NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 26, 2024.

Search: Author = J.Xiang

Found 20 matches.

Back to query form



2022MD01      Phys.Rev. C 106, 044325 (2022)

L.Mdletshe, X.Q.Yang, E.A.Lawrie, M.A.Sithole, S.N.T.Majola, S.S.Ntshangase, J.F.Sharpey-Schafer, J.J.Lawrie, S.H.Mthembu, T.D.Bucher, L.Msebi, R.A.Bark, A.A.Avaa, M.V.Chisapi, P.Jones, S.Jongile, Z.P.Li, L.Makhathini, K.L.Malatji, A.A.Netshiya, Z.Shi, B.Y.Song, L.Wang, J.Xiang, S.Q.Zhang

Collective rotational bands at low excitation energy in 186Os: Vibrational and rotational degrees of freedom

NUCLEAR REACTIONS 186W(α, 4n), E=48 MeV; measured Eγ, Iγ, γγ-coin. 186Os; deduced levels, J, π, linear polarization asymmetries, angular distribution ratios, high-spin states, bands structure, staggering parameter; calculated levels, J, π, bands structure, potential energy surfaces, staggering parameter. Five-dimensional collective Hamiltonian based on the covariant density functional theory (5DCH-CDFT) and triaxial rotor model (TRM) calculations. Systematics of the bands alignments for 182,184,186,188,190,192Os isotopes. AFRODITE γ-ray spectrometer consisting of 11 clover HPGe detectors at iThemba LABS Separated-Sector Cyclotron.

doi: 10.1103/PhysRevC.106.044325
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.


2021NO06      Phys.Rev. C 103, 054322 (2021)

K.Nomura, D.Vretenar, Z.P.Li, J.Xiang

Coupling of pairing and triaxial shape vibrations in collective states of γ-soft nuclei

NUCLEAR STRUCTURE 128,130Xe; calculated levels, J, π, B(E2), E(2+ of γ band)/E(2+ of ground band), B(E2)(3+ to 2+ of γ band)/B(E2)(for 2+ of ground band), potential-energy surfaces (PES) for axial quadrupole and triaxial (β, γ), axial quadrupole and pairing (β, α), and triaxial quadrupole and pairing (γ, α) deformations. Self-consistent mean-field calculations of collective deformation-energy surfaces, and the framework of the interacting boson approximation with explicit coupling to pairing vibrations. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054322
Citations: PlumX Metrics


2021NO08      Phys.Rev. C 104, 024323 (2021)

K.Nomura, D.Vretenar, Z.P.Li, J.Xiang

Interplay between pairing and triaxial shape degrees of freedom in Os and Pt nuclei

NUCLEAR STRUCTURE 128Xe, 188,190,192Os, 192,194,196Pt; calculated potential energy surfaces (PES) in (β, γ), (α, β) and (γ, α) planes, where α represents pairing deformation, IBM Hamiltonian parameters. 128,130Xe, 188,190,192Os, 192,194,196Pt; calculated positive-parity levels, J, g.s. band, γ band, excited 0+ bands including axial+pairing (αβ), triaxial quadrupole (βγ), and triaxial+pairing (αβγ) deformation degrees of freedom, B(E2), B(E2) ratios, parameters X(E0/E2) and ρ2(E0) for 0+ to 0+ E0 transitions. Constrained self-consistent mean-field (SCMF) calculations using PC-PK1 and DD-PK1 energy density functional (EDFs) and pairing interactions, with number-nonconserving interacting boson model (IBM) Hamiltonian. Comparison with experimental data. Relevance to description of shape phase transitions and shape coexistence in γ-soft and triaxial nuclei, with simultaneous treatment of pairing vibrations and triaxial deformations through EDF-based IBM calculations.

doi: 10.1103/PhysRevC.104.024323
Citations: PlumX Metrics


2021YA15      Phys.Rev. C 103, 054321 (2021)

X.Q.Yang, L.J.Wang, J.Xiang, X.Y.Wu, Z.P.Li

Microscopic analysis of prolate-oblate shape phase transition and shape coexistence in the Er-Pt region

