NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = W.H.Long

Found 55 matches.

Back to query form



2023GE01      Chin.Phys.C 47, 044102 (2023)

J.Geng, Y.F.Niu, W.H.Long

Unified mechanism behind the even-parity ground state and neutron halo of 11Be

NUCLEAR STRUCTURE 10,11,12Be; calculated binding and one-neutron, two-neutron separation energies, neutron orbits with respect to the deformation, interaction matrix elements between a selected neutron and the core orbits using the axially deformed relativistic Hartree-Fock-Bogoliubov (D-RHFB) model. Comparison with available data.

doi: 10.1088/1674-1137/acb7cd
Citations: PlumX Metrics


2023HU03      Eur.Phys.J. A 59, 4 (2023)

Y.Huang, J.T.Zhang, Y.Kuang, J.Geng, X.L.Tu, K.Yue, W.H.Long, Z.P.Li

Matter radius determination of 16O via small-angle differential cross sections

NUCLEAR REACTIONS 16O(p, p), E=200-700 MeV; analyzed available data; deduced σ(α) using the Glauber model, precise matter radii.

doi: 10.1140/epja/s10050-022-00912-6
Citations: PlumX Metrics


2022CH18      Phys.Rev. C 105, 034330 (2022)

S.Y.Chang, Z.H.Wang, Yi.F.Niu, W.H.Long

Relativistic random-phase-approximation description of M1 excitations with the inclusion of π mesons

NUCLEAR STRUCTURE 48Ca, 90Zr, 208Pb; calculated GT- and M1 strength distributions, magnetic dipole resonance features, B(GT), B(M1), EWSR for M1 transitions, transitions configurations. 48Ca; calculated proton and neutron single-particle spectra. Random-phase approximation (RPA) based on the relativistic mean-field (RMF) theory, using the density-dependent effective interactions with contribution of π mesons included as residual interaction. Comparison with experimental values.

doi: 10.1103/PhysRevC.105.034330
Citations: PlumX Metrics


2022DI06      Phys.Rev. C 106, 054311 (2022)

S.Y.Ding, Z.Qian, B.Y.Sun, W.H.Long

Quenched Λ spin-orbit splitting by a relativistic Fock diagram in single-Λ hypernuclei

NUCLEAR STRUCTURE 15,16O, 39,40Ca, 207,208Pb; calculated binding energies and matter radii of the hypernuclei. 16O, 40Ca, 208Pb;calculated spin-orbit splittings of Λ spin partner states for the ground state of hypernuclei, Λ local self-energy. 13C; calculated kinetic and potential energies for Λ hypernucleus. 12C, 13C, 16O, 28Si, 40Ca, 51V, 89Y, 139La, 208Pb; calculated Λ separation energies for the single-Λ hypernuclei. Relativistic Hartree-Fock (RHF) theory extended by Λ-nucleon effective interacti ons with density-dependent meson-hyperon couplings. Comparison to available experimental data.

doi: 10.1103/PhysRevC.106.054311
Citations: PlumX Metrics


2022GE02      Phys.Rev. C 105, 034329 (2022)

J.Geng, W.H.Long

Relativistic Hartree-Fock-Bogoliubov model for axially deformed nuclei

NUCLEAR STRUCTURE 24Mg, 156Sm; calculated binding energies, quadrupole deformation, neutron and proton single particle spectra. Axially deformed relativistic Hartree-Fock-Bogoliubov (D-RHFB) model with spherical Dirac Woods-Saxon (DWS) base. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.034329
Citations: PlumX Metrics


2022XI02      Phys.Rev. C 105, 045803 (2022)

C.-J.Xia, B.Y.Sun, T.Maruyama, W.-H.Long, A.Li

Unified nuclear matter equations of state constrained by the in-medium balance in density-dependent covariant density functionals

ATOMIC MASSES A=20-260; calculated binding energies, energy per baryon of finite nuclei. Thomas-Fermi approximation framework with two covariant density functionals DD-LZ1 and DD-ME2. Comparison with data from AME2016.

doi: 10.1103/PhysRevC.105.045803
Citations: PlumX Metrics


2021LI28      Phys.Rev. C 103, 064301 (2021)

Z.Z.Li, Y.F.Niu, W.H.Long

Electric dipole polarizability in neutron-rich Sn isotopes as a probe of nuclear isovector properties

