NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = J.Y.Guo

Found 70 matches.

Back to query form

2024GU07      Phys.Lett. B 850, 138532 (2024)


Prediction of novel effects in rotational nuclei at high speed

doi: 10.1016/j.physletb.2024.138532
Citations: PlumX Metrics

2024LU06      Chin.Phys.C 48, 044103 (2024)

Y.-X.Luo, Q.Liu, J.-Y.Guo

Exploration of the ground state properties of neutron-rich sodium isotopes using the deformed relativistic mean field theory in complex momentum representations with BCS pairings

NUCLEAR STRUCTURE 35,37,39,41,43Na; calculated two-neutron separation energies, quadrupole moments of proton and neutron distributions, rms proton and neutron radii with the deformed relativistic mean field theory in complex momentum representations with BCS pairings (DRMF-CMR-BCS).

doi: 10.1088/1674-1137/ad1fe3
Citations: PlumX Metrics

2023LU09      Phys.Rev. C 108, 024320 (2023)

Y.-X.Luo, Q.Liu, J.-Y.Guo

Research on exotic nuclei in deformed relativistic mean-field theory plus BCS in complex momentum representation

NUCLEAR STRUCTURE 44Mg; calculated binding energies, resonant states, J, π single-neutron levels around Fermi surface, occupation probabilities, matter density distributions for neutron - total and contributions from deeply and weekly bound states, density distributions of neutron core and neutron halo, variation of binding energies with the cutoff in the tail of wave functions of resonant states. Deformed relativistic mean field theory in complex momentum representations with BCS pairings (DRMS-CMR-BCS).

doi: 10.1103/PhysRevC.108.024320
Citations: PlumX Metrics

2023ZH06      Phys.Lett. B 838, 137716 (2023)

Y.Zhang, Y.-X.Luo, Q.Liu, J.-Y.Guo

Pseudospin symmetry in resonant states in deformed nuclei

NUCLEAR STRUCTURE 170Yb; calculated pseudospin symmetry (PSS) in resonant states in deformed nuclei by solving the Dirac equation in the complex-momentum representation for a potential with quadrupole deformation at the first order obtained from relativistic mean-field (RMF) calculations.

doi: 10.1016/j.physletb.2023.137716
Citations: PlumX Metrics

2022HE11      Chin.Phys.C 46, 054102 (2022)

C.He, Z.-M.Niu, X.-J.Bao, J.-Y.Guo

Research on α-decay for the superheavy nuclei with Z = 118-120

RADIOACTIVITY 269,271Sg, 270,271,272,273,274Bh, 273,275Hs, 274,275,276Mt, 278Mt, 277,279,281Ds, 278,279,280,281,282Rg, 281,283,285Cn, 282,283,284,285,286Nh, 285,286,287,288,289Fl, 287,288,289,290Mc, 290,291,292,293Lv, 293,294Ts, 294Og, 281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304118, 284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306119, 287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308120(α); calculated T1/2. Comparison with available data.

doi: 10.1088/1674-1137/ac4c3a
Citations: PlumX Metrics

2022HE18      Phys.Rev. C 106, 064310 (2022)

C.He, J.-Y.Guo

Structure and α decay for the neutron-deficient nuclei with 89 ≤ Z ≤ 94 in the density-dependent cluster model combined with a relativistic mean-field approach

RADIOACTIVITY 201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,225Ac, 205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232Th, 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,231Pa, 212,213,214,215,216,217,218,219,221,220,222,223,224,225,226,227,228,229,230,232,233,234,235,236,238U, 215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,237Np, 220,221,222,223,224,225,226,227,228,229,230,231,236,238,239,240,242,244Pu, 197,198,199,200,201,202,203,204,205,206,209Fr, 193,194,195,196,197,198,199,200,201,202,205At, 189,190,191,192Bi, 201,202,204,205,208,209,210,211,212,213,214,215Ra, 197,198,200,201,204,205,206,207,208,209,210,211Rn, 193,194,196,197,204Po(α); calculated T1/2, α-preformation factor. Density-dependent cluster model with RMF NN interactions, M3Y NN interactions and universal decay law (UDL) formula calculations. Comparison to available experimental data taken from NUBASE 2020.

doi: 10.1103/PhysRevC.106.064310
Citations: PlumX Metrics

2022HU05      Phys.Rev. C 105, 054313 (2022)

B.Huang, J.-Y.Guo, S.-W.Chen

Investigation of pseudospin and spin symmetries in relativistic mean field theory combined with a similarity renormalization group approach

NUCLEAR STRUCTURE 140,142,144,146,148,150,152,154,156,158,160Sn; calculated energy splitting of neutron pseudospin doublets and proton spin partners. 110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160Sn; calculated neutron and proton single-particle energies. Similarity renormalization group (SRG) combined with the relativistic mean-field theory and the Schrödinger-like Hamiltonian describing the motion of nucleon.

doi: 10.1103/PhysRevC.105.054313
Citations: PlumX Metrics

2022LI04      Phys.Lett. B 824, 136829 (2022)