NUCLEAR STRUCTURE 170,172,174,176,178,180,182,184,186,188,190,192Er, 172,174,176,178,180,182,184,186,188,190,192,194Yb, 174,176,178,180,182,184,186,188,190,192,194,196Hf, 176,178,180,182,184,186,188,190,192,194,196,198W, 178,180,182,184,186,188,190,192,194,196,198,200Os, 180,182,184,186,188,190,192,194,196,198,200,202Pt; calculated potential-energy surfaces (PES) in (β, γ) plane, E(first 4+)/E(first 2+), E(2+ in γ band)/E(first 2+), excitation energies of the first excited 0+ states, B(E2) for the first 2+ states, spectroscopic quadrupole moments of the first 2+ states, B(E2)(for the 2+ in γ band)/B(E2)(for the first 2+), staggering parameters. 184,186,188,190,192,194,196,198Os; calculated levels, J, π of the ground-state bands, γ bands, and excited 0+ bands, probability density distribution surfaces in (β, γ) plane for the g.s., first excited 0+ state, and 2+ in γ band. 184Er, 186Yb; calculated levels, J, π of the ground-state bands, γ bands, and two excited 0+ bands. Self-consistent mean-field (SCMF) calculation with five-dimensional collective Hamiltonian (5DCH) based on covariant density-functional theory (CDFT) with PC-PK1 functional. Comparison with experimental data.

doi: 10.1103/PhysRevC.103.054321
Citations: PlumX Metrics


2020GE01      Phys.Rev. C 101, 064302 (2020)

J.Geng, J.Xiang, B.Y.Sun, W.H.Long

Relativistic Hartree-Fock model for axially deformed nuclei

NUCLEAR STRUCTURE 20Ne, 56Fe, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 220Rn; calculated binding energies and quadrupole deformations. 20Ne; calculated neutron and proton single particle energies, neutron valence orbit splitting, and proportions of the main components in expanding the neutron 2[1/2]+ orbit. Axially deformed relativistic Hartree-Fock (RHF) model using the spherical Dirac Woods-Saxon (DWS), and density-dependent meson-nucleon couplings.

doi: 10.1103/PhysRevC.101.064302
Citations: PlumX Metrics


2020NO11      Phys.Rev. C 102, 054313 (2020)

K.Nomura, D.Vretenar, Z.P.Li, J.Xiang

Pairing vibrations in the interacting boson model based on density functional theory

NUCLEAR STRUCTURE 122Xe, 152Nd, 154Sm, 156Gd, 158Dy; calculated potential energy surfaces (PES) in (β, α) plane using constrained RMF+BCS with PC-PK1 energy density functional and separable pairing interaction; calculated levels, J, π, B(E2), matrix elements of the monopole pair transfer operator. Interacting boson model (IBM), based on the nuclear density functional theory, with a boson-number nonconserving IBM Hamiltonian for pairing vibrations for coupling between shape and pairing collective degrees of freedom. Comparison with experimental data taken from the ENSDF database, and other references.

doi: 10.1103/PhysRevC.102.054313
Citations: PlumX Metrics


2020XI03      Phys.Rev. C 101, 064301 (2020)

J.Xiang, Z.P.Li, T.Niksic, D.Vretenar, W.H.Long

Coupling of shape and pairing vibrations in a collective Hamiltonian based on nuclear energy density functionals

NUCLEAR STRUCTURE 152Nd, 154Sm, 156Gd, 158Dy; calculated low-lying levels, J, π, lowest 0+ states, B(E2) and E0 transition strengths with quadrupole + pairing collective Hamiltonian and axially symmetric quadrupole collective Hamiltonian based on PC-PK1 energy functional; calculated potential energy surface (PES), probability density distributions and deformation energy surfaces in (β2, α) planes using triaxial relativistic mean-field formalism with PC-PK1 parameter sets. Comparison with experimental data.

doi: 10.1103/PhysRevC.101.064301
Citations: PlumX Metrics


2019SU20      Yuan.Wul.Ping. 36, 144 (2019); Nucl.Phys.Rev. 36, 144 (2019)

W.Sun, S.Quan, J.Xiang, Z.Li

Beyond-mean-field Study of Octupole Shape Evolution in Neutron-deficient Ba Isotopes

NUCLEAR STRUCTURE 114,116,118,120,122,124Ba; calculated binding energies, J, π, potential energy surfaces to study octupole deformation and shape transition using a quadrupole-octupole collective Hamiltonian model.

doi: 10.11804/NuclPhysRev.36.02.144
Citations: PlumX Metrics


2019ZH26      Phys.Rev. C 99, 054613 (2019)

J.Zhao, J.Xiang, Z.P.Li, T.Niksic, D.Vretenar, S.-G.Zhou

Time-dependent generator-coordinate-method study of mass-asymmetric fission of actinides

NUCLEAR STRUCTURE 228Th; calculated levels, J, π, B(E2), B(E3), free energy along the least-energy fission path as function of the quadrupole deformation. 228Th, 234U, 240Pu, 244Cm, 250Cf; calculated deformation energy curves, axially symmetric quadrupole-octupole energy surface in (β20, β30) plane using microscopic TDGCM+GOA framework based on the relativistic energy density functional DD-PC1 and a separable pairing force of finite range. Comparison with experimental data.