NUCLEAR STRUCTURE 100,110,120,130,140,150,160,164Sn; calculated Pearson coefficient between the product of dipole polarizability and saturated symmetry energy, slope parameter of symmetry energy, and neutron-skin thickness versus dipole polarizability for 150,160Sn by quasiparticle random-phase approximation (QRPA) based on Hartree-Fock-Bogoliubov (HFB) using 24 different Skyrme density functionals, with and without the pairing correlations. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164Sn; calculated dipole polarizabilities as functions of mass number by QRPA and RPA using Skyrme functional SLy4, and with contributions from pygmy dipole resonances (PDR) for A=130-164 Sn nuclei. 48Ca, 68Ni, 112,114,116,118,120,124Sn, 208Pb; analyzed slope parameter of symmetry energy from experimental dipole polarizabilities by Skyrme QRPA calculations using 24 Skyrme functionals. 140,142,144,146,148,150,152,154,156,158,160Sn; calculated dipole polarizabilities and neutron-skin thickness of neutron-rich Sn isotopes from experimental dipole polarizabilities of 208Pb. Relevance to probe of nuclear isovector properties.

doi: 10.1103/PhysRevC.103.064301
Citations: PlumX Metrics


2021WA30      Chin.Phys.C 45, 064103 (2021)

Z.Wang, T.Naito, H.Liang, W.H.Long

Exploring effects of tensor force and its strength via neutron drops

doi: 10.1088/1674-1137/abf036
Citations: PlumX Metrics


2021YA02      Phys.Rev. C 103, 014304 (2021)

S.Yang, X.D.Sun, J.Geng, B.Y.Sun, W.H.Long

Liquid-gas phase transition of thermal nuclear matter and the in-medium balance between nuclear attraction and repulsion

doi: 10.1103/PhysRevC.103.014304
Citations: PlumX Metrics


2020GE01      Phys.Rev. C 101, 064302 (2020)

J.Geng, J.Xiang, B.Y.Sun, W.H.Long

Relativistic Hartree-Fock model for axially deformed nuclei

NUCLEAR STRUCTURE 20Ne, 56Fe, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 220Rn; calculated binding energies and quadrupole deformations. 20Ne; calculated neutron and proton single particle energies, neutron valence orbit splitting, and proportions of the main components in expanding the neutron 2[1/2]+ orbit. Axially deformed relativistic Hartree-Fock (RHF) model using the spherical Dirac Woods-Saxon (DWS), and density-dependent meson-nucleon couplings.

doi: 10.1103/PhysRevC.101.064302
Citations: PlumX Metrics


2020LI19      Phys.Lett. B 806, 135524 (2020)

J.Liu, Y.F.Niu, W.H.Long

New magicity N=32 and 34 due to strong couplings between Dirac inversion partner

NUCLEAR STRUCTURE N=28-40; analyzed available data. 52Ca, 48S, 46Si; deduced a new mechanism for the strong couplings, Dirac inversion partners.

doi: 10.1016/j.physletb.2020.135524
Citations: PlumX Metrics


2020WA17      Phys.Rev. C 101, 064306 (2020)

Z.Wang, T.Naito, H.Liang, W.H.Long

Self-consistent random-phase approximation based on the relativistic Hartree-Fock theory: Role of ρ-tensor coupling

NUCLEAR STRUCTURE 48Ca, 90Zr, 208Pb; calculated energies and transition probabilities of isobaric analog states (IAS) and Gamow-Teller resonances, neutron and proton single-particle spectra. Random-phase approximation (RPA) based on the relativistic Hartree-Fock theory, extended with self-consistent ρ-meson tensor coupling. Comparison with experimental data for excitation energies and transition strength distributions.

doi: 10.1103/PhysRevC.101.064306
Citations: PlumX Metrics


2020XI03      Phys.Rev. C 101, 064301 (2020)

J.Xiang, Z.P.Li, T.Niksic, D.Vretenar, W.H.Long

Coupling of shape and pairing vibrations in a collective Hamiltonian based on nuclear energy density functionals

NUCLEAR STRUCTURE 152Nd, 154Sm, 156Gd, 158Dy; calculated low-lying levels, J, π, lowest 0+ states, B(E2) and E0 transition strengths with quadrupole + pairing collective Hamiltonian and axially symmetric quadrupole collective Hamiltonian based on PC-PK1 energy functional; calculated potential energy surface (PES), probability density distributions and deformation energy surfaces in (β2, α) planes using triaxial relativistic mean-field formalism with PC-PK1 parameter sets. Comparison with experimental data.

doi: 10.1103/PhysRevC.101.064301
Citations: PlumX Metrics


2019GE09      Phys.Rev. C 100, 051301 (2019)

J.Geng, J.J.Li, W.H.Long, Y.F.Niu, S.Y.Chang

Pseudospin symmetry restoration and the in-medium balance between nuclear attractive and repulsive interactions

NUCLEAR STRUCTURE 48Ca, 90Zr, 132Sn, 208Pb, 310126; calculated Proton shell gaps and the splittings of the neighboring pseudospin symmetry (PS) partners using RMF Lagrangians PKA1, PKO3, and the RMF ones DD-ME2, PK1, NL3*, and compared with available experimental data. 208Pb; calculated contributions to the binding energy from various channels given by the RHF Lagrangian PKA1, proton pseudospin orbital (PSO) splittings using PKA1, PKO3, DD-ME2, and the tentative parametrizations. Relativistic Hartree-Fock (RHF) approach.

doi: 10.1103/PhysRevC.100.051301
Citations: PlumX Metrics


2019LI01      Phys.Lett. B 788, 192 (2019)

J.J.Li, W.H.Long, J.Margueron, N.Van Giai

48Si: An atypical nucleus?

