

2021RA30      Phys.Rev. C 104, 064302 (2021)

A.Ravlic, Y.F.Niu, T.Niksic, N.Paar, P.Ring

Finite-temperature linear response theory based on relativistic Hartree Bogoliubov model with point-coupling interaction

NUCLEAR STRUCTURE 120Cd; calculated strength functions of 1- and 1+ excitations in β- direction; GT- strength B(GT-) of the 1+ state at 13.54 MeV, GT- strength function with respect to the number of oscillator shells, convergence properties of the GT- strength. 112,116,120,124,128Sn; calculated neutron critical temperature and mean pairing gap at zero temperature. 112,114,116,118,120,122Sn; calculated Jπ=0+ strength functions with respect to the excitation energy of the parent nuclei for temperatures T=0, 0.5, 0.9, and 1.5 MeV. 116,120,124,128,132Sn; calculated Gamow-Teller (Jπ=1+) strength functions with respect to the excitation energy of the parent nuclei for temperatures T=0, 0.5, 0.9, and 1.5 MeV. 112Sn; calculated single-particle energy levels in canonical basis for neutrons and protons at T=0 and 0.9 MeV. 112,120,128Sn; calculated spin-dipole excitation strength at temperature T=0, 0.5, 0.9, and 1.5 MeV, spin-dipole centroid energies of 0-, 1-, and 2- multipoles at temperature T=0 and 1.5 MeV. Finite-temperature linear response theory based on finite-temperature relativistic Hartree-Bogoliubov (FT-RHB) model for calculation of IAR, GTR, and spin-dipole resonance (SDR) in tin isotopes at finite-temperatures, with point-coupling relativistic energy-density functionals (EDFs): DD-PC1 and DDPCX for the calculation of mean-field potential in the ground state and the residual ph interaction in finite temperature quasiparticle random-phase approximation (FT-QRPA) approach, based on Bardeen-Cooper-Schrieffer (BCS) basis. Comparison with available experimental data.

doi: 10.1103/PhysRevC.104.064302
Citations: PlumX Metrics

2021VA06      Phys.Rev. C 103, 064307 (2021)

D.Vale, Y.F.Niu, N.Paar

Nuclear charge-exchange excitations based on a relativistic density-dependent point-coupling model

NUCLEAR STRUCTURE 48Ca, 90Zr, 112,116,122,130Sn, 208Pb; calculated isobaric analog resonance (IAR) transition strength distributions, B(GT)-, B(GT)+ strength distributions, sum rule, Gamow-Teller resonances. 104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated isobaric analog resonance excitation energies, excitation energy for GT- direct spin-flip transitions. Proton-neutron relativistic quasiparticle random phase approximation and relativistic Hartree-Bogoliubov model (RHB+PN-RQRPA) based relativistic density-dependent point coupling model with DD-PCX, DD-PC1, and DD-ME2 functionals. Comparison with experimental data. Relevance to future large-scale calculations of charge-exchange excitations and weak interaction processes in stellar environments.

doi: 10.1103/PhysRevC.103.064307
Citations: PlumX Metrics

2020AK06      J.Phys.(London) G47, 05LT01 (2020)

H.Akimune, H.Ejiri, F.Hattori, C.Agodi, M.Alanssari, F.Cappuzzello, D.Carbone, M.Cavallaro, G.Colo, F.Diel, C.A.Douma, D.Frekers, H.Fujita, Y.Fujita, M.Fujiwara, G.Gey, M.N.Harakeh, K.Hatanaka, K.Heguri, M.Holl, A.Inoue, N.Kalantar-Nayestanaki, Y.F.Niu, P.Puppe, P.C.Ries, A.Tamii, V.Werner, K.Zuber

Spin-dipole nuclear matrix element for the double beta decay of 76Ge by the (3He, t) charge-exchange reaction

NUCLEAR REACTIONS 74,76Ge(3He, t), E=420 MeV; measured reaction products; deduced yields, σ(θ), spin-dipole nuclear matrix elements, neutrinoless double-beta decay nuclear matrix elements.

