NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of May 10, 2024.

Search: Author = J.W.Holt

Found 47 matches.

Back to query form

2024SH02      Phys.Rev. C 109, 015804 (2024)

E.Shin, E.Rrapaj, J.W.Holt, S.K.Reddy

Chiral effective field theory calculation of neutrino reactions in warm neutron-rich matter

doi: 10.1103/PhysRevC.109.015804
Citations: PlumX Metrics

2023DA15      Phys.Rev. C 108, 034003 (2023)

D.Davesne, J.W.Holt, J.Navarro, A.Pastore

Landau sum rules with noncentral quasiparticle interactions

doi: 10.1103/PhysRevC.108.034003
Citations: PlumX Metrics

2023HE08      J.Phys.(London) G50, 060501 (2023)

C.Hebborn, F.M.Nunes, G.Potel, W.H.Dickhoff, J.W.Holt, M.C.Atkinson, R.B.Baker, C.Barbieri, G.Blanchon, M.Burrows, R.Capote, P.Danielewicz, M.Dupuis, C.Elster, J.E.Escher, L.Hlophe, A.Idini, H.Jayatissa, B.P.Kay, K.Kravvaris, J.J.Manfredi, A.Mercenne, B.Morillon, G.Perdikakis, C.D.Pruitt, G.H.Sargsyan, I.J.Thompson, M.Vorabbi, T.R.Whitehead

Optical potentials for the rare-isotope beam era

doi: 10.1088/1361-6471/acc348
Citations: PlumX Metrics

2022DU06      Phys.Rev. C 105, 035803 (2022)

X.Du, A.W.Steiner, J.W.Holt

Hot and dense matter equation of state probability distributions for astrophysical simulations

doi: 10.1103/PhysRevC.105.035803
Citations: PlumX Metrics

2021BR12      Phys.Rev.Lett. 127, 062701 (2021)

J.Brady, P.Wen, J.W.Holt

Normalizing Flows for Microscopic Many-Body Calculations: An Application to the Nuclear Equation of State

doi: 10.1103/PhysRevLett.127.062701
Citations: PlumX Metrics

2021LI15      Phys.Rev. C 103, 025807 (2021)

Y.Lim, J.W.Holt

Proton pairing in neutron stars from chiral effective field theory

doi: 10.1103/PhysRevC.103.025807
Citations: PlumX Metrics

2021LI48      Phys.Rev. C 104, L032802 (2021)

Y.Lim, A.Bhattacharya, J.W.Holt, D.Pati

Radius and equation of state constraints from massive neutron stars and GW190814

doi: 10.1103/PhysRevC.104.L032802
Citations: PlumX Metrics

2021WE09      Phys.Rev. C 103, 064002 (2021)

P.Wen, J.W.Holt

Constraining the nonanalytic terms in the isospin-asymmetry expansion of the nuclear equation of state

doi: 10.1103/PhysRevC.103.064002
Citations: PlumX Metrics

2021WH01      Phys.Rev.Lett. 127, 182502 (2021)

T.R.Whitehead, Y.Lim, J.W.Holt

Global Microscopic Description of Nucleon-Nucleus Scattering with Quantified Uncertainties

NUCLEAR REACTIONS 14N, 16O, 34S, 56Fe, 90Zr, 121Sb, 138Ba, 182W, 208Pb(n, n), E<75 MeV; 16O, 27Al, 48Ti, 60Ni, 80Se, 120Sn, 182W, 194Pt, 206Pb(p, p), E<135 MeV; analyzed available data; deduced s(θ), optical potentials from a set of five nuclear forces from chiral effective field theory for 1800 target nuclei.

doi: 10.1103/PhysRevLett.127.182502
Citations: PlumX Metrics

2020WH01      Phys.Rev. C 101, 064613 (2020)

T.R.Whitehead, Y.Lim, J.W.Holt

Neutron elastic scattering on calcium isotopes from chiral nuclear optical potentials

NUCLEAR STRUCTURE 40,48Ca; calculated matter density distributions using mean-field theory with the Skyrme Skχ450 effective interaction constrained by chiral effective field theory.

