NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = Z.M.Niu

Found 57 matches.

Back to query form



2024LI14      J.Phys.(London) G51, 015103 (2024)

W.F.Li, X.Y.Zhang, Y.F.Niu, Z.M.Niu

Comparative study of neural network and model averaging methods in nuclear β-decay half-life predictions

NUCLEAR STRUCTURE Z<100; analyzed β-decay T1/2 using the two-hidden-layer neural network and compared with the model averaging method; deduced half-life predictions of the neural network.

doi: 10.1088/1361-6471/ad0314
Citations: PlumX Metrics


2024ZH06      Nucl.Phys. A1043, 122820 (2024)

X.Y.Zhang, W.F.Li, J.Y.Fang, Z.M.Niu

Nuclear mass predictions with the naive Bayesian model averaging method

NUCLEAR STRUCTURE Z=10-110; analyzed available data; deduced atomic masses using a naive Bayesian model averaging (NBMA) method.

doi: 10.1016/j.nuclphysa.2024.122820
Citations: PlumX Metrics


2023HA28      Phys.Lett. B 844, 138092 (2023)

Y.W.Hao, Y.F.Niu, Z.M.Niu

Sensitivity of the r-process rare-earth peak abundances to nuclear masses

doi: 10.1016/j.physletb.2023.138092
Citations: PlumX Metrics


2023HA41      Phys.Rev. C 108, L062802 (2023)

Y.-W.Hao, Y.-F.Niu, Z.-M.Niu

Impact of nuclear β-decay rates on the r-process rare-earth peak abundances

doi: 10.1103/PhysRevC.108.L062802
Citations: PlumX Metrics


2023HO11      Phys.Rev. C 108, 054312 (2023)

D.S.Hou, A.Takamine, M.Rosenbusch, W.D.Xian, S.Iimura, S.D.Chen, M.Wada, H.Ishiyama, P.Schury, Z.M.Niu, H.Z.Liang, S.X.Yan, P.Doornenbal, Y.Hirayama, Y.Ito, S.Kimura, T.M.Kojima, W.Korten, J.Lee, J.J.Liu, Z.Liu, S.Michimasa, H.Miyatake, J.Y.Moon, S.Naimi, S.Nishimura, T.Niwase, T.Sonoda, D.Suzuki, Y.X.Watanabe, K.Wimmer, H.Wollnik

First direct mass measurement for neutron-rich 112Mo with the new ZD-MRTOF mass spectrograph system

doi: 10.1103/PhysRevC.108.054312
Citations: PlumX Metrics


2023YA26      Phys.Rev. C 108, 034315 (2023)

Z.-X.Yang, X.-H.Fan, T.Naito, Z.-M.Niu, Z.-Pa.Li, H.Liang

Calibration of nuclear charge density distribution by back-propagation neural networks

doi: 10.1103/PhysRevC.108.034315
Citations: PlumX Metrics


2023ZH37      Phys.Rev. C 108, 024310 (2023)

X.Y.Zhang, Z.M.Niu, W.Sun, X.W.Xia

Nuclear charge radii and shape evolution of Kr and Sr isotopes with the deformed relativistic Hartree-Bogoliubov theory in continuum

NUCLEAR STRUCTURE 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Kr, 78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144Sr; calculated binding energy, two-neutron separation energy S(2n), charge radii, quadrupole deformation parameters, potential energy curves. 100Sn; calculated wave function, charge radii as a function of quadrupole deformation parameter. Deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) calculations and DRHBc extended to go beyond mean-field framework by performing a two-dimensional collective Hamiltonian (2DCH). Comparison to experimental data.

doi: 10.1103/PhysRevC.108.024310
Citations: PlumX Metrics


2022FA08      Phys.Rev. C 106, 054318 (2022)

J.Y.Fang, J.Chen, Z.M.Niu

Gross theory of β decay by considering the spin-orbit splitting from relativistic Hartree-Bogoliubov theory

RADIOACTIVITY Z=20-82, N=35-128(β-); 130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173Sn, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100Ni, 71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105Zn, 113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147Ag(β-); calculated T1/2. Gross theory with including the spin-orbit splitting from relativistic Hartree-Bogoliubov theory. Comparison with microscopic SHFB+FAM, RHB+QRPA, and FRDM12+QRPA models. Comparison to experimental data.