NUCLEAR STRUCTURE 48Si; calculated energy levels, J, π, pairing gap, the onset of doubly magicity using the relativistic Hartree-Fock Lagrangian PKA1.

doi: 10.1016/j.physletb.2018.11.034
Citations: PlumX Metrics


2019LI33      Chin.Phys.C 43, 074107 (2019)

Z.-Z.Li, S.-Y.Chang, Q.Zhao, W.-H.Long, Y.-F.Niu

Restoration of pseudo-spin symmetry in N = 32 and N = 34 isotones described by relativistic Hartree-Fock theory

NUCLEAR STRUCTURE N=32, 34; analyzed available data; calculated proton single-particle energies, pseudo-spin orbit splitting, proton densities; deduced the restoration of the pseudo-spin symmetry.

doi: 10.1088/1674-1137/43/7/074107
Citations: PlumX Metrics


2019NI07      Phys.Rev. C 99, 064307 (2019)

Z.M.Niu, H.Z.Liang, B.H.Sun, W.H.Long, Y.F.Niu

Predictions of nuclear β-decay half-lives with machine learning and their impact on r-process nucleosynthesis

RADIOACTIVITY 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89Ni, 122Zr, 123Nb, 124Mo, 125Tc, 126Ru, 127Rh, 128Pd, 129Ag, 130Cd, 131In, 132Sn, 133Sb, 134Te, 187Pm, 188Sm, 189Eu, 190Gd, 191Tb, 192Dy, 193Ho, 194Er, 195Tm, 196Yb, 197Lu, 198Hf, 199Ta, 200W, 201Re, 202Os, 203Ir, 204Pt, 205Au, 206Hg, 207Tl(β-); calculated T1/2, and uncertainties using machine-learning approach based on Bayesian neural network (BNN). Comparison with experimental values, and with other theoretical predictions. A=90-210; discussed impact on r-process nucleosynthesis calculations.

doi: 10.1103/PhysRevC.99.064307
Citations: PlumX Metrics


2019SH41      Prog.Part.Nucl.Phys. 109, 103713 (2019)

S.Shen, H.Liang, W.H.Long, J.Meng, P.Ring

Towards an ab initio covariant density functional theory for nuclear structure

doi: 10.1016/j.ppnp.2019.103713
Citations: PlumX Metrics


2018JI08      Phys.Rev. C 98, 064323 (2018)

P.Jiang, Z.M.Niu, Y.F.Niu, W.H.Long

Strutinsky shell correction energies in relativistic Hartree-Fock theory

NUCLEAR STRUCTURE 16O, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51Ca, 78Ni, 100,132Sn, 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215Pb, 277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320Og, 75Mn, 76Fe, 77Co, 78Ni, 79Cu, 80Zn, 81Ga, 82Ge, 83As, 84Se, 85Br, 86Kr, 87Rb, 88Sr, 89Y, 90Zr, 91Nb, 92Mo, 93Tc, 94Ru, 95Rh, 96Pd, 97Ag, 98Cd, 99In, 101Sb, 102Te, 103I, 104Xe, 105Cs; calculated shell correction energies, radial density of 16O, 40Ca, 208Pb, and single neutron spectra of 208Pb using relativistic Hartree-Fock (RHF) theory with the Strutinsky method.

doi: 10.1103/PhysRevC.98.064323
Citations: PlumX Metrics


2018LI45      Eur.Phys.J. A 54, 133 (2018)

J.J.Li, W.H.Long, A.Sedrakian

Hypernuclear stars from relativistic Hartree-Fock density functional theory

doi: 10.1140/epja/i2018-12566-6
Citations: PlumX Metrics


2018WA26      Phys.Rev. C 98, 034313 (2018)

Z.Wang, Q.Zhao, H.Liang, W.H.Long

Quantitative analysis of tensor effects in the relativistic Hartree-Fock theory

NUCLEAR STRUCTURE 40,48,52,54Ca, 208Pb, 16,22O, 14C, 34,42Si, 36,44S, 56,60,66,68,78Ni; calculated contributions to the total energy from the tensor forces in different couplings, proton and neutron gap energies with and without tensor force in each meson-nucleon coupling using relativistic Hartree-Fock theory with PKA1 effective interaction. Comparison with experimental values.