Q.Liu, Y.Zhang, J.-Y.Guo

Pseudospin symmetry in resonant states and its dependence on the shape of potential

NUCLEAR STRUCTURE 132Sn; calculated single-particle levels for neutrons, single particle levels for the pseudospin doublets, wavefunctions of the pseudospin doublets, energies and widths as a function of every potential parameter for the single-particle states, pseudospin energy and width splittings. Dirac equation with a Woods-Saxon potential.

doi: 10.1016/j.physletb.2021.136829
Citations: PlumX Metrics

2022QI06      Phys.Rev. C 106, 034301 (2022)

Y.-T.Qiu, X.-W.Wang, J.-Y.Guo

Microscopic analysis of the ground state properties of the even-even Dy isotopes in the reflection-asymmetric relativistic mean-field theory

NUCLEAR STRUCTURE 146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208Dy; calculated binding energy per nucleon, β2 and β3 deformations as function of mass number, matter density distributions, and potential energy surfaces in (β2, β3) plane for the ground states of A=146-160 and A=188-202 even-even Dy nuclei. Reflection-asymmetric relativistic mean-field theory (RASRMF). Comparison with results from the finite-range droplet model (FRDM), and the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc), and the available experimental data.

doi: 10.1103/PhysRevC.106.034301
Citations: PlumX Metrics

2022ZH24      J.Phys.(London) G49, 065101 (2022)

S.-Y.Zhai, X.-N.Cao, J.-Y.Guo

Research on the deformed halo in 29F with a complex momentum representation method

NUCLEAR STRUCTURE 29F; calculated occupation probabilities, wavefunctions, energy levels vs. deformation parameters. The complex momentum representation (CMR) method.

doi: 10.1088/1361-6471/ac5dfd
Citations: PlumX Metrics

2021LU09      Phys.Rev. C 104, 014307 (2021)

Y.-X.Luo, K.Fossez, Q.Liu, J.-Y.Guo

Role of quadrupole deformation and continuum effects in the "island of inversion" nuclei 28, 29, 31F

NUCLEAR STRUCTURE 28,29,31F; calculated neutron Nilsson single-particle levels, single-particle energies and widths as a function of quadrupole deformation parameter β2, radial density distributions for the single-particle states using the relativistic mean-field approach in the complex-momentum representation (CMR) with the Green's function (GF) method. Discussed halo structures in 29,31F.

doi: 10.1103/PhysRevC.104.014307
Citations: PlumX Metrics

2021WA47      Phys.Rev. C 104, 044315 (2021)

X.-W.Wang, J.-Y.Guo

Research on deformed exotic nuclei by relativistic mean field theory in complex momentum representation

NUCLEAR STRUCTURE 75Cr; calculated binding energy per nucleon and energies of single-particle Nilsson levels as a function of quadrupole deformation β2, energies of single-particle bound and resonant states as a function of β2 with real and imaginary components (numerical values tabulated in the Supplemental Material of the paper), radial density distributions for single-particle states, occupation probabilities of Nilsson orbitals. Complex momentum representation (CMR) method for resonances with the relativistic mean field (RMF) theory.

doi: 10.1103/PhysRevC.104.044315
Citations: PlumX Metrics

2021YU05      Phys.Rev. C 104, 035201 (2021)

Z.Yu, M.Song, J.-Y.Guo, Y.Zhang, G.Li

Probing double hadron resonances by the complex scaling method

doi: 10.1103/PhysRevC.104.035201
Citations: PlumX Metrics

2020CA22      Phys.Rev. C 102, 044313 (2020)

X.-N.Cao, K.-M.Ding, M.Shi, Q.Liu, J.-Y.Guo

Exploration of the exotic structure in Ce isotopes by the relativistic point-coupling model combined with complex momentum representation

NUCLEAR STRUCTURE 178,180,182,184,186,188,190,192,194,196,198Ce; calculated neutron single-particle levels, energies of single-particle levels near the Fermi surface, occupation probabilities for even-even A=184-198 Ce isotopes, neutron density distributions, wave functions of single-particle states in 198Ce. Relativistic point-coupling model combined with complex momentum representation by considering resonances through BCS approximation (RMFPCCMR-BCS) theory.

doi: 10.1103/PhysRevC.102.044313
Citations: PlumX Metrics

2020SH02      Phys.Lett. B 801, 135174 (2020)

X.-X.Shi, Q.Liu, J.-Y.Guo, Z.-Z.Ren

Pseudospin and spin symmetries in single particle resonant states in Pb isotopes

NUCLEAR STRUCTURE 190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220Pb; calculated energies and widths, pseudospin and spin splittings. RMF-CMR theory.

doi: 10.1016/j.physletb.2019.135174
Citations: PlumX Metrics

2020SH10      Chin.Phys.C 44, 054103 (2020)

X.-X.Shi, Q.Liu, D.-D.Ni, J.-Y.Guo, Z.-Z.Ren

The first excited single-proton resonance in 15F by complex-scaled Green's function method