NUCLEAR STRUCTURE 90Zr, 208Pb, 130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173Sn, 68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100Ni; calculated central energies of the Gamow-Teller and the Fermi transitions, spin-orbit splitting. Comparison to experimental data.

doi: 10.1103/PhysRevC.106.054318
Citations: PlumX Metrics


2022HA23      Astrophys.J. 933, 3 (2022)

Y.W.Hao, Y.F.Niu, Z.M.Niu

Influence of Spontaneous Fission Rates on the r-process Nucleosynthesis

doi: 10.3847/1538-4357/ac6fdc
Citations: PlumX Metrics


2022HE11      Chin.Phys.C 46, 054102 (2022)

C.He, Z.-M.Niu, X.-J.Bao, J.-Y.Guo

Research on α-decay for the superheavy nuclei with Z = 118-120

RADIOACTIVITY 269,271Sg, 270,271,272,273,274Bh, 273,275Hs, 274,275,276Mt, 278Mt, 277,279,281Ds, 278,279,280,281,282Rg, 281,283,285Cn, 282,283,284,285,286Nh, 285,286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og, 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304118, 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306119, 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308120(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1674-1137/ac4c3a
Citations: PlumX Metrics


2022MI14      Phys.Rev. C 106, 024306 (2022)

F.Minato, Z.Niu, H.Liang

Calculation of β-decay half-lives within a Skyrme-Hartree-Fock-Bogoliubov energy density functional with the proton-neutron quasiparticle random-phase approximation and isoscalar pairing strengths optimized by a Bayesian method

RADIOACTIVITY 87,88,89,90,91,92,93,94,95,96,97,98,99,100Kr, 88,89,90,91,92,93,94,95,96,97,98,99,100,101Rb, 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137Mo, 102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138Tc(β-); 113,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143Cd, 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144In(β-); 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192Sm, 156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193Eu(β-); Z=8-110(β-); A=20-368(β-); calculated β--decay T1/2, partial T1/2 for Gamow-Teller decays, Q values, isoscalar spin-triplet strength for neutron-rich nuclei using proton-neutron quasiparticle random-phase approximation (pnQRPA), proton-neutron quasiparticle Tamm-Dancoff approximation (pnQTDA), with Skryme energy density functional, and Bayesian neural network (BNN), the last for isoscalar spin-triplet strength. Calculated T1/2, Q values, isoscalar spin-triplet strength for 5580 neutron-rich nuclei spanning Z=8-110, N=12-258 and A=20-368 are listed in Supplemental Material of the paper. Comparison with available experimental T1/2 in NUBASE2016.

doi: 10.1103/PhysRevC.106.024306
Citations: PlumX Metrics


2022NI10      Phys.Rev. C 106, L021303 (2022)

Z.M.Niu, H.Z.Liang

Nuclear mass predictions with machine learning reaching the accuracy required by r-process studies

ATOMIC MASSES 159,160,161,162,163,164,165,166Nd, 160,161,162,163,164,165,166,167Pm, 161,162,163,164,165,166,167,168Sm, 162,163,164,165,166,167,168,169Eu, 163,164,165,166,167,168,169,170Gd, 164,165,166,167,168,169,170,171Tb; calculated S(2n). Machine learning algorithm. Bayesian neural networks by learning the mass surface of even-even nuclei and the correlation energies to their neighboring nuclei. Comparison to experimental data.

doi: 10.1103/PhysRevC.106.L021303
Citations: PlumX Metrics


2022WA13      Phys.Lett. B 830, 137154 (2022)

Y.F.Wang, X.Y.Zhang, Z.M.Niu, Z.P.Li

Study of nuclear low-lying excitation spectra with the Bayesian neural network approach

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40Mg, 36,38,40,42,44,46,48,50,52,54Ca, 72,74,76,78,80,82,84,86,88,90,92,94,96,98Kr, 130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162Sm, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216Pb; analyzed available data; deduced energies, J, π of the low-lying spectra in Bayesian neural network (BNN) approach.

doi: 10.1016/j.physletb.2022.137154
Citations: PlumX Metrics


2021CH36      Astrophys.J. 915, 78 (2021)

H.Cheng, B.-H.Sun, L.-H.Zhu, M.Kusakabe, Y.Zheng, L.C.He, T.Kajino, Z.-M.Niu, T.-X.Li, C.-B.Li, D.-X.Wang, M.Wang, G.-S.Li, K.Wang, L.Song, G.Guo, Z.-Y.Huang, X.-L.Wei, F.-W.Zhao, X.-G.Wu, Y.Abulikemu, J.-C.Liu, P.Fan

Measurements of 160Dy(p, γ) at Energies Relevant for the Astrophysical γ Process

NUCLEAR REACTIONS 160Dy(p, γ), 161Dy(p, n), E=3.4-7 MeV; measured reaction products, Eγ, Iγ; deduced σ, S-factor, astrophysical reaction rates. Comparison with TALYS, NON-SMOKER calculations.