doi: 10.1088/1361-6471/ab7a87
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2020DO06      Eur.Phys.J. A 56, 51 (2020)

C.A.Douma, C.Agodi, H.Akimune, M.Alanssari, F.Cappuzzello, D.Carbone, M.Cavallaro, G.Colo, F.Diel, H.Ejiri, D.Frekers, H.Fujita, Y.Fujita, M.Fujiwara, G.Gey, M.N.Harakeh, K.Hatanaka, F.Hattori, K.Heguri, M.Holl, A.Inoue, N.Kalantar-Nayestanaki, Y.F.Niu, P.Puppe, P.C.Ries, A.Tamii, V.Werner, R.G.T.Zegers, K.Zuber

Gamow-Teller strength distributions of 116Sb and 122Sb using the (3He, t) charge-exchange reaction

doi: 10.1140/epja/s10050-020-00044-9
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetE2658. Data from this article have been entered in the XUNDL database. For more information, click here.

2020LI19      Phys.Lett. B 806, 135524 (2020)

J.Liu, Y.F.Niu, W.H.Long

New magicity N=32 and 34 due to strong couplings between Dirac inversion partner

NUCLEAR STRUCTURE N=28-40; analyzed available data. 52Ca, 48S, 46Si; deduced a new mechanism for the strong couplings, Dirac inversion partners.

doi: 10.1016/j.physletb.2020.135524
Citations: PlumX Metrics

2020RA29      Phys.Rev. C 102, 065804 (2020)

A.Ravlic, E.Yuksel, Y.F.Niu, G.Colo, E.Khan, N.Paar

Stellar electron-capture rates based on finite-temperature relativistic quasiparticle random-phase approximation

NUCLEAR REACTIONS 44Ti, 56Fe(e-, ν), E<30 MeV; calculated electron capture cross sections in stellar environment for the 0+, 0-, 1+, 1-, 2+ and 2- multipoles, B(GT+) transition strength distributions; concluded that for the complete description of electron capture, both pairing and temperature effects must be considered. Nuclear ground-state properties calculated using finite-temperature Hartree BCS theory (FT-HBCS), and nuclear excitations in the charge exchange channel using finite-temperature proton-neutron relativistic QRPA (FT-PNRQRPA), with relativistic energy density functional (DD-ME2) in both cases.

doi: 10.1103/PhysRevC.102.065804
Citations: PlumX Metrics

2020YU03      Phys.Rev. C 101, 044305 (2020)

E.Yuksel, N.Paar, G.Colo, E.Khan, Y.F.Niu

Gamow-Teller excitations at finite temperature: Competition between pairing and temperature effects

NUCLEAR STRUCTURE 42Ca, 46Ti, 118Sn; calculated B(GT-), centroid energies of Gamow-Teller (GT) resonances, summed B(GT-), quasiparticle configuration of low-lying GT- states as function of temperature. Relativistic and nonrelativistic finite temperature proton-neutron quasiparticle RPA (FT-PNQRPA) with Skyrme-type functional SkM*, and meson-exchange interaction DD-ME2. Comparison with experimental data. Relevance to universal modeling of the weak-interaction processes in stellar environments, such as electron capture, β decays, and neutrino-nucleus reactions.

doi: 10.1103/PhysRevC.101.044305
Citations: PlumX Metrics

2019DO03      Nucl.Phys. A983, 133 (2019)

J.M.Dong, X.L.Shang, W.Zuo, Y.F.Niu, Y.Sun

An effective Coulomb interaction in nuclear energy density functionals

doi: 10.1016/j.nuclphysa.2019.01.003
Citations: PlumX Metrics

2019GE09      Phys.Rev. C 100, 051301 (2019)

J.Geng, J.J.Li, W.H.Long, Y.F.Niu, S.Y.Chang

Pseudospin symmetry restoration and the in-medium balance between nuclear attractive and repulsive interactions