NUCLEAR STRUCTURE 15F; calculated eigenvalues of resonant states, resonance energies and widths, level densities, phase shifts, σ using the complex-scaled Green's function (CGF) method.

doi: 10.1088/1674-1137/44/5/054103
Citations: PlumX Metrics

2019CA02      Phys.Rev. C 99, 014309 (2019)

X.-N.Cao, Q.Liu, J.-Y.Guo

Prediction of halo structure in nuclei heavier than 37Mg with the complex momentum representation method

NUCLEAR STRUCTURE 53Ar, 75Cr, 77Fe; calculated neutron single particle levels, occupation probabilities of major configurations, and radial density distributions of single particle states as function of deformation parameter β2 using complex momentum representation (CMR) method. Discussed possible halo structures in heavier nuclei.

doi: 10.1103/PhysRevC.99.014309
Citations: PlumX Metrics

2019CA08      Phys.Rev. C 99, 024314 (2019)

X.-N.Cao, Q.Liu, Z.-M.Niu, J.-Y.Guo

Systematic studies of the influence of single-particle resonances on neutron halo and skin in the relativistic-mean-field and complex-momentum-representation methods

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74Ca, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84Ni, 114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154Sn, 200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240Pb; calculated neutron rms radii, S(2n), single-neutron energies, occupation probabilities of single-neutron levels, and density distributions of 74Ca, 84Ni, 160Sn, 240Pb using relativistic-mean-field and complex-momentum-representation (RMF-CMR) method. Comparison with relativistic Hartree-Bogoliubov calculations, and with experimental data.

doi: 10.1103/PhysRevC.99.024314
Citations: PlumX Metrics

2018CA15      J.Phys.(London) G45, 085105 (2018)

X.-N.Cao, Q.Liu, J.-Y.Guo

Inerpretation of halo in 19C with complex momentum representation method

NUCLEAR STRUCTURE 19C; calculated energy spectra in the complex momentum plane for the single-particle states, single-neutron energies as a function of quadrupole deformation parameter, occupation probabilities, radial density distributions, root mean square radius of single-particle levels occupied by the last valence neutron, single-particle energies as the function of potential parameters for the bound and resonant states. Comparison with available data.

doi: 10.1088/1361-6471/aad0bf
Citations: PlumX Metrics

2018DI08      Phys.Rev. C 98, 014316 (2018)

K.-M.Ding, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang

Resonant-continuum relativistic mean-field plus BCS in complex momentum representation

NUCLEAR STRUCTURE 120,122,124,126,128,130,132,134,136,138,140Zr; calculated neutron single particle energies and widths, occupation probabilities of neutron single particle levels, and neutron single particle spectra and density distributions in 124Zr. 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Zr; calculated S(2n), rms neutron radii. Resonant-continuum relativistic mean-field plus BCS in complex momentum representation with the BCS approximation for pairing correlations. Comparison with available experimental values.

doi: 10.1103/PhysRevC.98.014316
Citations: PlumX Metrics

2017FA02      Phys.Rev. C 95, 024311 (2017)

Z.Fang, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang, S.-S.Zhang

Probing resonances in the Dirac equation with quadrupole-deformed potentials with the complex momentum representation method

NUCLEAR STRUCTURE 37Mg; calculated levels, resonances, single-particle resonances, J, π, single-particle energies for deformation (Nilsson orbitals) for the bound and resonant states concerned, radial-momentum probability distributions for the bound and resonant deformed states by solving the Dirac equation in complex momentum representation, and a set of coupled differential equations by the coupled-channel method.

doi: 10.1103/PhysRevC.95.024311
Citations: PlumX Metrics

2017SH09      Eur.Phys.J. A 53, 40 (2017)

M.Shi, X.-X.Shi, Z.-M.Niu, T.-T.Sun, J.-Y.Guo

Relativistic extension of the complex scaled Green's function method for resonances in deformed nuclei

NUCLEAR STRUCTURE A=31; calculated continuum level density for the 9/2[404] state, density of continuum states with quadrupole deformation and selected rotation angles; deduced influence of potential and its parameters.

doi: 10.1140/epja/i2017-12241-6
Citations: PlumX Metrics

2017TI04      Chin.Phys.C 41, 044104 (2017)

Y.-J.Tian, T.-H.Heng, Z.-M.Niu, Q.Liu, J.-Y.Guo

Exploration of resonances by using complex momentum representation

NUCLEAR STRUCTURE 17O; calculated the bound states and resonant states using the complex momentum representation in comparison with those obtained in coordinate representation by the complex scaling method for resonances.

doi: 10.1088/1674-1137/41/4/044104
Citations: PlumX Metrics

2017TI05      Phys.Rev. C 95, 064329 (2017)

Y.-J.Tian, Q.Liu, T.-H.Heng, J.-Y.Guo

Research on the halo in 31Ne with the complex momentum representation method

NUCLEAR STRUCTURE 31Ne; calculated single-particle spectra for several different deformations, neutron single-particle levels and resonances as a function of quadrupole deformation β2, occupation probabilities, widths of resonant states. Scattering phase shift approach or complex scaling method to explore the physical mechanism of a deformed halo in 31Ne.