doi: 10.3847/1538-4357/ac00b1
Citations: PlumX Metrics


2021SH22      Chin.Phys.C 45, 044103 (2021)

M.Shi, J.Y.Fang, Z.M.Niu

Exploring the uncertainties in theoretical predictions of nuclear β-decay half-lives

NUCLEAR STRUCTURE N=50, 82, 126; calculated β-decay T1/2 and uncertainties.

doi: 10.1088/1674-1137/abdf42
Citations: PlumX Metrics


2021YU06      Chin.Phys.C 45, 124107 (2021)

Z.Yuan, D.Tian, J.Li, Z.Niu

Magnetic moment predictions of odd-A nuclei with the Bayesian neural network approach

NUCLEAR MOMENTS 207,209Pb, 209Bi, 207Tl, Cd, Cs, 23F, 23Si, 37S, 39Sc, 53K, 41Ti, 53,61Co, 79Cu, 59Zn, 81Ge, 93Mo, 93Ru, 97Pd, 99,103,129In, 101Sn, 113,135Sb, 181Tl, 197,215Bi; analyzed available data; deduced nuclear magnetic moments using the BNN-I4 approach. Bayesian neural network (BNN).

doi: 10.1088/1674-1137/ac28f9
Citations: PlumX Metrics


2020MA01      Chin.Phys.C 44, 014104 (2020)

C.-W.Ma, D.Peng, H.-L.Wei, Z.-M.Niu, Y.-T.Wang, R.Wada

Isotopic cross-sections in proton induced spallation reactions based on the Bayesian neural network method

NUCLEAR REACTIONS 36,40Ar, 40Ca, 56Fe, 136Xe, 197Au, 208Pb, 238U(p, X), E=200-1500 MeV/nucleon; analyzed available data; deduced σ using the Bayesian neural network (BNN) method.

doi: 10.1088/1674-1137/44/1/014104
Citations: PlumX Metrics


2020MA19      Phys.Rev. C 101, 045204 (2020)

C.Ma, M.Bao, Z.M.Niu, Y.M.Zhao, A.Arima

New extrapolation method for predicting nuclear masses

ATOMIC MASSES 121Rh, 123Pd, 129,131Cd, 138Sb, 141I, 149Ba, 150,151La, 137Eu, 190Tl, 215Pb, 194Bi, 198At, 197,198,202,232,233Fr, 201Ra, 205,206Ac, 215,216,221,222U, 219Np, 229Am, 259No; A=20-260; Z=36-106, N=56-160; calculated mass excesses using method based on the Garvey-Kelson mass relations and the Jannecke mass formulas. Comparison with evaluated data in AME2016, and other theoretical predictions over the entire chart of nuclides. Z=43-106, A=120-273; predicted masses in Supplemental material for about 600 nuclei for which no experimental data exist. Z=8-106, N=10-157; deduced parameters for each prediction of masses based on AME2016, listed in Supplemental material.

doi: 10.1103/PhysRevC.101.045204
Citations: PlumX Metrics


2019CA08      Phys.Rev. C 99, 024314 (2019)

X.-N.Cao, Q.Liu, Z.-M.Niu, J.-Y.Guo

Systematic studies of the influence of single-particle resonances on neutron halo and skin in the relativistic-mean-field and complex-momentum-representation methods

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74Ca, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84Ni, 114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154Sn, 200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240Pb; calculated neutron rms radii, S(2n), single-neutron energies, occupation probabilities of single-neutron levels, and density distributions of 74Ca, 84Ni, 160Sn, 240Pb using relativistic-mean-field and complex-momentum-representation (RMF-CMR) method. Comparison with relativistic Hartree-Bogoliubov calculations, and with experimental data.

doi: 10.1103/PhysRevC.99.024314
Citations: PlumX Metrics


2019MA56      Phys.Rev. C 100, 024330 (2019)

C.Ma, Z.Li, Z.M.Niu, H.Z.Liang

Influence of nuclear mass uncertainties on radiative neutron-capture rates

NUCLEAR REACTIONS 124Mo, 126Ru, 194Er, 196Yb(n, γ), T9=0.0001-10; Sb, Zr(n, γ), T9=1; calculated radiative n-capture rates with TALYS using ten mass models to determine the uncertainties. Z=5-100, N=10-230; analyzed uncertainties of radiative neutron-capture rates from nuclear mass uncertainties at different temperatures.

doi: 10.1103/PhysRevC.100.024330
Citations: PlumX Metrics


2019NI07      Phys.Rev. C 99, 064307 (2019)