NUCLEAR STRUCTURE 48Ca, 90Zr, 132Sn, 208Pb, 310126; calculated Proton shell gaps and the splittings of the neighboring pseudospin symmetry (PS) partners using RMF Lagrangians PKA1, PKO3, and the RMF ones DD-ME2, PK1, NL3*, and compared with available experimental data. 208Pb; calculated contributions to the binding energy from various channels given by the RHF Lagrangian PKA1, proton pseudospin orbital (PSO) splittings using PKA1, PKO3, DD-ME2, and the tentative parametrizations. Relativistic Hartree-Fock (RHF) approach.

doi: 10.1103/PhysRevC.100.051301
Citations: PlumX Metrics

2019LI33      Chin.Phys.C 43, 074107 (2019)

Z.-Z.Li, S.-Y.Chang, Q.Zhao, W.-H.Long, Y.-F.Niu

Restoration of pseudo-spin symmetry in N = 32 and N = 34 isotones described by relativistic Hartree-Fock theory

NUCLEAR STRUCTURE N=32, 34; analyzed available data; calculated proton single-particle energies, pseudo-spin orbit splitting, proton densities; deduced the restoration of the pseudo-spin symmetry.

doi: 10.1088/1674-1137/43/7/074107
Citations: PlumX Metrics

2019NI07      Phys.Rev. C 99, 064307 (2019)

Z.M.Niu, H.Z.Liang, B.H.Sun, W.H.Long, Y.F.Niu

Predictions of nuclear β-decay half-lives with machine learning and their impact on r-process nucleosynthesis

RADIOACTIVITY 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89Ni, 122Zr, 123Nb, 124Mo, 125Tc, 126Ru, 127Rh, 128Pd, 129Ag, 130Cd, 131In, 132Sn, 133Sb, 134Te, 187Pm, 188Sm, 189Eu, 190Gd, 191Tb, 192Dy, 193Ho, 194Er, 195Tm, 196Yb, 197Lu, 198Hf, 199Ta, 200W, 201Re, 202Os, 203Ir, 204Pt, 205Au, 206Hg, 207Tl(β-); calculated T1/2, and uncertainties using machine-learning approach based on Bayesian neural network (BNN). Comparison with experimental values, and with other theoretical predictions. A=90-210; discussed impact on r-process nucleosynthesis calculations.

doi: 10.1103/PhysRevC.99.064307
Citations: PlumX Metrics

2019NI11      Phys.Rev. C 100, 054311 (2019)

Z.M.Niu, J.Y.Fang, Y.F.Niu

Comparative study of radial basis function and Bayesian neural network approaches in nuclear mass predictions

ATOMIC MASSES Z=8-110, N=8-160; analyzed nuclear masses and S(n) for 1800 nuclei, and investigated predictive power of radial basis function (RBF), radial basis function with odd-even effect (RBFoe), and Bayesian neural network (BNN) approaches; deduced rms deviations from the evaluated experimental masses in AME2016.

doi: 10.1103/PhysRevC.100.054311
Citations: PlumX Metrics

2019YU06      Eur.Phys.J. A 55, 230 (2019)

E.Yuksel, G.Colo, E.Khan, Y.F.Niu

Nuclear excitations within microscopic EDF approaches: Pairing and temperature effects on the dipole response

doi: 10.1140/epja/i2019-12918-8
Citations: PlumX Metrics

2018JI08      Phys.Rev. C 98, 064323 (2018)

P.Jiang, Z.M.Niu, Y.F.Niu, W.H.Long

Strutinsky shell correction energies in relativistic Hartree-Fock theory

NUCLEAR STRUCTURE 16O, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51Ca, 78Ni, 100,132Sn, 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215Pb, 277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320Og, 75Mn, 76Fe, 77Co, 78Ni, 79Cu, 80Zn, 81Ga, 82Ge, 83As, 84Se, 85Br, 86Kr, 87Rb, 88Sr, 89Y, 90Zr, 91Nb, 92Mo, 93Tc, 94Ru, 95Rh, 96Pd, 97Ag, 98Cd, 99In, 101Sb, 102Te, 103I, 104Xe, 105Cs; calculated shell correction energies, radial density of 16O, 40Ca, 208Pb, and single neutron spectra of 208Pb using relativistic Hartree-Fock (RHF) theory with the Strutinsky method.