doi: 10.1103/PhysRevC.98.034313
Citations: PlumX Metrics


2018XI08      Phys.Rev. C 98, 054308 (2018)

J.Xiang, Z.P.Li, W.H.Long, T.Niksic, D.Vretenar

Shape evolution and coexistence in neutron-deficient Nd and Sm nuclei

NUCLEAR STRUCTURE 126,128,130,132,134,136,138,140Nd, 128,130,132,134,136,138,140,142Sm; calculated potential energy surfaces (PES) in (β2, γ) planes, B(E2) for the first 2+ state, E(first 4+)/E(first 2+) and E(2+ of γ band)/E(first 4+) ratios, β deformation parameters, low-lying levels, J, π, E0 strengths, and distribution of the probability densities for the first and second 0+, and first and third 2+ states in 134Nd and 136Sm, neutron and proton single particle levels in 134Nd, and single-neutron levels in 132,136Nd; analyzed shape evolution and shape coexistence in neutron-deficient even-even Nd and Sm nuclei. Relativistic mean field formalism with PC-PK1 parameter sets, and a separable finite-range pairing interaction with a five-dimensional (5DCH) quadrupole collective Hamiltonian. analyzed Comparison with experimental values.

doi: 10.1103/PhysRevC.98.054308
Citations: PlumX Metrics


2017NI07      Phys.Rev. C 95, 044301 (2017)

Z.M.Niu, Y.F.Niu, H.Z.Liang, W.H.Long, J.Meng

Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 54,56,58,60,62,64,68,70,72,74,76,78,80,82,84,86,88Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148Sn; calculated nuclear masses, S(2n), Q(β) values for Ca, Ni and Sn isotopes, neutron-skin thicknesses, IAS and GT excitation energies for Sn isotopes using the RHFB theory with PKO1 interaction and the RHB theory with DD-ME2 effective interaction. 118Sn; calculated running sum of the GT transition probabilities, and GT strength distribution using RHFB+QRPA approach with PKO1 interaction. 114Sn; calculated transition probabilities for the IAS by RHFB+QRPA, RHF+RPA, RHFB+RPA, RHFB+QRPA* with PKO1 interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.044301
Citations: PlumX Metrics


2016LI02      Phys.Lett. B 753, 97 (2016)

J.J.Li, J.Margueron, W.H.Long, N.Van Giai

Magicity of neutron-rich nuclei within relativistic self-consistent approaches

NUCLEAR STRUCTURE 24O, 48Si, 52,54Ca; calculated single particle energies, spin orbital splittings; deduce magicity. Relativistic Hartree-Fock-Bogoliubov theory.

doi: 10.1016/j.physletb.2015.12.004
Citations: PlumX Metrics


2016LI27      Phys.Rev. C 93, 054312 (2016)

J.Li, W.-H.Long, J.-L.Song, Q.Zhao

Pseudospin-orbit splitting and its consequences for the central depression in nuclear density

NUCLEAR STRUCTURE 32,40Mg, 34,42Si, 36,44S, 38,46Ar, 40,48Ca, 200,204,206,208,212Hg; calculated proton single-particle energies for N=20 and 28 isotones and Z=80 isotopes by RHFB with PKA1 and RHB with DD-ME2. 32Mg, 34,42Si, 36,44S, 46Ar, 48Ca, 190Gd, 200,204,206,208,212Hg, 208Pb; calculated charge distributions by RHFB with PKA1 and PKO3 and by RHB with DD-ME2. 22,24O, 34,36Ca; calculated neutron distributions of N=14 isotones by RHFB with PKA1 and PKO3 and by RHB with DD-ME2. 292,304,318120; calculated proton single-particle states at spherical shape by RHFB with PKA1 and RHB with DD-ME2, neutron and proton distributions by RHFB with PKA1 and PKO3 and by RHB with DD-ME2. 34Si, 34Ca, 190Gd, 292120; calculated contours of neutron and proton densities for semibubble candidates by RHFB with PKA1. 46Ar; calculated PSO and SO splittings as a function of the neutron pairing gap from PKA1 with Gogny D1S and DDDI pairing forces, charge distributions by RH(F)B with different pairing interactions. 34,36,40Ca, 36S, 34Si; calculated he SO splittings of ν2p by different Lagrangians. Comparisons with experimental data.

doi: 10.1103/PhysRevC.93.054312
Citations: PlumX Metrics


2016XI07      Phys.Rev. C 93, 054324 (2016)