doi: 10.1103/PhysRevC.95.064329
Citations: PlumX Metrics

2016LI35      Phys.Rev.Lett. 117, 062502 (2016)

N.Li, M.Shi, J.-Y.Guo, Z.-M.Niu, H.Liang

Probing Resonances of the Dirac Equation with Complex Momentum Representation

NUCLEAR STRUCTURE 120Sn; calculated energies and widths of single neutron state resonances. Relativistic mean-field (RMF) theory.

doi: 10.1103/PhysRevLett.117.062502
Citations: PlumX Metrics

2016NI16      Phys.Rev. C 94, 054315 (2016)

Z.M.Niu, B.H.Sun, H.Z.Liang, Y.F.Niu, J.Y.Guo

Improved radial basis function approach with odd-even corrections

ATOMIC MASSES Z=8-100, N=8-160, A=16-260; calculated masses using relativistic mean-field (RMF) with radial basis function (RBF) approach, and RMF with RBF considering odd-even effects (RBFoe). Z=31, 32, N=31-53; calculated S(n) with RMF+RBF, and RMF+RBFoe approaches. Comparison with experimental data taken form AME-2012.

doi: 10.1103/PhysRevC.94.054315
Citations: PlumX Metrics

2016SH25      Phys.Rev. C 94, 024302 (2016)

X.-X.Shi, M.Shi, Z.-M.Niu, T.-H.Heng, J.-Y.Guo

Probing resonances in deformed nuclei by using the complex-scaled Green's function method

NUCLEAR STRUCTURE 45S; calculated level densities as a function of quadrupole deformation β2, widths of resonant states, neutron single-particle levels using complex-scaled Green's function (CGF) method with theory of deformed nuclei. Comparison with calculations using complex scaling, and coupled-channel methods.

doi: 10.1103/PhysRevC.94.024302
Citations: PlumX Metrics

2016TA11      Chin.Phys.C 40, 074102 (2016)

J.Tang, Z.-M.Niu, J.-Y.Guo

Influence of binding energies of electrons on nuclear mass predictions

ATOMIC MASSES Z<120; calculated impact of binding energies of electrons on nuclear mass predictions.

doi: 10.1088/1674-1137/40/7/074102
Citations: PlumX Metrics

2016WA06      J.Phys.(London) G43, 045108 (2016)

Z.Y.Wang, Y.F.Niu, Z.M.Niu, J.Y.Guo

Nuclear β-decay half-lives in the relativistic point-coupling model

RADIOACTIVITY O, Ne, Mg, Si, S, Ar, Ca, Ti, Cr, Ni, 62,64,66,68,70,72Fe, 78,80,82Zn(β-); calculated T1/2, Q-value. Nonlinear point-coupling effective interaction PC-PK1, comparison with experimental data.

doi: 10.1088/0954-3899/43/4/045108
Citations: PlumX Metrics

2015GU15      Phys.Rev. C 92, 014307 (2015)


General formalism of collective motion for any deformed system

doi: 10.1103/PhysRevC.92.014307
Citations: PlumX Metrics

2015LI04      Phys.Rev. C 91, 024311 (2015)

D.-P.Li, S.-W.Chen, Z.-M.Niu, Q.Liu, J.-Y.Guo

Further investigation of relativistic symmetry in deformed nuclei by similarity renormalization group

NUCLEAR STRUCTURE 154Dy; calculated single-particle energies, spin and pseudospin energy splittings as function of β2 deformation parameter, contributions by the nonrelativistic, dynamical, and spin-orbit coupling terms. Origin and breaking mechanism of relativistic symmetries for an axially deformed nucleus. Relativistic symmetry approach using the similarity renormalization group (SRG).

doi: 10.1103/PhysRevC.91.024311
Citations: PlumX Metrics

2015SH34      Phys.Rev. C 92, 054313 (2015)

M.Shi, J.-Y.Guo, Q.Liu, Z.-M.Niu, T.-H.Heng

Relativistic extension of the complex scaled Green function method

NUCLEAR STRUCTURE 120Sn; calculated energies and widths of single-neutron resonant states using RMF-CGF method, complex scaled Green function method extended to relativistic framework. Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.92.054313
Citations: PlumX Metrics

2015WA12      J.Phys.(London) G42, 055112 (2015)

Z.Y.Wang, Z.M.Niu, Q.Liu, J.Y.Guo

Systematic calculations of α-decay half-lives with an improved empirical formula

NUCLEAR STRUCTURE A<260; analyzed available data; calculated α-decay T1/2; deduced a new formula. Comparison with experimental data.

doi: 10.1088/0954-3899/42/5/055112
Citations: PlumX Metrics

2014GU05      Phys.Rev.Lett. 112, 062502 (2014)