Z.M.Niu, H.Z.Liang, B.H.Sun, W.H.Long, Y.F.Niu

Predictions of nuclear β-decay half-lives with machine learning and their impact on r-process nucleosynthesis

RADIOACTIVITY 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89Ni, 122Zr, 123Nb, 124Mo, 125Tc, 126Ru, 127Rh, 128Pd, 129Ag, 130Cd, 131In, 132Sn, 133Sb, 134Te, 187Pm, 188Sm, 189Eu, 190Gd, 191Tb, 192Dy, 193Ho, 194Er, 195Tm, 196Yb, 197Lu, 198Hf, 199Ta, 200W, 201Re, 202Os, 203Ir, 204Pt, 205Au, 206Hg, 207Tl(β-); calculated T1/2, and uncertainties using machine-learning approach based on Bayesian neural network (BNN). Comparison with experimental values, and with other theoretical predictions. A=90-210; discussed impact on r-process nucleosynthesis calculations.

doi: 10.1103/PhysRevC.99.064307
Citations: PlumX Metrics


2019NI11      Phys.Rev. C 100, 054311 (2019)

Z.M.Niu, J.Y.Fang, Y.F.Niu

Comparative study of radial basis function and Bayesian neural network approaches in nuclear mass predictions

ATOMIC MASSES Z=8-110, N=8-160; analyzed nuclear masses and S(n) for 1800 nuclei, and investigated predictive power of radial basis function (RBF), radial basis function with odd-even effect (RBFoe), and Bayesian neural network (BNN) approaches; deduced rms deviations from the evaluated experimental masses in AME2016.

doi: 10.1103/PhysRevC.100.054311
Citations: PlumX Metrics


2019SH24      Chin.Phys.C 43, 074104 (2019)

M.Shi, Z.-M.Niu, H.-Z.Liang

Mass predictions of the relativistic continuum Hartree-Bogoliubov model with radial basis function approach

ATOMIC MASSES N=0-160; analyzed available data; calculated nuclear masses using radial basis function (RBF) approach.

doi: 10.1088/1674-1137/43/7/074104
Citations: PlumX Metrics


2018DI08      Phys.Rev. C 98, 014316 (2018)

K.-M.Ding, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang

Resonant-continuum relativistic mean-field plus BCS in complex momentum representation

NUCLEAR STRUCTURE 120,122,124,126,128,130,132,134,136,138,140Zr; calculated neutron single particle energies and widths, occupation probabilities of neutron single particle levels, and neutron single particle spectra and density distributions in 124Zr. 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Zr; calculated S(2n), rms neutron radii. Resonant-continuum relativistic mean-field plus BCS in complex momentum representation with the BCS approximation for pairing correlations. Comparison with available experimental values.

doi: 10.1103/PhysRevC.98.014316
Citations: PlumX Metrics


2018JI08      Phys.Rev. C 98, 064323 (2018)

P.Jiang, Z.M.Niu, Y.F.Niu, W.H.Long

Strutinsky shell correction energies in relativistic Hartree-Fock theory

NUCLEAR STRUCTURE 16O, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51Ca, 78Ni, 100,132Sn, 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215Pb, 277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320Og, 75Mn, 76Fe, 77Co, 78Ni, 79Cu, 80Zn, 81Ga, 82Ge, 83As, 84Se, 85Br, 86Kr, 87Rb, 88Sr, 89Y, 90Zr, 91Nb, 92Mo, 93Tc, 94Ru, 95Rh, 96Pd, 97Ag, 98Cd, 99In, 101Sb, 102Te, 103I, 104Xe, 105Cs; calculated shell correction energies, radial density of 16O, 40Ca, 208Pb, and single neutron spectra of 208Pb using relativistic Hartree-Fock (RHF) theory with the Strutinsky method.

doi: 10.1103/PhysRevC.98.064323
Citations: PlumX Metrics


2018NI08      Phys.Lett. B 780, 325 (2018)

Y.F.Niu, Z.M.Niu, G.Colo, E.Vigezzi

Interplay of quasiparticle-vibration coupling and pairing correlations on β-decay half-lives

RADIOACTIVITY 68,70,72,74,76,78,80,82,84,86Ni, 130,132,134,136,138,140,142,144,146Sn(β-); calculated neutron and proton single-particle spectra, T1/2. Comparison with available data.

doi: 10.1016/j.physletb.2018.02.061
Citations: PlumX Metrics


2018SH21      Phys.Rev. C 97, 064301 (2018)