J.Xiang, J.M.Yao, Y.Fu, Z.H.Wang, Z.P.Li, W.H.Long

Novel triaxial structure in low-lying states of neutron-rich nuclei around A ≈ 100

NUCLEAR STRUCTURE 100,102,104,106,108,110Mo, 96Kr, 98Sr, 100Zr, 104Ru; calculated energy surface contours in (β, γ) plane, low-lying levels, J, π, energies and B(E2) of first 2+ states, reduced diagonal E2 matrix elements, transition quadrupole moments as function of angular momentum, staggering of the γ band using 3DCH prolate and oblate, and 5DCH triaxial configurations. Relativistic mean-field plus BCS wave functions generated with a constraint on triaxial deformations and solving a five-dimensional collective Hamiltonian (5DCH). Comparison with experimental values.

doi: 10.1103/PhysRevC.93.054324
Citations: PlumX Metrics


2015JI02      Phys.Rev. C 91, 025802 (2015)

L.Jiang, S.Yang, J.M.Dong, W.H.Long

Self-consistent tensor effects on nuclear matter systems within a relativistic Hartree-Fock approach

doi: 10.1103/PhysRevC.91.025802
Citations: PlumX Metrics


2015JI04      Phys.Rev. C 91, 034326 (2015)

L.Jiang, S.Yang, B.Y.Sun, W.H.Long, H.Q.Gu

Nuclear tensor interaction in a covariant energy density functional

NUCLEAR STRUCTURE 48Ca; calculated contributions to the spin-orbit splittings of the nodeless neutron from the couplings with neutron on the nodeless states of 48Ca, and from the Fock diagrams of Lorentz scalar and vector couplings, interaction matrix elements of tensor force, and tensor strength factors with respect to nucleon density and momentum transfer. Density-dependent relativistic Hartree-Fock (DDRHF) calculations with PKA1 density functional. Reliability of relativistic representation of the nuclear tensor force in describing nuclear structure, excitation, and decay modes.

doi: 10.1103/PhysRevC.91.034326
Citations: PlumX Metrics


2015LI25      Phys.Rev. C 92, 014302 (2015)

J.J.Li, J.Margueron, W.H.Long, N.Van Giai

Pairing phase transition: A finite-temperature relativistic Hartree-Fock-Bogoliubov study

NUCLEAR STRUCTURE 124Sn; calculated neutron pairing gaps, density, binding energy, compression modulus, symmetry energy, and nonrelativistic effective masses, critical temperature and the occupation number of continuum states, contributions of the continuum states to the pairing and neutron numbers. Z=20-50, N=50; Z=32-76, N=82; Z=52-98, N=126; Z=28, N=22-68; Z=50, N=46-126; Z=82, N=96-184; calculated and compared critical temperatures in FT-RHFB with PKA1, PKO1, DD-ME2 and the Gogny pairing interaction D1S. 68Ni, 174Sn; calculated neutron pairing gaps as a function of temperature using FT-RHFB with Gogny D1S and DDCI pairing forces, and FT-RHF-BCS with DDCI pairing force. 120,160Sn; calculated entropy and specific heat as a function of temperature using FT-RH(F)B and FTRH(F) theories and several different interactions. Self-consistent finite-temperature RHFB (FT-RHFB) theory in a Dirac Woods-Saxon (DWS) basis with a large number of Lagrangians.

doi: 10.1103/PhysRevC.92.014302
Citations: PlumX Metrics


2015WA11      J.Phys.(London) G42, 045108 (2015)

Z.H.Wang, J.Xiang, W.H.Long, Z.P.Li

Covariant density functional analysis of shape evolution in N = 40 isotones

NUCLEAR STRUCTURE 62Ti, 64Cr, 66Fe, 68Ni, 70Zn, 72Ge, 74Se, 76Kr, 78Sr, 80Zr; calculated potential energy surfaces, two-proton separation energies, B(E2), J, π; deduced shape coexistence. Comparison with experimental data, relativistic mean-field plus BCS method with the PC-PK1 functional in the particle-hole channel and a separable pairing force in the particle-particle channel.

doi: 10.1088/0954-3899/42/4/045108
Citations: PlumX Metrics


2015ZH24      J.Phys.(London) G42, 095101 (2015)

Q.Zhao, B.Y.Sun, W.H.Long

Kinetic and potential parts of nuclear symmetry energy: the role of Fock terms

doi: 10.1088/0954-3899/42/9/095101
Citations: PlumX Metrics


2014ZH39      Phys.Rev. C 90, 054326 (2014)

Q.Zhao, J.M.Dong, J.L.Song, W.H.Long

Proton radioactivity described by covariant density functional theory with the similarity renormalization group method