J.-Y.Guo, S.-W.Chen, Z.-M.Niu, D.-P.Li, Q.Liu

Probing the Symmetries of the Dirac Hamiltonian with Axially Deformed Scalar and Vector Potentials by Similarity Renormalization Group

NUCLEAR STRUCTURE 154Dy; calculated single-particle levels, spin energy splitting and their correlation with the deformation parameters.

doi: 10.1103/PhysRevLett.112.062502
Citations: PlumX Metrics

2014SH27      Phys.Rev. C 90, 034318 (2014)

M.Shi, D.-P.Li, S.-W.Chen, J.-Y.Guo

Examination of the pseudospin symmetry for the relativistic harmonic oscillator with the similarity renormalization group

doi: 10.1103/PhysRevC.90.034318
Citations: PlumX Metrics

2014SH28      Phys.Rev. C 90, 034319 (2014)

M.Shi, Q.Liu, Z.-M.Niu, J.-Y.Guo

Relativistic extension of the complex scaling method for resonant states in deformed nuclei

NUCLEAR STRUCTURE A=31; calculated single-particle levels and resonance parameters for all the concerned resonant states in nuclei with A=31. Complex scaling method extended to relativistic framework for resonances in deformed nuclei.

doi: 10.1103/PhysRevC.90.034319
Citations: PlumX Metrics

2014ZH09      Phys.Rev. C 89, 034307 (2014)

Z.-L.Zhu, Z.-M.Niu, D.-P.Li, Q.Liu, J.-Y.Guo

Probing single-proton resonances in nuclei by the complex-scaling method

NUCLEAR STRUCTURE 114,116,118,120,122,124,132Sn, 126Ru, 128Pd, 130Cd, 134Te, 136Xe; calculated energies and width of single-proton resonant states. 40Ca, 56,78Ni, 100,132Sn, 208Pb; calculated difference of energies of single-proton resonant states for doubly magic nuclei with and without Coulomb exchange terms. Complex scaling method with relativistic mean-field theory (RMF-CMS). Comparison with other theoretical calculations.

doi: 10.1103/PhysRevC.89.034307
Citations: PlumX Metrics

2013LI18      Phys.Rev. C 87, 044311 (2013)

D.-P.Li, S.-W.Chen, J.-Y.Guo

Further investigation of relativistic symmetry with the similarity renormalization group

doi: 10.1103/PhysRevC.87.044311
Citations: PlumX Metrics

2013NI07      Phys.Rev. C 87, 037301 (2013)

Z.M.Niu, Q.Liu, Y.F.Niu, W.H.Long, J.Y.Guo

Nuclear effective charge factor originating from covariant density functional theory

NUCLEAR STRUCTURE Z=20, A=38-78; Z=28, A=60-100; Z=50, A=100-180; Z=82, A=180-270; calculated effective charge factors, Coulomb exchange energies, and relative deviations of Coulomb exchange energies as function of mass number for semi-magic nuclei. Relativistic Hartree-Fock-Bogoliubov (RHFB) approach with PKA1 effective interaction.

doi: 10.1103/PhysRevC.87.037301
Citations: PlumX Metrics

2013NI09      Phys.Rev. C 87, 051303 (2013)

Z.M.Niu, Y.F.Niu, Q.Liu, H.Z.Liang, J.Y.Guo

Nuclear β+/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing

RADIOACTIVITY 32,34Ar, 36,38Ca, 40,42Ti, 46,48,50Fe, 50,52,54Ni, 56,58Zn, 96,98,100Cd, 100,102,104Sn(β+), (EC); calculated half-lives, B(GT). Self-consistent proton-neutron QRPA with relativistic Hartree-Bogoliubov (QRPA+RHB) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.051303
Citations: PlumX Metrics

2013NI14      Phys.Rev. C 88, 024325 (2013)

Z.M.Niu, Z.L.Zhu, Y.F.Niu, B.H.Sun, T.H.Heng, J.Y.Guo

Radial basis function approach in nuclear mass predictions

ATOMIC MASSES Z=8-108, N=8-160; calculated masses using radial basis function approach with eight nuclear mass models; comparison with AME-1995, AME-2003 and AME-2012 evaluated masses. Discussed potential of RBF approach in prediction of masses.

doi: 10.1103/PhysRevC.88.024325
Citations: PlumX Metrics

2012CH22      Phys.Rev. C 85, 054312 (2012)

S.-W.Chen, J.-Y.Guo

Relativistic effect of spin and pseudospin symmetries

doi: 10.1103/PhysRevC.85.054312
Citations: PlumX Metrics

2012GU02      Phys.Rev. C 85, 021302 (2012)


Exploration of relativistic symmetry by the similarity renormalization group

doi: 10.1103/PhysRevC.85.021302
Citations: PlumX Metrics

2012LI48      Phys.Rev. C 86, 054312 (2012)

Q.Liu, J.-Y.Guo, Z.-M.Niu, S.-W.Chen

Resonant states of deformed nuclei in the complex scaling method

NUCLEAR STRUCTURE 31Ne; calculated energies and widths of bound states, and low-lying neutron resonances, neutron single-particle levels using the complex scaling method. Resonances of deformed nuclei.