M.Shi, Z.-M.Niu, H.Liang

Combination of complex momentum representation and Green's function methods in relativistic mean-field theory

NUCLEAR STRUCTURE 74Ca; calculated single particle resonance for g7/2 orbital, level density distribution, and density of continuum states for the 1g7/2 orbital, continuum level density (CLD) for all the resonance states, density distributions for the 1g7/2, 2d3/2, 3s1/2, 2d5/2 and 1g9/2 orbitals, single-particle levels, and wave function of the 2d3/2 resonant state. Combined complex momentum representation method with Green's function method in the relativistic mean-field framework (RMF-CMR-GF); discussed single-particle wave functions and densities for halo structure in 74Ca.

doi: 10.1103/PhysRevC.97.064301
Citations: PlumX Metrics


2017FA02      Phys.Rev. C 95, 024311 (2017)

Z.Fang, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang, S.-S.Zhang

Probing resonances in the Dirac equation with quadrupole-deformed potentials with the complex momentum representation method

NUCLEAR STRUCTURE 37Mg; calculated levels, resonances, single-particle resonances, J, π, single-particle energies for deformation (Nilsson orbitals) for the bound and resonant states concerned, radial-momentum probability distributions for the bound and resonant deformed states by solving the Dirac equation in complex momentum representation, and a set of coupled differential equations by the coupled-channel method.

doi: 10.1103/PhysRevC.95.024311
Citations: PlumX Metrics


2017NI07      Phys.Rev. C 95, 044301 (2017)

Z.M.Niu, Y.F.Niu, H.Z.Liang, W.H.Long, J.Meng

Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60Ca, 54,56,58,60,62,64,68,70,72,74,76,78,80,82,84,86,88Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148Sn; calculated nuclear masses, S(2n), Q(β) values for Ca, Ni and Sn isotopes, neutron-skin thicknesses, IAS and GT excitation energies for Sn isotopes using the RHFB theory with PKO1 interaction and the RHB theory with DD-ME2 effective interaction. 118Sn; calculated running sum of the GT transition probabilities, and GT strength distribution using RHFB+QRPA approach with PKO1 interaction. 114Sn; calculated transition probabilities for the IAS by RHFB+QRPA, RHF+RPA, RHFB+RPA, RHFB+QRPA* with PKO1 interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.044301
Citations: PlumX Metrics


2017SH09      Eur.Phys.J. A 53, 40 (2017)

M.Shi, X.-X.Shi, Z.-M.Niu, T.-T.Sun, J.-Y.Guo

Relativistic extension of the complex scaled Green's function method for resonances in deformed nuclei

NUCLEAR STRUCTURE A=31; calculated continuum level density for the 9/2[404] state, density of continuum states with quadrupole deformation and selected rotation angles; deduced influence of potential and its parameters.

doi: 10.1140/epja/i2017-12241-6
Citations: PlumX Metrics


2017TI04      Chin.Phys.C 41, 044104 (2017)

Y.-J.Tian, T.-H.Heng, Z.-M.Niu, Q.Liu, J.-Y.Guo

Exploration of resonances by using complex momentum representation

NUCLEAR STRUCTURE 17O; calculated the bound states and resonant states using the complex momentum representation in comparison with those obtained in coordinate representation by the complex scaling method for resonances.

doi: 10.1088/1674-1137/41/4/044104
Citations: PlumX Metrics


2016LI35      Phys.Rev.Lett. 117, 062502 (2016)

N.Li, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang

Probing Resonances of the Dirac Equation with Complex Momentum Representation

NUCLEAR STRUCTURE 120Sn; calculated energies and widths of single neutron state resonances. Relativistic mean-field (RMF) theory.

doi: 10.1103/PhysRevLett.117.062502
Citations: PlumX Metrics


2016NI16      Phys.Rev. C 94, 054315 (2016)

Z.M.Niu, B.H.Sun, H.Z.Liang, Y.F.Niu, J.Y.Guo

Improved radial basis function approach with odd-even corrections

ATOMIC MASSES Z=8-100, N=8-160, A=16-260; calculated masses using relativistic mean-field (RMF) with radial basis function (RBF) approach, and RMF with RBF considering odd-even effects (RBFoe). Z=31, 32, N=31-53; calculated S(n) with RMF+RBF, and RMF+RBFoe approaches. Comparison with experimental data taken form AME-2012.

doi: 10.1103/PhysRevC.94.054315
Citations: PlumX Metrics


2016SH25      Phys.Rev. C 94, 024302 (2016)

X.-X.Shi, M.Shi, Z.-M.Niu, T.-H.Heng, J.-Y.Guo

Probing resonances in deformed nuclei by using the complex-scaled Green's function method