RADIOACTIVITY 146,147Tm, 150,151Lu, 155,156,157Ta, 159,160,161Re, 164,165,166,167Ir, 170,171Au, 176,177Tl(p); calculated half-lives and spectroscopic factors for spherical nuclei. Covariant density functional (CDF) theory, combined with the WKB approximation, and the similarity renormalization group (SRG) method. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.054326
Citations: PlumX Metrics


2013GU14      Phys.Rev. C 87, 041301 (2013)

H.-Q.Gu, H.Liang, W.H.Long, N.Van Giai, J.Meng

Slater approximation for Coulomb exchange effects in nuclear covariant density functional theory

NUCLEAR STRUCTURE Z=20, A=36-76; Z=28, A=56-96; Z=40, A=80-136; Z=50, A=100-180; Z=82, A=180-270; calculated Coulomb exchange energies, relative deviation of Coulomb exchange energies using self-consistent relativistic and non-relativistic local density approximations (RLDA, NRLDA) for even-even nuclei. 188,208,228, 248Pb; calculated proton density distributions using relativistic Hartree-Fock-Bogoliubov (RHFB) with PKA1 interaction. 208Pb; calculated proton single-particle energy shifts. Implementation of the Coulomb exchange effects in the relativistic Hartree (RH) theory.

doi: 10.1103/PhysRevC.87.041301
Citations: PlumX Metrics


2013LU02      Phys.Rev. C 87, 034311 (2013)

X.L.Lu, B.Yu.Sun, W.H.Long

Description of carbon isotopes within relativistic Hartree-Fock-Bogoliubov theory

NUCLEAR STRUCTURE 14,15,16,17,18,19,20,21,22C; calculated S(n), S(2n), proton and neutron density distributions, neutron single-particle energy, matter radii, neutron rms radii, binding energy. Single-neutron halo structures. Relativistic Hartree-Fock-Bogoliubov (RHFB) theory with finite-range Gogny force D1S. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.034311
Citations: PlumX Metrics


2013ME08      Phys.Scr. T154, 014010 (2013)

J.Meng, Y.Chen, H.Z.Liang, Y.F.Niu, Z.M.Niu, L.S.Song, W.Zhao, Z.Li, B.Sun, X.D.Xu, Z.P.Li, J.M.Yao, W.H.Long, T.Niksic, D.Vretenar

Mass and lifetime of unstable nuclei in covariant density functional theory

NUCLEAR STRUCTURE A=80-195; calculated masses, binding energies, β-decay T1/2. Finite-range droplet model and Weizsacker-Skyrme models, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014010
Citations: PlumX Metrics


2013NI07      Phys.Rev. C 87, 037301 (2013)

Z.M.Niu, Q.Liu, Y.F.Niu, W.H.Long, J.Y.Guo

Nuclear effective charge factor originating from covariant density functional theory

NUCLEAR STRUCTURE Z=20, A=38-78; Z=28, A=60-100; Z=50, A=100-180; Z=82, A=180-270; calculated effective charge factors, Coulomb exchange energies, and relative deviations of Coulomb exchange energies as function of mass number for semi-magic nuclei. Relativistic Hartree-Fock-Bogoliubov (RHFB) approach with PKA1 effective interaction.

doi: 10.1103/PhysRevC.87.037301
Citations: PlumX Metrics


2013NI12      Phys.Lett. B 723, 172 (2013)

Z.M.Niu, Y.F.Niu, H.Z.Liang, W.H.Long, T.Niksic, D.Vretenar, J.Meng

β-decay half-lives of neutron-rich nuclei and matter flow in the r-process

RADIOACTIVITY Fe, Cd, 124Mo, 126Ru, 128Pd, 130Cd, 134Sn(β-); calculated T1/2, solar r-process abundances. Fully self-consistent proton-neutron quasiparticle random phase approximation (QRPA), based on the spherical relativistic Hartree-Fock-Bogoliubov (RHFB) framework.

doi: 10.1016/j.physletb.2013.04.048
Citations: PlumX Metrics


2013WA12      Phys.Rev. C 87, 047301 (2013)

L.J.Wang, J.M.Dong, W.H.Long

Tensor effects on the evolution of the N=40 shell gap from nonrelativistic and relativistic mean-field theory

NUCLEAR STRUCTURE 60Ca, 62Ti, 64Cr, 66Fe, 68Ni, 70Zn; calculated neutron gap, contributions of the neutron gap from the isovector and tensor couplings. Nonrelativistic Skyrme-Hartree-Fock-Bogoliubov (SHFB) and relativistic Hartree-Fock-Bogoliubov (RHFB) theory with the inclusion of tensor force, and using PKA1 and PKO3 interactions.