NUCLEAR REACTIONS 228Th(γ, F), E*=0-11 MeV; 234U(γ, F), E*=0-11 MeV; 240Pu(γ, F), E*=0-11 MeV; 244Cm(γ, F), E*=0-23 MeV; 250Cf(γ, F), E*=0-8 MeV; calculated fission barriers and charge yields using a self-consistent multidimensionally constrained relativistic mean field model and the finite-temperature time-dependent generator coordinate model (GCM), respectively.

doi: 10.1103/PhysRevC.99.054613
Citations: PlumX Metrics


2018WU08      Phys.Rev. C 98, 054319 (2018)

X.Y.Wu, J.Xiang

Quantum and Coulomb repulsion effects on the bubble structures in 204, 206Hg

NUCLEAR STRUCTURE 204,206Hg, 208Pb; calculated radial proton and charge density distributions, longitudinal form factors in elastic electron scattering from the ground states, and depletion factors using beyond-mean-field covariant density functional theory with PC-PK1 parameter sets; analyzed bubble structure in ground and low-lying excited states of 204,206Hg. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.054319
Citations: PlumX Metrics


2018XI08      Phys.Rev. C 98, 054308 (2018)

J.Xiang, Z.P.Li, W.H.Long, T.Niksic, D.Vretenar

Shape evolution and coexistence in neutron-deficient Nd and Sm nuclei

NUCLEAR STRUCTURE 126,128,130,132,134,136,138,140Nd, 128,130,132,134,136,138,140,142Sm; calculated potential energy surfaces (PES) in (β2, γ) planes, B(E2) for the first 2+ state, E(first 4+)/E(first 2+) and E(2+ of γ band)/E(first 4+) ratios, β deformation parameters, low-lying levels, J, π, E0 strengths, and distribution of the probability densities for the first and second 0+, and first and third 2+ states in 134Nd and 136Sm, neutron and proton single particle levels in 134Nd, and single-neutron levels in 132,136Nd; analyzed shape evolution and shape coexistence in neutron-deficient even-even Nd and Sm nuclei. Relativistic mean field formalism with PC-PK1 parameter sets, and a separable finite-range pairing interaction with a five-dimensional (5DCH) quadrupole collective Hamiltonian. analyzed Comparison with experimental values.

doi: 10.1103/PhysRevC.98.054308
Citations: PlumX Metrics


2018ZH06      Phys.Rev. C 97, 014611 (2018)

G.L.Zhang, G.X.Zhang, S.P.Hu, Y.J.Yao, J.B.Xiang, H.Q.Zhang, J.Lubian, J.L.Ferreira, B.Paes, E.N.Cardozo, H.B.Sun, J.J.Valiente-Dobon, D.Testov, A.Goasduff, P.R.John, M.Siciliano, F.Galtarossa, R.Francesco, D.Mengoni, D.Bazzacco, E.T.Li, X.Hao, W.W.Qu

One-neutron stripping processes to excited states of 90Y* in the 89Y(6Li, 5Li)90Y* reaction

NUCLEAR REACTIONS 89Y(6Li, 5Li)90Y*, E=22, 34 MeV; measured in-beam and off-beam Eγ, Iγ, γγ- and pγ-coin, ΔE-E for protons, deuterons, tritons, and α particles, one-neutron stripping σ(E) using GALILEO array for γ rays and 4π Si-ball EUCLIDES for particles at the Tandem-XTU accelerator of Legnaro National Laboratory. 90Y, 93Mo; deduced level schemes. Comparisons of cross sections with parameter-free coupled reaction channel calculations.

doi: 10.1103/PhysRevC.97.014611
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetO2438.


2016XI07      Phys.Rev. C 93, 054324 (2016)

J.Xiang, J.M.Yao, Y.Fu, Z.H.Wang, Z.P.Li, W.H.Long

Novel triaxial structure in low-lying states of neutron-rich nuclei around A ≈ 100

NUCLEAR STRUCTURE 100,102,104,106,108,110Mo, 96Kr, 98Sr, 100Zr, 104Ru; calculated energy surface contours in (β, γ) plane, low-lying levels, J, π, energies and B(E2) of first 2+ states, reduced diagonal E2 matrix elements, transition quadrupole moments as function of angular momentum, staggering of the γ band using 3DCH prolate and oblate, and 5DCH triaxial configurations. Relativistic mean-field plus BCS wave functions generated with a constraint on triaxial deformations and solving a five-dimensional collective Hamiltonian (5DCH). Comparison with experimental values.

doi: 10.1103/PhysRevC.93.054324
Citations: PlumX Metrics


2015WA11      J.Phys.(London) G42, 045108 (2015)