doi: 10.1103/PhysRevC.98.064323
Citations: PlumX Metrics

2018NI08      Phys.Lett. B 780, 325 (2018)

Y.F.Niu, Z.M.Niu, G.Colo, E.Vigezzi

Interplay of quasiparticle-vibration coupling and pairing correlations on β-decay half-lives

RADIOACTIVITY 68,70,72,74,76,78,80,82,84,86Ni, 130,132,134,136,138,140,142,144,146Sn(β-); calculated neutron and proton single-particle spectra, T1/2. Comparison with available data.

doi: 10.1016/j.physletb.2018.02.061
Citations: PlumX Metrics

2018YU03      Phys.Rev. C 97, 064308 (2018)

E.Yuksel, G.Colo, E.Khan, Y.F.Niu

Low-energy quadrupole states in neutron-rich tin nuclei

NUCLEAR STRUCTURE 116,118,120,122,124,126,128,130,132,134Sn; calculated mean value of the neutron pairing gap of even-A 116Sn to 130Sn isotopes, proton and neutron single-particle energies of even-A 116Sn to 132Sn, quasiparticle energies and occupation probabilities of neutron states around the Fermi level in 116,120,124,128Sn, energies and B(E2) of first 2+ states, running energy weighted sum of 120Sn, isoscalar quadrupole strengths in even-A 116Sn to 132Sn, reduced transition probabilities of the isoscalar quadrupole responses in 116,120,124,128Sn, quasiparticle contributions to the first 2+ and low-energy states in 120,124,128Sn, proton and neutron transition densities for first 2+, low-energy peak, and GQR region states of 116,120,124,128Sn. Fully self-consistent quasiparticle random phase approximation (QRPA) with Skyrme-type energy density functionals SGII, SLy5 and SkM*. Comparison with experimental values.

doi: 10.1103/PhysRevC.97.064308
Citations: PlumX Metrics

2018ZH23      Phys.Rev. C 97, 054302 (2018)

W.Zhang, Y.F.Niu

Critical temperature for shape transition in hot nuclei within covariant density functional theory

NUCLEAR STRUCTURE 292Cm; calculated free-energy surface contours in (β2, β3) plane, neutron and proton single-particle Nilsson states, and components of s.p. levels near the Fermi level. 286,288,290,292,294,296,298,300,302,304Cm; calculated minimum deformations β2, β3 and β4 proton and neutron pairing gaps, and specific heat as function of temperature, quadrupole and octupole transition temperatures. Finite-temperature axially deformed covariant density functional theory (CDFT)+BCS using PC-PK1 energy density functional.

doi: 10.1103/PhysRevC.97.054302
Citations: PlumX Metrics

2017NI07      Phys.Rev. C 95, 044301 (2017)

Z.M.Niu, Y.F.Niu, H.Z.Liang, W.H.Long, J.Meng

Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 54,56,58,60,62,64,68,70,72,74,76,78,80,82,84,86,88Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148Sn; calculated nuclear masses, S(2n), Q(β) values for Ca, Ni and Sn isotopes, neutron-skin thicknesses, IAS and GT excitation energies for Sn isotopes using the RHFB theory with PKO1 interaction and the RHB theory with DD-ME2 effective interaction. 118Sn; calculated running sum of the GT transition probabilities, and GT strength distribution using RHFB+QRPA approach with PKO1 interaction. 114Sn; calculated transition probabilities for the IAS by RHFB+QRPA, RHF+RPA, RHFB+RPA, RHFB+QRPA* with PKO1 interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.044301
Citations: PlumX Metrics

2017WI16      Phys.Rev. C 96, 064309 (2017)