NUCLEAR REACTIONS 40,48Ca(n, n), E=3.2, 30, 85 MeV; calculated real, imaginary, and spin-orbit terms of the microscopic chiral optical potential. 40Ca(n, n), E=3.2, 5.3, 6.52, 11.9, 16.9, 21.7, 25.5, 30, 40, 65, 85, 107.5, 155, 185 MeV; 48Ca(n, n), E=7.97, 11.9, 16.9 MeV; calculated differential σ(E, θ). 48Ca(polarized n, n), E=11.9, 16.9 MeV; calculated vector analyzing powers Ay(E, θ). Calculated used the chiral optical potential, and Koning-Delaroche phenomenological optical potential. 40,48Ca(n, x), E=10-200 MeV; calculated total σ(E) using the chiral optical potential. Comparison with experimental data. Improved microscopic optical potential based on nuclear two- and three-body interactions from chiral effective field theory.

doi: 10.1103/PhysRevC.101.064613
Citations: PlumX Metrics

2019DU10      Phys.Rev. C 99, 025803 (2019)

X.Du, A.W.Steiner, J.W.Holt

Hot and dense homogeneous nucleonic matter constrained by observations, experiment, and theory

doi: 10.1103/PhysRevC.99.025803
Citations: PlumX Metrics

2019LI43      Phys.Rev. C 100, 035802 (2019)

Y.Lim, J.W.Holt, R.J.Stahulak

Predicting the moment of inertia of pulsar J0737-3039A from Bayesian modeling of the nuclear equation of state

doi: 10.1103/PhysRevC.100.035802
Citations: PlumX Metrics

2019LI53      Eur.Phys.J. A 55, 209 (2019)

Y.Lim, J.W.Holt

Bayesian modeling of the nuclear equation of state for neutron star tidal deformabilities and GW170817

doi: 10.1140/epja/i2019-12917-9
Citations: PlumX Metrics

2019WH01      Phys.Rev. C 100, 014601 (2019)

T.R.Whitehead, Y.Lim, J.W.Holt

Proton elastic scattering on calcium isotopes from chiral nuclear optical potentials

NUCLEAR REACTIONS 40Ca(p, p), E=2.35, 35, 100 MeV; calculated real, imaginary, and spin-orbit terms of the microscopic optical potential from chiral EFT, and from fits to the Koning-Delaroche (KD) form. 40,42,44,48Ca; calculated nucleon density distributions in mean field theory using the Skyrme Skχ450 effective interaction. 40Ca(p, p), E=2.35, 25, 35, 45, 55, 65, 80, 135, 160 MeV; 42,44,48Ca(p, p), E=25, 35, 45 MeV; 40,42,44,48Ca(p, X), E=20-50 MeV; calculated differential elastic σ(θ, E), and total reaction σ(E) using microscopic optical potentials calculated from chiral effective field theory, and from the chiral optical potential by the Koning-Delaroche (KD) phenomenological imaginary part, and using the reaction code TALYS. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.014601
Citations: PlumX Metrics

2018HO05      Phys.Rev. C 97, 054325 (2018)

J.W.Holt, N.Kaiser, T.R.Whitehead

Tensor Fermi liquid parameters in nuclear matter from chiral effective field theory

doi: 10.1103/PhysRevC.97.054325
Citations: PlumX Metrics

2018LI39      Phys.Rev.Lett. 121, 062701 (2018)

Y.Lim, J.W.Holt

Neutron Star Tidal Deformabilities Constrained by Nuclear Theory and Experiment

doi: 10.1103/PhysRevLett.121.062701
Citations: PlumX Metrics

2017HO06      Phys.Rev. C 95, 034326 (2017)

J.W.Holt, N.Kaiser

Equation of state of nuclear and neutron matter at third-order in perturbation theory from chiral effective field theory

doi: 10.1103/PhysRevC.95.034326
Citations: PlumX Metrics

2017LI20      Phys.Rev. C 95, 065805 (2017)

Y.Lim, J.W.Holt

Structure of neutron star crusts from new Skyrme effective interactions constrained by chiral effective field theory

doi: 10.1103/PhysRevC.95.065805
Citations: PlumX Metrics

2016HO10      Phys.Rev. C 93, 064603 (2016)

J.W.Holt, N.Kaiser, G.A.Miller

Microscopic optical potential for exotic isotopes from chiral effective field theory

doi: 10.1103/PhysRevC.93.064603
Citations: PlumX Metrics

2016RR01      Phys.Rev. C 93, 065801 (2016)

E.Rrapaj, A.Roggero, J.W.Holt

Microscopically constrained mean-field models from chiral nuclear thermodynamics

doi: 10.1103/PhysRevC.93.065801
Citations: PlumX Metrics

2016WE08      Phys.Rev. C 93, 055802 (2016)

C.Wellenhofer, J.W.Holt, N.Kaiser

Divergence of the isospin-asymmetry expansion of the nuclear equation of state in many-body perturbation theory

doi: 10.1103/PhysRevC.93.055802
Citations: PlumX Metrics

2015DA02      Phys.Rev. C 91, 014323 (2015)

D.Davesne, J.W.Holt, A.Pastore, J.Navarro

Effect of three-body forces on response functions in infinite neutron matter

doi: 10.1103/PhysRevC.91.014323
Citations: PlumX Metrics

2015RR01      Phys.Rev. C 91, 035806 (2015)