doi: 10.1103/PhysRevC.86.054312
Citations: PlumX Metrics

2012LI54      Phys.Rev. C 86, 067302 (2012)

H.J.Li, S.J.Zhu, J.H.Hamilton, A.V.Ramayya, J.K.Hwang, Z.G.Xiao, M.Sakhaee, J.Y.Guo, S.W.Chen, N.T.Brewer, S.H.Liu, K.Li, E.Y.Yeoh, Z.Zhang, Y.X.Luo, J.O.Rasmussen, I.Y.Lee, G.Ter-Akopian, A.Daniel, Yu.Ts.Oganessian, W.C.Ma

Identification of a new side-band and proposed octupole correlations in very neutron-rich 152Ce

RADIOACTIVITY 252Cf(SF); measured prompt γ spectrum, Eγ, Iγ, γγ-coin using Gammasphere array at LBNL. 152Ce; deduced high-spin levels, J, p, rotational bands, β2 and β3 deformations, B(E1)/B(E2) ratios, moments of inertia plots, octupole band with s=+1. Comparison with calculations in a reflection asymmetric relativistic mean-field (RAS-RMF) approach. Calculated β2 versus β3 contour plot.

doi: 10.1103/PhysRevC.86.067302
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2012SU05      Eur.Phys.J. A 48, 18 (2012)

Y.-W.Sun, Y.Liu, S.-W.Chen, Q.Liu, J.-Y.Guo

Influences on the pseudospin symmetry from the different fields of mesons in deformed nuclei

NUCLEAR STRUCTURE 168Er; calculated nucleon pseudospin doublets energy splitting using RMF.

doi: 10.1140/epja/i2012-12018-5
Citations: PlumX Metrics

2012XU12      Int.J.Mod.Phys. E21, 1250096 (2012)

Q.Xu, J.-Y.Guo

Spin symmetry in the resonant states of nuclei

NUCLEAR STRUCTURE 208Pb; calculated energy of resonant states, single-particle levels, spin-energy splitting. Dirac equation with Woods-Saxon vector and scalar potentials.

doi: 10.1142/S0218301312500966
Citations: PlumX Metrics

2011WA22      Chin.Phys.C 35, 753 (2011)

H.-K.Wang, Z.-C.Gao, Y.-S.Chen, J.-Y.Guo, Y.-J.Chen, Y.Tu

The structure of the spherical tensor forces in the USD and GXPF1A shell model Hamiltonians

doi: 10.1088/1674-1137/35/8/010
Citations: PlumX Metrics

2010GU16      Phys.Rev. C 82, 034318 (2010)

J.-Y.Guo, X.-Z.Fang, P.Jiao, J.Wang, B.-M.Yao

Application of the complex scaling method in relativistic mean-field theory

NUCLEAR STRUCTURE 120Sn; calculated energies and widths of low-lying single-neutron resonant states using complex scaling method (CSM) in the framework of relativistic mean field (RMF) model. Comparison with results from real stabilization method, the scattering phase-shift method, and the analytic continuation in the coupling constant approach.

doi: 10.1103/PhysRevC.82.034318
Citations: PlumX Metrics

2010GU18      Phys.Rev. C 82, 047301 (2010)

J.-Y.Guo, P.Jiao, X.-Z.Fang

Microscopic description of nuclear shape evolution from spherical to octupole-deformed shapes in relativistic mean-field theory

NUCLEAR STRUCTURE 210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246Th; calculated binding energies, β2, β3 and β4 deformation parameters, matter density distribution contours, and potential energy surfaces using relativistic mean-field (RMF) theory.

doi: 10.1103/PhysRevC.82.047301
Citations: PlumX Metrics

2010GU23      Eur.Phys.J. A 45, 179 (2010)

J.-Y.Guo, X.-Z.Fang

Research on the contributions from different fields of mesons and photons to pseudospin symmetry

doi: 10.1140/epja/i2010-10990-2
Citations: PlumX Metrics

2009SU25      Chin.Phys.C 33, Supplement 1, 130 (2009)

Q.Sun, J.-Y.Guo

Neutron halos in the excited states for N = 127 isotones

NUCLEAR STRUCTURE 209Pb, 207Hg, 208Tl, 210Bi, 211Po; calculated density distribution of neutron, proton, matter, excited states; deduced neutron halo in the excited states. RMF theory.

doi: 10.1088/1674-1137/33/S1/041
Citations: PlumX Metrics

2009YU09      Chin.Phys.C 33, Supplement 1, 134 (2009)

Y.Yu, J.-Y.Guo

Solution to the eigenstates of pairing Hamiltonian in finite nuclei

doi: 10.1088/1674-1137/33/S1/042
Citations: PlumX Metrics

2009ZH49      Chin.Phys.C 33, Supplement 1, 140 (2009)