K.Win, Y.Fujita, Y.Y.Oo, H.Fujita, Y.F.Niu, T.Adachi, G.P.A.Berg, G.Colo, H.Dohmann, M.Dozono, D.Frekers, E.-W.Grewe, K.Hatanaka, D.Ishikawa, R.Kehl, N.T.Khai, Y.Kalmykov, H.Matsubara, P.von Neumann-Cosel, T.Niizeki, T.Ruhe, Y.Shimbara, K.Suda, A.Tamii, J.Thies, H.P.Yoshida

High-resolution study of Tz = +1 → 0 Gamow-Teller transitions in the 26Mg (3He, t)26Al reaction

NUCLEAR REACTIONS 26Mg(3He, t), E=140 MeV/nucleon; measured triton spectra, σ(θ) using the Grand Raiden spectrometer at RCNP, Japan. 26Al; deduced levels, L-transfers, J, π, widths, analog states, Gamow-Teller transitions, B(GT) strengths. Comparison with previous experimental data, evaluated data in the ENSDF database, and with theoretical calculations using random phase approximation. Discussed isospin symmetry of T=2 Gamow-Teller states by comparing with the results of 26Mg(d, 2He), (t, 3He)26Na reactions.

doi: 10.1103/PhysRevC.96.064309
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2017YU03      Phys.Rev. C 96, 024303 (2017)

E.Yuksel, G.Colo, E.Khan, Y.F.Niu, K.Bozkurt

Multipole excitations in hot nuclei within the finite temperature quasiparticle random phase approximation framework

NUCLEAR STRUCTURE 68Ni, 120,122Sn; calculated isovector dipole and isoscalar quadrupole strength functions as function of temperature within the fully self-consistent finite temperature quasiparticle random phase approximation framework, based on the Skyrme-type SLy5 energy density functional. Comparison with available experimental data.

doi: 10.1103/PhysRevC.96.024303
Citations: PlumX Metrics

2017ZH34      Chin.Phys.C 41, 094102 (2017)

W.Zhang, Y.-F.Niu

Shape evolution of 72, 74Kr with temperature in covariant density functional theory

NUCLEAR STRUCTURE 72,74Kr; calculated particle energies, neutron and proton single-particle levels as a function of temperature, neutron single-particle levels and energy potential curves as a function of deformation.

doi: 10.1088/1674-1137/41/9/094102
Citations: PlumX Metrics

2017ZH46      Phys.Rev. C 96, 054308 (2017)

W.Zhang, Y.F.Niu

Shape transition with temperature of the pear-shaped nuclei in covariant density functional theory

NUCLEAR STRUCTURE 144,146,148,150,152,154Ba, 224Ra; calculated free energy surfaces in the (β2, β3) plane at temperatures 0, 0.5, 0.8, 0.9, 1.0, and 1.5 MeV for 224Ra, at temperatures 0, 0.4, 0.8, 1.2, 1.4, 1.6 MeV for 144Ba, and at temperatures 0, 0.4, 0.9, 1.4, 1.7, 2.0 MeV for 146Ba, deformations β2, β3, β4, pairing gaps Δν, Δπ, excitation energy and specific heat for the global minimum as functions of temperature; neutron and proton single-particle levels as functions of temperature for 224Ra. Relativistic mean field (RMF) theory using PC-PK1 functionals, and pairing correlations by the BCS approach. Comparison with available experimental data and with Gogny density functionals theory, RMF calculations.

doi: 10.1103/PhysRevC.96.054308
Citations: PlumX Metrics

2016MA51      Phys.Rev. C 94, 024615 (2016)

C.-W.Ma, F.Niu, C.-Y.Qiao, Y.-F.Niu, T.-Z.Yan

Pairing energy of fragments produced in intermediate-energy heavy-ion collisions

NUCLEAR REACTIONS 9Be, 181Ta(40Ca, X), (48Ca, X), (58Ni, X), (64Ni, X), E=140 MeV/nucleon; analyzed experimental data for isobaric yield ratios to obtain ratio of the pairing-energy coefficient for fragments to the temperature. AMD+GEMINI models in the framework of modified Fisher model (MFM).