E.Rrapaj, J.W.Holt, A.Bartl, S.Reddy, A.Schwenk

Charged-current reactions in the supernova neutrino-sphere

NUCLEAR REACTIONS 1n(ν, e-)p, E=1-100 MeV; 1H(ν-bar, e+)n, E=1-100 MeV; calculated neutrino absorption rates due to charged-current reactions in the outer regions of a newly born neutron star called the neutrino-sphere, momentum-, density-, and temperature-dependent nucleon self-energies in the Hartree-Fock approximation.

doi: 10.1103/PhysRevC.91.035806
Citations: PlumX Metrics

2015SA22      Phys.Rev. C 91, 054311 (2015)

F.Sammarruca, L.Coraggio, J.W.Holt, N.Itaco, R.Machleidt, L.E.Marcucci

Toward order-by-order calculations of the nuclear and neutron matter equations of state in chiral effective field theory

doi: 10.1103/PhysRevC.91.054311
Citations: PlumX Metrics

2015WE10      Phys.Rev. C 92, 015801 (2015)

C.Wellenhofer, J.W.Holt, N.Kaiser

Thermodynamics of isospin-asymmetric nuclear matter from chiral effective field theory

doi: 10.1103/PhysRevC.92.015801
Citations: PlumX Metrics

2014CO09      Phys.Rev. C 89, 044321 (2014)

L.Coraggio, J.W.Holt, N.Itaco, R.Machleidt, L.E.Marcucci, F.Sammarruca

Nuclear-matter equation of state with consistent two- and three-body perturbative chiral interactions

NUCLEAR STRUCTURE 3H, 3He; calculated neutron-proton phase shifts, binding energy, Gamow-Teller transition matrix element, nuclear matter energy per particle. Equation of state (EOS) for two- and three-body perturbative chiral interactions in the framework of the perturbative Goldstone expansion and regulator functions. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.044321
Citations: PlumX Metrics

2014DO13      Nucl.Phys. A930, 1 (2014)

H.Dong, T.T.S.Kuo, J.W.Holt

Non-degenerate shell-model effective interactions from the Okamoto-Suzuki and Krenciglowa-Kuo iteration methods

doi: 10.1016/j.nuclphysa.2014.08.036
Citations: PlumX Metrics

2014KU16      Nucl.Phys. A928, 30 (2014)

T.T.S.Kuo, J.W.Holt

Core polarization, Brown-Rho scaling and a memory of Gerry's Princeton Years

doi: 10.1016/j.nuclphysa.2014.05.006
Citations: PlumX Metrics

2014MA80      Phys.Rev. C 90, 044003 (2014)

S.Maurizio, J.W.Holt, P.Finelli

Nuclear pairing from microscopic forces: Singlet channels and higher-partial waves

doi: 10.1103/PhysRevC.90.044003
Citations: PlumX Metrics

2014TZ01      Chin.J.Phys.(Taiwan) 52, 1450 (2014)

Y.Tzeng, S.-Y.T.Tzeng, T.T.S.Kuo, J.W.Holt

Binding Energy of 16O in the Ring Diagram Method with Chiral Two- and Three-Nucleon Low Momentum Interactions

NUCLEAR STRUCTURE 16O; calculated charge density, binding and ground state energies. Comparison with available data.

doi: 10.6122/CJP.20140430
Citations: PlumX Metrics

2014WE05      Phys.Rev. C 89, 064009 (2014)

C.Wellenhofer, J.W.Holt, N.Kaiser, W.Weise

Nuclear thermodynamics from chiral low-momentum interactions

doi: 10.1103/PhysRevC.89.064009
Citations: PlumX Metrics

2014WL01      Phys.Rev.Lett. 113, 182503 (2014)

G.Wlazlowski, J.W.Holt, S.Moroz, A.Bulgac, K.J.Roche

Auxiliary-Field Quantum Monte Carlo Simulations of Neutron Matter in Chiral Effective Field Theory

doi: 10.1103/PhysRevLett.113.182503
Citations: PlumX Metrics

2013CO02      Phys.Rev. C 87, 014322 (2013)

L.Coraggio, J.W.Holt, N.Itaco, R.Machleidt, F.Sammarruca

Reduced regulator dependence of neutron-matter predictions with perturbative chiral interactions

doi: 10.1103/PhysRevC.87.014322
Citations: PlumX Metrics

2013HO04      Phys.Rev. C 87, 014338 (2013)

J.W.Holt, N.Kaiser, W.Weise

Chiral Fermi liquid approach to neutron matter

doi: 10.1103/PhysRevC.87.014338
Citations: PlumX Metrics

2013HO14      Phys.Rev. C 88, 024614 (2013)