doi: 10.1103/PhysRevC.87.047301
Citations: PlumX Metrics


2013WA15      Phys.Rev. C 87, 054331 (2013)

L.J.Wang, B.Y.Sun, J.M.Dong, W.H.Long

Odd-even staggering of the nuclear binding energy described by covariant density functional theory with calculations for spherical nuclei

NUCLEAR STRUCTURE Z=6, N=3-13; Z=8, N=5-15; Z=20, N=17-31; Z=28, N=27-45; Z=40, N=45-63; Z=50, N=53-83; Z=58, N=69-91; Z=64, N=77-97; Z=82, N=99-131; N=50, Z=29-49; N=82, Z=51-71; calculated neutron and proton odd-even staggering of binding energies. N=50, Z=30-48; N=82, Z=50-70; calculated average pairing gap. 112,114,118,124Sn; calculated occupation numbers of valence neutron orbits. 196,198,200,202,204,206,208,210,212,214,216Pb; calculated pairing energy. Analyzed effects of the optimized pairing force on the pairing energy and binding energy. Spherical covariant density functional (CDF) theory using relativistic Hartree-Fock-Bogoliubov (RHFB) and relativistic Hartree-Bogoliubov (RHB) methods with Gogny D1S pairing force. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.054331
Citations: PlumX Metrics


2013XI11      Phys.Rev. C 88, 057301 (2013)

J.Xiang, Z.P.Li, J.M.Yao, W.H.Long, P.Ring, J.Meng

Effect of pairing correlations on nuclear low-energy structure: BCS and general Bogoliubov transformation

NUCLEAR STRUCTURE 134,136,138,140,142,144,146,148,150,152,154Sm; calculated binding energies for quadrupole deformation, proton and neutron pairing gaps. 152Sm; calculated potential energy surfaces for quadrupole deformation, proton and neutron pairing gaps, moments of inertia, low-lying levels, J, π, bands, single-particle energy levels and occupation probabilities. Relativistic Hartree-Bogoliubov (RHB) and relativistic mean field plus BCS (RMF+BCS) calculations, and comparison between the two approaches.

doi: 10.1103/PhysRevC.88.057301
Citations: PlumX Metrics


2012LO02      Phys.Rev. C 85, 025806 (2012)

W.H.Long, B.Y.Sun, K.Hagino, H.Sagawa

Hyperon effects in covariant density functional theory and recent astrophysical observations

doi: 10.1103/PhysRevC.85.025806
Citations: PlumX Metrics


2011LO04      Phys.Rev. C 83, 024907 (2011)

W.H.Long, C.A.Bertulani

Nucleus-nucleus interaction between boosted nuclei

doi: 10.1103/PhysRevC.83.024907
Citations: PlumX Metrics


2010LI30      Eur.Phys.J. A 44, 119 (2010)

H.Liang, W.H.Long, J.Meng, N.Van Giai

Spin symmetry in Dirac negative-energy spectrum in density-dependent relativistic Hartree-Fock theory

NUCLEAR STRUCTURE 16O; calculated single-particle energies, spin-orbit splitting, associated features of the negative-energy spectrum. Density-dependent relativistic Hartree-Fock theory.

doi: 10.1140/epja/i2010-10938-6
Citations: PlumX Metrics


2010LO02      Phys.Rev. C 81, 024308 (2010)

W.H.Long, P.Ring, N.Van Giai, J.Meng

Relativistic Hartree-Fock-Bogoliubov theory with density dependent meson-nucleon couplings

NUCLEAR STRUCTURE Z=50, N=56-86 (even); calculated binding energies and neutron radii using Relativistic Hartree-Fock-Bogoliubov (RHFB) with Gogny and delta pairing force and density dependent Relativistic Hartree-Fock-Bogoliubov (DDRHFB) with BCS pairing. Z=50, N=50-88; N=82, Z=48-73; calculated binding energies, S(n), S(p), S(2n) and S(2p) using RHFB with PKA1 and PKO1 parameters and RHB with DD-ME2 parameters. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.024308
Citations: PlumX Metrics


2010LO03      Phys.Rev. C 81, 031302 (2010)

W.-H.Long, P.Ring, J.Meng, N.Van Giai, C.A.Bertulani

Nuclear halo structure and pseudospin symmetry

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74Ca, 56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94Ni, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Zr, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174Sn, 122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198Ce; calculated neutron skin thickness (rn-rp) using RHFB with PKA1 plus the D1S pairing force. 140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198Ce; calculated neutron and proton densities, neutron single particle energies, Two-body interaction matrix elements Vab, neutron shell gap, halo structure near neutron drip line, and conservation of pseudospin symmetry using relativistic Hartree-Fock-Bogoliubov calculations.