doi: 10.1103/PhysRevC.94.024615
Citations: PlumX Metrics

2016NI16      Phys.Rev. C 94, 054315 (2016)

Z.M.Niu, B.H.Sun, H.Z.Liang, Y.F.Niu, J.Y.Guo

Improved radial basis function approach with odd-even corrections

ATOMIC MASSES Z=8-100, N=8-160, A=16-260; calculated masses using relativistic mean-field (RMF) with radial basis function (RBF) approach, and RMF with RBF considering odd-even effects (RBFoe). Z=31, 32, N=31-53; calculated S(n) with RMF+RBF, and RMF+RBFoe approaches. Comparison with experimental data taken form AME-2012.

doi: 10.1103/PhysRevC.94.054315
Citations: PlumX Metrics

2016NI17      Phys.Rev. C 94, 064328 (2016)

Y.F.Niu, G.Colo, E.Vigezzi, C.L.Bai, H.Sagawa

Quasiparticle random-phase approximation with quasiparticle-vibration coupling: Application to the Gamow-Teller response of the superfluid nucleus 120Sn

NUCLEAR STRUCTURE 120Sn; calculated Gamow-Teller strength distributions with and without isoscalar pairing, and their cumulative sums using different configuration spaces, energies and reduced transition probabilities of the lowest phonons of different multipolarities, microscopic structure of the main Gamow-Teller peaks. Self-consistent quasiparticle random-phase approximation (QRPA) plus quasiparticle-vibration coupling (QPVC) model with Skyrme interactions. Comparison with experimental data from (3He, t) and (p, n) reactions.

doi: 10.1103/PhysRevC.94.064328
Citations: PlumX Metrics

2016WA06      J.Phys.(London) G43, 045108 (2016)

Z.Y.Wang, Y.F.Niu, Z.M.Niu, J.Y.Guo

Nuclear β-decay half-lives in the relativistic point-coupling model

RADIOACTIVITY O, Ne, Mg, Si, S, Ar, Ca, Ti, Cr, Ni, 62,64,66,68,70,72Fe, 78,80,82Zn(β-); calculated T1/2, Q-value. Nonlinear point-coupling effective interaction PC-PK1, comparison with experimental data.

doi: 10.1088/0954-3899/43/4/045108
Citations: PlumX Metrics

2015NI11      Phys.Scr. 90, 114017 (2015)

Y.F.Niu, G.Colo, E.Vigezzi

The Gamow-Teller excitation and its spreading mechanism

NUCLEAR STRUCTURE 132Sn, 208Pb; calculated Gamow-Teller strength distributions. RPA and RPA+PVC models, using the Skyrme interactions SkM* and SGII.

doi: 10.1088/0031-8949/90/11/114017
Citations: PlumX Metrics

2014NI19      Phys.Rev. C 90, 054328 (2014)

Y.F.Niu, G.Colo, E.Vigezzi

Gamow-Teller response and its spreading mechanism in doubly magic nuclei

NUCLEAR STRUCTURE 48Ca, 78Ni, 132Sn, 208Pb; calculated low-lying phonon levels, J, π, B(E2), Gamow-Teller resonance (GT-) peak energies and FWHM, Gamow-Teller strength distributions B(GT), summed B(GT), single-neutron and proton spectra. Fully self-consistent Skyrme Hartree-Fock plus random phase approximation using Skyrme interactions SkI3, SkM*, SAMi, and SGII. Discussed microscopic coupling mechanism. Comparison with available experimental data.

doi: 10.1103/PhysRevC.90.054328
Citations: PlumX Metrics

2014ZH24      Phys.Rev. C 90, 014303 (2014)

J.S.Zheng, N.Y.Wang, Z.Y.Wang, Z.M.Niu, Y.F.Niu, B.Sun

Mass predictions of the relativistic mean-field model with the radial basis function approach

ATOMIC MASSES Z=8-100, N=8-170; calculated masses, S(2n), solar r-process abundances. Radial basis function (RBF) with relativistic mean-field (RMF) model. Comparison with experimental values from AME-2012.