NUCLEAR STRUCTURE 45S; calculated level densities as a function of quadrupole deformation β2, widths of resonant states, neutron single-particle levels using complex-scaled Green's function (CGF) method with theory of deformed nuclei. Comparison with calculations using complex scaling, and coupled-channel methods.

doi: 10.1103/PhysRevC.94.024302
Citations: PlumX Metrics


2016SU07      J.Phys.(London) G43, 045107 (2016)

T.T.Sun, Z.M.Niu, S.Q.Zhang

Single-proton resonant states and the isospin dependence investigated by Green's function relativistic mean field theory

NUCLEAR STRUCTURE 120Sn; calculated single-particle levels and density of states, resonance parameters. The relativistic mean field theory formulated with Green's function method (RMF-GF).

doi: 10.1088/0954-3899/43/4/045107
Citations: PlumX Metrics


2016TA11      Chin.Phys.C 40, 074102 (2016)

J.Tang, Z.-M.Niu, J.-Y.Guo

Influence of binding energies of electrons on nuclear mass predictions

ATOMIC MASSES Z<120; calculated impact of binding energies of electrons on nuclear mass predictions.

doi: 10.1088/1674-1137/40/7/074102
Citations: PlumX Metrics


2016WA06      J.Phys.(London) G43, 045108 (2016)

Z.Y.Wang, Y.F.Niu, Z.M.Niu, J.Y.Guo

Nuclear β-decay half-lives in the relativistic point-coupling model

RADIOACTIVITY O, Ne, Mg, Si, S, Ar, Ca, Ti, Cr, Ni, 62,64,66,68,70,72Fe, 78,80,82Zn(β-); calculated T1/2, Q-value. Nonlinear point-coupling effective interaction PC-PK1, comparison with experimental data.

doi: 10.1088/0954-3899/43/4/045108
Citations: PlumX Metrics


2015LI04      Phys.Rev. C 91, 024311 (2015)

D.-P.Li, S.-W.Chen, Z.-M.Niu, Q.Liu, J.-Y.Guo

Further investigation of relativistic symmetry in deformed nuclei by similarity renormalization group

NUCLEAR STRUCTURE 154Dy; calculated single-particle energies, spin and pseudospin energy splittings as function of β2 deformation parameter, contributions by the nonrelativistic, dynamical, and spin-orbit coupling terms. Origin and breaking mechanism of relativistic symmetries for an axially deformed nucleus. Relativistic symmetry approach using the similarity renormalization group (SRG).

doi: 10.1103/PhysRevC.91.024311
Citations: PlumX Metrics


2015SH34      Phys.Rev. C 92, 054313 (2015)

M.Shi, J.-Y.Guo, Q.Liu, Z.-M.Niu, T.-H.Heng

Relativistic extension of the complex scaled Green function method

NUCLEAR STRUCTURE 120Sn; calculated energies and widths of single-neutron resonant states using RMF-CGF method, complex scaled Green function method extended to relativistic framework. Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.92.054313
Citations: PlumX Metrics


2015WA12      J.Phys.(London) G42, 055112 (2015)

Z.Y.Wang, Z.M.Niu, Q.Liu, J.Y.Guo

Systematic calculations of α-decay half-lives with an improved empirical formula

NUCLEAR STRUCTURE A<260; analyzed available data; calculated α-decay T1/2; deduced a new formula. Comparison with experimental data.

doi: 10.1088/0954-3899/42/5/055112
Citations: PlumX Metrics


2014GU05      Phys.Rev.Lett. 112, 062502 (2014)

J.-Y.Guo, S.-W.Chen, Z.-M.Niu, D.-P.Li, Q.Liu

Probing the Symmetries of the Dirac Hamiltonian with Axially Deformed Scalar and Vector Potentials by Similarity Renormalization Group

NUCLEAR STRUCTURE 154Dy; calculated single-particle levels, spin energy splitting and their correlation with the deformation parameters.

doi: 10.1103/PhysRevLett.112.062502
Citations: PlumX Metrics


2014LI14      Phys.Scr. 89, 054018 (2014)

H.Liang, T.Nakatsukasa, Z.Niu, J.Meng

Finite-amplitude method: an extension to the covariant density functionals

NUCLEAR STRUCTURE 208Pb; calculated isoscalar giant monopole resonances. The finite-amplitude method for optimizing the computational performance of the random-phase approximation.

doi: 10.1088/0031-8949/89/5/054018
Citations: PlumX Metrics


2014SH28      Phys.Rev. C 90, 034319 (2014)