L.-D.Zhang, J.-Y.Guo, X.-Z.Fang

With the alpha-cluster model to explain the change of separating energy

NUCLEAR STRUCTURE 4,6,8He, 6,8,10Li, 8,10,12Be, 10,12,14B, 12,14,16C, 14,16,18N, 16,18O, 18,20F; calculated separation energy of nn pair, two nn pairs, binding energy for Hydrogen isotopes.

doi: 10.1088/1674-1137/33/S1/044
Citations: PlumX Metrics

2008GU03      Int.J.Mod.Phys. E17, 539 (2008)

J.Y.Guo, X.Z.Fang, Z.Q.Sheng

Shape phase transitions and possible E(5) symmetry nuclei for Ti isotopes

NUCLEAR STRUCTURE 42,44,46,48,50,52,54,56,58,60,62,64Ti; calculated potential energy surfaces and ground state deformations using relativistic mean field theory.

doi: 10.1142/S0218301308009860
Citations: PlumX Metrics

2008ZH23      Int.J.Mod.Phys. E17, 1309 (2008)

F.Zhou, J.-Y.Guo

Properties of the superheavy nucleus 294118 and its α-decay chain in the relativistic mean field theory

NUCLEAR STRUCTURE A=294, Z=118; calculated binding energy/nucleon, α-decay Q values; deformed RMF+BCS model; comparison with experimental data.

doi: 10.1142/S0218301308010441
Citations: PlumX Metrics

2006GU19      Phys.Rev. C 74, 024320 (2006)

J.Y.Guo, X.Z.Fang

Isospin dependence of pseudospin symmetry in nuclear resonant states

NUCLEAR STRUCTURE Sn; A=108-168; calculated single-particle resonant states energies and widths, energy splitting for pseudospin and spin-orbit doublets. 108,118,128,138,148,158,168Sn; calculated neutron potentials. Relativistic mean-field theory, analytic continuation of the coupling constant method.

doi: 10.1103/PhysRevC.74.024320
Citations: PlumX Metrics

2006YU04      Int.J.Mod.Phys. E15, 939 (2006)

M.Yu, P.-F.Zhang, T.-N.Ruan, J.-Y.Guo

Shape evolution for Ce isotopes in relativistic mean-field theory

NUCLEAR STRUCTURE 120,122,124,126,128,130,132,134,136,138,140,142Ce; calculated binding energies, potential energy surfaces, single-particle energies, deformation. Relativistic mean-field approach.

doi: 10.1142/S0218301306004661
Citations: PlumX Metrics

2005GU23      Nucl.Phys. A757, 411 (2005)

J.-Y.Guo, X.-Z.Fang, F.-X.Xu

Pseudospin symmetry in the relativistic harmonic oscillator

NUCLEAR STRUCTURE 208Pb; calculated neutron single-particle levels, pseudospin symmetry features. Relativistic harmonic oscillator, Dirac equation.

doi: 10.1016/j.nuclphysa.2005.04.017
Citations: PlumX Metrics

2005GU35      Phys.Rev. C 72, 054319 (2005)

J.-Y.Guo, R.-D.Wang, X.-Z.Fang

Pseudospin symmetry in the resonant states of nuclei

NUCLEAR STRUCTURE 208Pb; calculated resonant states energies, pseudospin splitting.

doi: 10.1103/PhysRevC.72.054319
Citations: PlumX Metrics

2005LU22      Chin.Phys.Lett. 22, 2792 (2005)

X.-Q.Lu, P.Zhou, J.-Y.Guo, X.Zhang, K.Zhao, M.-N.Ni, L.Sui, J.-P.Mei, J.-C.Liu

Simultaneous Elastic Recoil Detection Analysis of H and Other Elements in Foils

NUCLEAR REACTIONS H, N, Si, C, O(127I, 127I), E=40, 65, 90, 115, 140 MeV; measured recoil particle spectra, coincidences.

doi: 10.1088/0256-307X/22/11/018
Citations: PlumX Metrics

2004ZH13      Chin.Phys.Lett. 21, 632 (2004)

S.-S.Zhang, J.-Y.Guo, S.-Q.Zhang, J.Meng

Analytic Continuation in the Coupling Constant Method for the Dirac Equation

doi: 10.1088/0256-307X/21/4/012
Citations: PlumX Metrics

2002SI16      Nucl.Phys. A701, 23c (2002)

C.Signorini, A.Andrighetto, J.Y.Guo, M.Ruan, L.Stroe, F.Soramel, K.E.G.Lobner, L.Muller, D.Pierroutsakou, M.Romoli, K.Rudolph, I.Thompson, M.Trotta, A.Vitturi

The Potential of the Loosely Bound 9Be from 209Bi Elastic Scattering: Unusual behaviour at near threshold energy

NUCLEAR REACTIONS 209Bi(9Be, 9Be), (9Be, 9Be'), E=40, 42, 44, 46, 48 MeV; measured σ(θ); deduced Woods-Saxon potential parameters.

doi: 10.1016/S0375-9474(01)01541-X
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetD0176.