doi: 10.1103/PhysRevC.90.014303
Citations: PlumX Metrics

2013ME08      Phys.Scr. T154, 014010 (2013)

J.Meng, Y.Chen, H.Z.Liang, Y.F.Niu, Z.M.Niu, L.S.Song, W.Zhao, Z.Li, B.Sun, X.D.Xu, Z.P.Li, J.M.Yao, W.H.Long, T.Niksic, D.Vretenar

Mass and lifetime of unstable nuclei in covariant density functional theory

NUCLEAR STRUCTURE A=80-195; calculated masses, binding energies, β-decay T1/2. Finite-range droplet model and Weizsacker-Skyrme models, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014010
Citations: PlumX Metrics

2013NI07      Phys.Rev. C 87, 037301 (2013)

Z.M.Niu, Q.Liu, Y.F.Niu, W.H.Long, J.Y.Guo

Nuclear effective charge factor originating from covariant density functional theory

NUCLEAR STRUCTURE Z=20, A=38-78; Z=28, A=60-100; Z=50, A=100-180; Z=82, A=180-270; calculated effective charge factors, Coulomb exchange energies, and relative deviations of Coulomb exchange energies as function of mass number for semi-magic nuclei. Relativistic Hartree-Fock-Bogoliubov (RHFB) approach with PKA1 effective interaction.

doi: 10.1103/PhysRevC.87.037301
Citations: PlumX Metrics

2013NI09      Phys.Rev. C 87, 051303 (2013)

Z.M.Niu, Y.F.Niu, Q.Liu, H.Z.Liang, J.Y.Guo

Nuclear β+/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing

RADIOACTIVITY 32,34Ar, 36,38Ca, 40,42Ti, 46,48,50Fe, 50,52,54Ni, 56,58Zn, 96,98,100Cd, 100,102,104Sn(β+), (EC); calculated half-lives, B(GT). Self-consistent proton-neutron QRPA with relativistic Hartree-Bogoliubov (QRPA+RHB) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.051303
Citations: PlumX Metrics

2013NI12      Phys.Lett. B 723, 172 (2013)

Z.M.Niu, Y.F.Niu, H.Z.Liang, W.H.Long, T.Niksic, D.Vretenar, J.Meng

β-decay half-lives of neutron-rich nuclei and matter flow in the r-process

RADIOACTIVITY Fe, Cd, 124Mo, 126Ru, 128Pd, 130Cd, 134Sn(β-); calculated T1/2, solar r-process abundances. Fully self-consistent proton-neutron quasiparticle random phase approximation (QRPA), based on the spherical relativistic Hartree-Fock-Bogoliubov (RHFB) framework.

doi: 10.1016/j.physletb.2013.04.048
Citations: PlumX Metrics

2013NI14      Phys.Rev. C 88, 024325 (2013)

Z.M.Niu, Z.L.Zhu, Y.F.Niu, B.H.Sun, T.H.Heng, J.Y.Guo

Radial basis function approach in nuclear mass predictions

ATOMIC MASSES Z=8-108, N=8-160; calculated masses using radial basis function approach with eight nuclear mass models; comparison with AME-1995, AME-2003 and AME-2012 evaluated masses. Discussed potential of RBF approach in prediction of masses.

doi: 10.1103/PhysRevC.88.024325
Citations: PlumX Metrics

2013NI16      Phys.Rev. C 88, 034308 (2013)

Y.F.Niu, Z.M.Niu, N.Paar, D.Vretenar, G.H.Wang, J.S.Bai, J.Meng

Pairing transitions in finite-temperature relativistic Hartree-Bogoliubov theory

NUCLEAR STRUCTURE 124Sn; calculated binding energy/nucleon, entropy, neutron radius, charge radius, neutron pairing energy, neutron pairing gap, specific heat and contour plot for the neutron pairing gap as function of temperature. 36,38,40,42,44,46,48,50,52,54,56,58,60,62Ca, 54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92Ni, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170Sn, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264Pb; calculated neutron pairing gap as a function of temperature, neutron pairing gaps at zero temperature and critical temperatures for pairing transition. Finite temperature relativistic Hartree-Bogoliubov (FTRHB) theory based on point-coupling functional PC-PK1 with Gogny or separable pairing forces.