M.Shi, Q.Liu, Z.-M.Niu, J.-Y.Guo

Relativistic extension of the complex scaling method for resonant states in deformed nuclei

NUCLEAR STRUCTURE A=31; calculated single-particle levels and resonance parameters for all the concerned resonant states in nuclei with A=31. Complex scaling method extended to relativistic framework for resonances in deformed nuclei.

doi: 10.1103/PhysRevC.90.034319
Citations: PlumX Metrics


2014ZH09      Phys.Rev. C 89, 034307 (2014)

Z.-L.Zhu, Z.-M.Niu, D.-P.Li, Q.Liu, J.-Y.Guo

Probing single-proton resonances in nuclei by the complex-scaling method

NUCLEAR STRUCTURE 114,116,118,120,122,124,132Sn, 126Ru, 128Pd, 130Cd, 134Te, 136Xe; calculated energies and width of single-proton resonant states. 40Ca, 56,78Ni, 100,132Sn, 208Pb; calculated difference of energies of single-proton resonant states for doubly magic nuclei with and without Coulomb exchange terms. Complex scaling method with relativistic mean-field theory (RMF-CMS). Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.89.034307
Citations: PlumX Metrics


2014ZH24      Phys.Rev. C 90, 014303 (2014)

J.S.Zheng, N.Y.Wang, Z.Y.Wang, Z.M.Niu, Y.F.Niu, B.Sun

Mass predictions of the relativistic mean-field model with the radial basis function approach

ATOMIC MASSES Z=8-100, N=8-170; calculated masses, S(2n), solar r-process abundances. Radial basis function (RBF) with relativistic mean-field (RMF) model. Comparison with experimental values from AME-2012.

doi: 10.1103/PhysRevC.90.014303
Citations: PlumX Metrics


2013LI20      Phys.Rev. C 87, 054310 (2013)

H.Liang, T.Nakatsukasa, Z.Niu, J.Meng

Feasibility of the finite-amplitude method in covariant density functional theory

NUCLEAR STRUCTURE 16O; calculated unperturbed 0+ excitation strengths. 132Sn, 208Pb; calculated isoscalar giant monopole resonance (ISGMR). Self-consistent relativistic random-phase approximation (RPA) and finite-amplitude method (FAM) based on RMF theory. Comparison with experimental data. Discussed effects of the Dirac sea in the matrix-FAM scheme.

doi: 10.1103/PhysRevC.87.054310
Citations: PlumX Metrics


2013ME08      Phys.Scr. T154, 014010 (2013)

J.Meng, Y.Chen, H.Z.Liang, Y.F.Niu, Z.M.Niu, L.S.Song, W.Zhao, Z.Li, B.Sun, X.D.Xu, Z.P.Li, J.M.Yao, W.H.Long, T.Niksic, D.Vretenar

Mass and lifetime of unstable nuclei in covariant density functional theory

NUCLEAR STRUCTURE A=80-195; calculated masses, binding energies, β-decay T1/2. Finite-range droplet model and Weizsacker-Skyrme models, comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014010
Citations: PlumX Metrics


2013ME09      J.Phys.:Conf.Ser. 445, 012016 (2013)

J.Meng, Y.Chen, Z.M.Niu, B.Sun, P.W.Zhao

Impact on the r-process from the nuclear mass and lifetime in covariant density functional theory

doi: 10.1088/1742-6596/445/1/012016
Citations: PlumX Metrics


2013NI07      Phys.Rev. C 87, 037301 (2013)

Z.M.Niu, Q.Liu, Y.F.Niu, W.H.Long, J.Y.Guo

Nuclear effective charge factor originating from covariant density functional theory

NUCLEAR STRUCTURE Z=20, A=38-78; Z=28, A=60-100; Z=50, A=100-180; Z=82, A=180-270; calculated effective charge factors, Coulomb exchange energies, and relative deviations of Coulomb exchange energies as function of mass number for semi-magic nuclei. Relativistic Hartree-Fock-Bogoliubov (RHFB) approach with PKA1 effective interaction.

doi: 10.1103/PhysRevC.87.037301
Citations: PlumX Metrics


2013NI09      Phys.Rev. C 87, 051303 (2013)

Z.M.Niu, Y.F.Niu, Q.Liu, H.Z.Liang, J.Y.Guo

Nuclear β+/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing

RADIOACTIVITY 32,34Ar, 36,38Ca, 40,42Ti, 46,48,50Fe, 50,52,54Ni, 56,58Zn, 96,98,100Cd, 100,102,104Sn(β+), (EC); calculated half-lives, B(GT). Self-consistent proton-neutron QRPA with relativistic Hartree-Bogoliubov (QRPA+RHB) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.051303
Citations: PlumX Metrics