Z.H.Wang, J.Xiang, W.H.Long, Z.P.Li

Covariant density functional analysis of shape evolution in N = 40 isotones

NUCLEAR STRUCTURE 62Ti, 64Cr, 66Fe, 68Ni, 70Zn, 72Ge, 74Se, 76Kr, 78Sr, 80Zr; calculated potential energy surfaces, two-proton separation energies, B(E2), J, π; deduced shape coexistence. Comparison with experimental data, relativistic mean-field plus BCS method with the PC-PK1 functional in the particle-hole channel and a separable pairing force in the particle-particle channel.

doi: 10.1088/0954-3899/42/4/045108
Citations: PlumX Metrics


2013FU06      Phys.Rev. C 87, 054305 (2013)

Y.Fu, H.Mei, J.Xiang, Z.P.Li, J.M.Yao, J.Meng

Beyond relativistic mean-field studies of low-lying states in neutron-deficient krypton isotopes

NUCLEAR STRUCTURE 68,70,72,74,76,78,80,82,84,86Kr; calculated levels, J, π, energy surface contours in β-γ plane, B(E2), ρ2(E0), quadrupole deformation, oblate-triaxial-prolate transition, shape coexistence, configuration mixing, angular momentum projection. Beyond relativistic mean-field (RMF) theory PC-PK1 force. Comparison with other calculations, and available experimental data.

doi: 10.1103/PhysRevC.87.054305
Citations: PlumX Metrics


2013XI11      Phys.Rev. C 88, 057301 (2013)

J.Xiang, Z.P.Li, J.M.Yao, W.H.Long, P.Ring, J.Meng

Effect of pairing correlations on nuclear low-energy structure: BCS and general Bogoliubov transformation

NUCLEAR STRUCTURE 134,136,138,140,142,144,146,148,150,152,154Sm; calculated binding energies for quadrupole deformation, proton and neutron pairing gaps. 152Sm; calculated potential energy surfaces for quadrupole deformation, proton and neutron pairing gaps, moments of inertia, low-lying levels, J, π, bands, single-particle energy levels and occupation probabilities. Relativistic Hartree-Bogoliubov (RHB) and relativistic mean field plus BCS (RMF+BCS) calculations, and comparison between the two approaches.

doi: 10.1103/PhysRevC.88.057301
Citations: PlumX Metrics


2012ME06      Phys.Rev. C 85, 034321 (2012)

H.Mei, J.Xiang, J.M.Yao, Z.P.Li, J.Meng

Rapid structural change in low-lying states of neutron-rich Sr and Zr isotopes

NUCLEAR STRUCTURE 88,90,92,94,96,98,100Sr, 90,92,94,96,98,100,102Zr; calculated level energies and B(E2) for first 2+ states, level energies and B(E0) for first excited 0+ states, E(first 4+)/E(first 2+), moment of inertia, mass parameters, proton radii, isotope shifts, single-particle energies, configuration mixing, total energy surfaces in β-γ plane, wave function distributions. Five-dimensional collective Hamiltonian with parameters from relativistic mean-field and nonrelativistic Skyrme-Hartree-Fock calculations using PC-PK1 and SLy4 interactions, density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034321
Citations: PlumX Metrics


2012XI01      Nucl.Phys. A873, 1 (2012)

J.Xiang, Z.P.Li, Z.X.Li, J.M.Yao, J.Meng

Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N ≈ 60

NUCLEAR STRUCTURE 88,90,92,94,96,98,100,102,104Kr, 88,90,92,94,96,98,100,102,104,106Sr, 90,92,94,96,98,100,102,104,106,108Zr, 92,94,96,98,100,102,104,106,108,110Mo; calculated charge radii, shape coexistence, deformation using covariant density functional. 98Sr, 100Zr; calculated energies vs deformation, B(E0). 98Sr; calculated levels, J, π vs deformation.

doi: 10.1016/j.nuclphysa.2011.10.002
Citations: PlumX Metrics


2011LI08      Int.J.Mod.Phys. E20, 494 (2011)

Z.P.Li, J.Xiang, J.M.Yao, H.Chen, J.Meng

Sensitivity of the nuclear collectivity to the pairing strength in 150Nd

NUCLEAR STRUCTURE 150Nd; calculated neutron pairing gaps, ratio of energies, B(E2).

doi: 10.1142/S0218301311017909
Citations: PlumX Metrics


2011YA04      Int.J.Mod.Phys. E20, 482 (2011)

J.M.Yao, Z.X.Li, J.Xiang, H.Mei, J.Meng

Low-lying states in 30Mg: A beyond relativistic mean-field investigation

NUCLEAR STRUCTURE 30Mg; calculated quadrupole energy surfaces, probability distributions, energies, B(E2). Gogny force, comparison with experimental data.

doi: 10.1142/S0218301311017880
Citations: PlumX Metrics


Back to query form


Note: The following list of authors and aliases matches the search parameter J.Xiang: , J.B.XIANG