doi: 10.1103/PhysRevC.88.034308
Citations: PlumX Metrics

2012NI03      Phys.Rev. C 85, 034314 (2012)

Y.F.Niu, G.Colo, M.Brenna, P.F.Bortignon, J.Meng

Gamow-Teller response within Skyrme random-phase approximation plus particle-vibration coupling

NUCLEAR STRUCTURE 60Ni; calculated low-lying phonon levels, reduced transition probabilities. 56,60Ni, 208Pb; calculated energies and widths of Gamow-Teller states, Gamow-Teller strength distributions with Skyrme random-phase approximation plus particle-vibration coupling. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034314
Citations: PlumX Metrics

2012PA27      J.Phys.:Conf.Ser. 337, 012013 (2012)

N.Paar, D.Vretenar, Y.F.Niu, J.Meng

Self-consistent theory of stellar electron capture rates

doi: 10.1088/1742-6596/337/1/012013
Citations: PlumX Metrics

2012VR01      Phys.Rev. C 85, 044317 (2012)

D.Vretenar, Y.F.Niu, N.Paar, J.Meng

Low-energy isovector and isoscalar dipole response in neutron-rich nuclei

NUCLEAR STRUCTURE 68Ni, 132Sn, 208Pb; calculated isovector and isoscalar E1 strength distributions, electric dipole polarizability, moments of isoscalar and isovector dipole strength distributions, partial neutron and proton contributions to reduced amplitudes of pygmy dipole states (PDS) and to isovector giant-dipole resonance (GDR), EWSR. Fully self-consistent random-phase approximation based on relativistic energy density functionals.

doi: 10.1103/PhysRevC.85.044317
Citations: PlumX Metrics

2011NI09      Phys.Rev. C 83, 045807 (2011)

Y.F.Niu, N.Paar, D.Vretenar, J.Meng

Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation

NUCLEAR REACTIONS 54,56Fe, 76,78Ge(e, ν), E=0-30 MeV; calculated B(GT) strength distributions, electron-capture rates and cross sections in stellar environments. Finite-temperature relativistic mean-field model with charge-exchange transitions described by the self-consistent finite-temperature relativistic random-phase approximation. Comparison with predictions of similar and complementary model calculations.

doi: 10.1103/PhysRevC.83.045807
Citations: PlumX Metrics

2011NI21      J.Phys.:Conf.Ser. 312, 042017 (2011)

Y.F.Niu, N.Paar, D.Vretenar, J.Meng

Finite temperature effects on monopole and dipole excitations

NUCLEAR STRUCTURE 60Ni, 132Sn; calculated resonance dipole (Ni), monopole (Sn) transition strength distributions, single particle spectra using FTRRPA (finite temperature relativistic RPA).

doi: 10.1088/1742-6596/312/4/042017
Citations: PlumX Metrics

2009NI01      Chin.Phys.Lett. 26, 032103 (2009)

Y.-F.Niu, H.-Z.Liang, J.Meng

Stability of Strutinsky Shell Correction Energy in Relativistic Mean Field Theory

NUCLEAR STRUCTURE 208Pb; calculated neutron shell correction energies using a RMF approach.

doi: 10.1088/0256-307X/26/3/032103
Citations: PlumX Metrics

2009PA26      Phys.Rev.Lett. 103, 032502 (2009)

N.Paar, Y.F.Niu, D.Vretenar, J.Meng

Isoscalar and Isovector Splitting of Pygmy Dipole Structures

NUCLEAR STRUCTURE 140Ce; calculated E1 transition strength; deduced low-energy strength structure based on isospin. QRPA, comparison with experiment.

doi: 10.1103/PhysRevLett.103.032502
Citations: PlumX Metrics

Back to query form