doi: 10.1103/PhysRevC.81.031302
Citations: PlumX Metrics


2009LO04      Phys.Lett. B 680, 428 (2009)

W.H.Long, T.Nakatsukasa, H.Sagawa, J.Meng, H.Nakada, Y.Zhang

Non-local mean field effect on nuclei near Z=64 sub-shell

NUCLEAR STRUCTURE 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf, 156W; calculated (pseudo-)spin-orbit splitting and proton state energy differences for N=82 isotones using density dependent relativistic HartreeĀFock model. Comparison with other models and experimental data.

doi: 10.1016/j.physletb.2009.09.034
Citations: PlumX Metrics


2008LO02      Europhys.Lett. 82, 12001 (2008)

W.H.Long, H.Sagawa, J.Meng, N.Van Giai

Evolution of nuclear shell structure due to the pion exchange potential

doi: 10.1209/0295-5075/82/12001
Citations: PlumX Metrics


2008SU24      Phys.Rev. C 78, 065805 (2008)

B.Y.Sun, W.H.Long, J.Meng, U.Lombardo

Neutron star properties in density-dependent relativistic Hartree-Fock theory

doi: 10.1103/PhysRevC.78.065805
Citations: PlumX Metrics


2007BA82      Eur.Phys.J. Special Topics 150, 139 (2007)

S.F.Ban, L.S.Geng, W.H.Long, J.Meng, J.Peng, J.M.Yao, S.Q.Zhang, S.G.Zhou

Structure of nuclei far from the stability in relativistic approach

doi: 10.1140/epjst/e2007-00288-2
Citations: PlumX Metrics


2006BA71      Int.J.Mod.Phys. E15, 1447 (2006)

S.F.Ban, L.S.Geng, L.Liu, W.H.Long, J.Meng, J.Peng, J.M.Yao, S.Q.Zhang, S.G.Zhou

Recent progress in relativistic many-body approach

doi: 10.1142/S0218301306005010
Citations: PlumX Metrics


2006GE07      Chin.Phys.Lett. 23, 1139 (2006)

L.-S.Geng, J.Meng, H.Toki, W.-H.Long, G.Shen

Spurious Shell Closures in the Relativistic Mean Field Model

NUCLEAR STRUCTURE 132Sn, 140Ce, 208Pb, 218U; analyzed binding energies, related data; deduced spurious shell closures in relativistic mean field model.

doi: 10.1088/0256-307X/23/5/021
Citations: PlumX Metrics


2006LO08      Phys.Lett. B 639, 242 (2006)

W.H.Long, H.Sagawa, J.Meng, N.Van Giai

Pseudo-spin symmetry in density-dependent relativistic Hartree-Fock theory

NUCLEAR STRUCTURE 132Sn; calculated neutron single-particle level energies, pseudo-spin symmetry features. Relativistic mean field and density-dependent relativistic Hartree-Fock theories, comparison with data.

doi: 10.1016/j.physletb.2006.05.065
Citations: PlumX Metrics


2006LO10      Phys.Lett. B 640, 150 (2006)

W.-H.Long, N.Van Giai, J.Meng

Density-dependent relativistic Hartree-Fock approach

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,58,68Ni, 90Zr, 210Po; calculated binding energies, radii. Sn; calculated binding energies, two-neutron separation energies. Pb; calculated binding energies, radii, two-neutron separation energies, isotope shifts. 16O, 40,48Ca, 56Ni, 132Sn, 208Pb; calculated spin-orbit splitting. Relativistic mean field theory, density-dependent meson-nucleon coupling.

doi: 10.1016/j.physletb.2006.07.064
Citations: PlumX Metrics


2006ME11      Prog.Part.Nucl.Phys. 57, 470 (2006)

J.Meng, H.Toki, S.G.Zhou, S.Q.Zhang, W.H.Long, L.S.Geng

Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei

doi: 10.1016/j.ppnp.2005.06.001
Citations: PlumX Metrics


2004ME17      Yad.Fiz. 67, 1645 (2004); Phys.Atomic Nuclei 67, 1619 (2004)

J.Meng, S.F.Ban, J.Li, W.H.Long, H.F.Lu, S.Q.Zhang, W.Zhang, S.-G.Zhou

Relativistic Description of Exotic Nuclei and Nuclear Matter at Extreme Conditions

NUCLEAR STRUCTURE 208Pb; calculated levels, J, π. O, Ca, Ni, Zr, Sn, Pb; calculated two-neutron separation energies. 72Ca; calculated density distributions. Z=100-140; calculated neutron and proton shell closures. Relativistic approach.

doi: 10.1134/1.1802347
Citations: PlumX Metrics


Back to query form