2013NI12      Phys.Lett. B 723, 172 (2013)

Z.M.Niu, Y.F.Niu, H.Z.Liang, W.H.Long, T.Niksic, D.Vretenar, J.Meng

β-decay half-lives of neutron-rich nuclei and matter flow in the r-process

RADIOACTIVITY Fe, Cd, 124Mo, 126Ru, 128Pd, 130Cd, 134Sn(β-); calculated T1/2, solar r-process abundances. Fully self-consistent proton-neutron quasiparticle random phase approximation (QRPA), based on the spherical relativistic Hartree-Fock-Bogoliubov (RHFB) framework.

doi: 10.1016/j.physletb.2013.04.048
Citations: PlumX Metrics


2013NI14      Phys.Rev. C 88, 024325 (2013)

Z.M.Niu, Z.L.Zhu, Y.F.Niu, B.H.Sun, T.H.Heng, J.Y.Guo

Radial basis function approach in nuclear mass predictions

ATOMIC MASSES Z=8-108, N=8-160; calculated masses using radial basis function approach with eight nuclear mass models; comparison with AME-1995, AME-2003 and AME-2012 evaluated masses. Discussed potential of RBF approach in prediction of masses.

doi: 10.1103/PhysRevC.88.024325
Citations: PlumX Metrics


2013NI16      Phys.Rev. C 88, 034308 (2013)

Y.F.Niu, Z.M.Niu, N.Paar, D.Vretenar, G.H.Wang, J.S.Bai, J.Meng

Pairing transitions in finite-temperature relativistic Hartree-Bogoliubov theory

NUCLEAR STRUCTURE 124Sn; calculated binding energy/nucleon, entropy, neutron radius, charge radius, neutron pairing energy, neutron pairing gap, specific heat and contour plot for the neutron pairing gap as function of temperature. 36,38,40,42,44,46,48,50,52,54,56,58,60,62Ca, 54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92Ni, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170Sn, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264Pb; calculated neutron pairing gap as a function of temperature, neutron pairing gaps at zero temperature and critical temperatures for pairing transition. Finite temperature relativistic Hartree-Bogoliubov (FTRHB) theory based on point-coupling functional PC-PK1 with Gogny or separable pairing forces.

doi: 10.1103/PhysRevC.88.034308
Citations: PlumX Metrics


2013XU02      Phys.Rev. C 87, 015805 (2013)

X.D.Xu, B.Sun, Z.M.Niu, Z.Li, Y.-Z.Qian, J.Meng

Reexamining the temperature and neutron density conditions for r-process nucleosynthesis with augmented nuclear mass models

ATOMIC MASSES A=80, 130, 195; calculated T9-neutron density conditions required for waiting-point nuclei with RMF, HFB-17, FRDM, and WS* nuclear mass models. Effects of uncertainty in S(n) for 78Ni, 82Zn, 191Tb, and 197Tm on the required T9-nn conditions. Precise mass measurements required for 76Ni, 78Ni, 82Zn, 131,132Cd. Relevance to r-process nucleosynthesis.

doi: 10.1103/PhysRevC.87.015805
Citations: PlumX Metrics


2012LI48      Phys.Rev. C 86, 054312 (2012)

Q.Liu, J.-Y.Guo, Z.-M.Niu, S.-W.Chen

Resonant states of deformed nuclei in the complex scaling method

NUCLEAR STRUCTURE 31Ne; calculated energies and widths of bound states, and low-lying neutron resonances, neutron single-particle levels using the complex scaling method. Resonances of deformed nuclei.

doi: 10.1103/PhysRevC.86.054312
Citations: PlumX Metrics


2010ME09      Nucl.Phys. A834, 436c (2010)

J.Meng, Z.P.Li, H.Z.Liang, Z.M.Niu, J.Peng, B.Qi, B.Sun, S.Y.Wang, J.M.Yao, S.Q.Zhang

Covariant Density Functional Theory for Nuclear Structure and Application in Astrophysics

NUCLEAR STRUCTURE 144,146,148,150,152,154,156Nd; calculated levels, J, π, B(E2), mass excess using covariant density functional theory. Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.058
Citations: PlumX Metrics


2009NI15      Phys.Rev. C 80, 065806 (2009)

Z.Niu, B.Sun, J.Meng

Influence of nuclear physics inputs and astrophysical conditions on the Th/U chronometer

doi: 10.1103/PhysRevC.80.065806
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter Z.M.Niu: , Z.M.NIU