2001SI23      Eur.Phys.J. A 10, 249 (2001)

C.Signorini, M.Mazzocco, G.F.Prete, F.Soramel, L.Stroe, A.Andrighetto, I.J.Thompson, A.Vitturi, A.Brondi, M.Cinausero, D.Fabris, E.Fioretto, N.Gelli, J.Y.Guo, G.La Rana, Z.H.Liu, F.Lucarelli, R.Moro, G.Nebbia, M.Trotta, E.Vardaci, G.Viesti

Strong Reaction Channels at Barrier Energies in the System 6Li + 208Pb

NUCLEAR REACTIONS 208Pb(6Li, X), (6Li, αX), (7Li, X), (7Li, αX), E=29-39 MeV; measured particle spectra, σ, σ(θ); deduced reaction mechanism features.

doi: 10.1007/s100500170109
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO1615.

2001SO02      Phys.Rev. C63, 031304 (2001)

F.Soramel, A.Guglielmetti, L.Stroe, L.Muller, R.Bonetti, G.L.Poli, F.Malerba, E.Bianchi, A.Andrighetto, J.Y.Guo, Z.C.Li, E.Maglione, F.Scarlassara, C.Signorini, Z.H.Liu, M.Ruan, M.Ivascu, C.Broude, P.Bednarczyk, L.S.Ferreira

New Strongly Deformed Proton Emitter: 117La

RADIOACTIVITY 117La(p) [from 64Zn(58Ni, p4n), E=310 MeV]; measured proton spectra, T1/2. 117La deduced ground state and isomeric level T1/2, J, π, deformation, Nilsson orbital. Comparison with Gamow-state calculations. Mass separator.

doi: 10.1103/PhysRevC.63.031304
Citations: PlumX Metrics

2000SI19      Phys.Rev. C61, 061603 (2000)

C.Signorini, A.Andrighetto, M.Ruan, J.Y.Guo, L.Stroe, F.Soramel, K.E.G.Lobner, L.Muller, D.Pierroutsakou, M.Romoli, K.Rudolph, I.J.Thompson, M.Trotta, A.Vitturi, R.Gernhauser, A.Kastenmuller

Unusual Near-Threshold Potential Behavior for the Weakly Bound Nucleus 9Be in Elastic Scattering from 209Bi

NUCLEAR REACTIONS 209Bi(9Be, 9Be), E=40-48 MeV; measured σ(θ); deduced optical model parameters, possible coupling to excited states. 209Bi(9Be, 9Be'), E=48 MeV; measured σ(E, θ).

doi: 10.1103/PhysRevC.61.061603
Citations: PlumX Metrics

1999LU08      Chin.Phys.Lett. 16, 493 (1999)

X.-Q.Lu, C.-B.Fu, G.Liang, J.-Y.Guo, K.Zhao, S.-Y.Li, J.-C.Liu, H.Jiang, B.-F.Yang

High Resolution Elastic Recoil Detection Analysis with Q3D Magnetic Spectrometer

doi: 10.1088/0256-307X/16/7/009
Citations: PlumX Metrics

1995GU23      Chin.J.Nucl.Phys. 17, No 1, 73 (1995)

J.-Y.Guo, K.Zhao, Z.-C.Li, X.-Q.Lu, Y.-H.Cheng, X.-L.Huang, S.-Y.Li, M.Ruan, C.-L.Jiang, Y.-H.Chen

A Heavy Ion Focal Plane Detector for Beijing Q3D Magnetic Spectrometer

NUCLEAR REACTIONS 197Au(12C, 12C), E=62 MeV; 150Sm(16O, 16O), (16O, X), E=88 MeV; 156Gd(18O, 18O), (18O, X), E=96 MeV; measured particle, mass spectra; deduced system resolution. Semi-length focal plane detecting system for a Q3D magnetic spectrometer.

1995LU23      Chin.J.Nucl.Phys. 17, No 3, 239 (1995)

X.-Q.Lu, Y.Ma, J.-Y.Guo, K.Zhao, Y.-H.Cheng, X.-L.Huang, Z.-C.Li, S.-Y.Li, M.Ruan, C.-L.Jiang

Study of Elastic and Inelastic Scattering and One-Nucleon Transfer in 16O + 116Sn Reaction

NUCLEAR REACTIONS 116Sn(16O, 16O), (16O, 16O'), (16O, 15N), (16O, 17O), E=88 MeV; measured spectra, σ(θ); deduced model parameters. 117Sb levels deduced spectroscopic factors.

1995ZH52      Chin.J.Nucl.Phys. 17, No 3, 234 (1995)

K.Zhao, J.-Y.Guo, X.-Q.Lu, Y.-H.Cheng, X.-L.Huang, Y.Ma, S.-Y.Li, M.Ruan, Z.-C.Li, C.-L.Jiang

Measurement of the Mass Excess of 158Sm

NUCLEAR REACTIONS 160Gd(18O, 20Ne), E=98 MeV; measured 20Ne spectra; deduced Q. 158Sm deduced mass excess.

Back to query form