J.W.Holt, N.Kaiser, G.A.Miller, W.Weise

Microscopic optical potential from chiral nuclear forces

doi: 10.1103/PhysRevC.88.024614
Citations: PlumX Metrics

2012HO02      Nucl.Phys. A876, 61 (2012)

J.W.Holt, N.Kaiser, W.Weise

Quasiparticle interaction in nuclear matter with chiral three-nucleon forces

doi: 10.1016/j.nuclphysa.2011.12.001
Citations: PlumX Metrics

2011HO13      Eur.Phys.J. A 47, 128 (2011)

J.W.Holt, N.Kaiser, W.Weise

Nuclear energy density functional from chiral two-nucleon and three-nucleon interactions

doi: 10.1140/epja/i2011-11128-x
Citations: PlumX Metrics

2011HO14      Nucl.Phys. A870-871, 1 (2011)

J.W.Holt, N.Kaiser, W.Weise

Second-order quasiparticle interaction in nuclear matter with chiral two-nucleon interactions

doi: 10.1016/j.nuclphysa.2011.09.006
Citations: PlumX Metrics

2010HO01      Phys.Rev. C 81, 024002 (2010)

J.W.Holt, N.Kaiser, W.Weise

Density-dependent effective nucleon-nucleon interaction from chiral three-nucleon forces

doi: 10.1103/PhysRevC.81.024002
Citations: PlumX Metrics

2009HO02      Phys.Rev. C 79, 054331 (2009)

J.W.Holt, N.Kaiser, W.Weise

Chiral three-nucleon interaction and the 14C-dating β decay

RADIOACTIVITY 14C(β-); calculated Gamow-Teller matrix elements, B(GT) using universal low momentum chiral nucleon-nuclear potential N3LO. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.054331
Citations: PlumX Metrics

2009SI09      Phys.Rev. C 79, 054004 (2009)

L.-W.Siu, J.W.Holt, T.T.S.Kuo, G.E.Brown

Low-momentum NN interactions and all-order summation of ring diagrams of symmetric nuclear matter

doi: 10.1103/PhysRevC.79.054004
Citations: PlumX Metrics

2008HO01      Phys.Rev.Lett. 100, 062501 (2008)

J.W.Holt, G.E.Brown, T.T.S.Kuo, J.D.Holt, R.Machleidt

Shell Model Description of the 14C Dating β Decay with Brown-Rho-Scaled NN Interactions

RADIOACTIVITY 14C(β-); calculated Gamow-Teller matrix elements and β-decay half life using the shell model and medium modified Bonn-B potential.

doi: 10.1103/PhysRevLett.100.062501
Citations: PlumX Metrics

2007BR03      Phys.Rep. 439, 161 (2007)

G.E.Brown, J.W.Holt, C.-H.Lee, M.Rho

Vector manifestation and matter formed in relativistic heavy-ion processes

doi: 10.1016/j.physrep.2006.12.002
Citations: PlumX Metrics

2007HO06      Nucl.Phys. A785, 322 (2007)

J.W.Holt, G.E.Brown, Jason D.Holt, T.T.S.Kuo

Nuclear matter with Brown-Rho-scaled Fermi liquid interaction

doi: 10.1016/j.nuclphysa.2006.12.099
Citations: PlumX Metrics

2007HO17      Phys.Rev. C 76, 034325 (2007)

J.D.Holt, N.Pietralla, J.W.Holt, T.T.S.Kuo, G.Rainovski

Microscopic restoration of proton-neutron mixed symmetry in weakly collective nuclei

NUCLEAR STRUCTURE 92Zr, 94Mo, 96Ru, 98Pd, 100Cd; calculated B(M1) and g-factors using the shell model and the microscopic low-momentum nucleon-nucleon interaction.

doi: 10.1103/PhysRevC.76.034325
Citations: PlumX Metrics

2006OR09      Phys.Rev.Lett. 97, 062504 (2006)

J.N.Orce, J.D.Holt, A.Linnemann, C.J.McKay, S.R.Lesher, C.Fransen, J.W.Holt, A.Kumar, N.Warr, V.Werner, J.Jolie, T.T.S.Kuo, M.T.McEllistrem, N.Pietralla, S.W.Yates

Identification of Mixed-Symmetry States in an Odd-Mass Nearly Spherical Nucleus

NUCLEAR REACTIONS 93Nb(n, n'), E=1.5-3 MeV; 94Zr(p, 2n), E=11.5-19 MeV; measured Eγ, Iγ, γγ-coin, DSA. 93Nb deduced levels J, π, configurations, T1/2, B(M1), B(E2). Comparison with shell model predictions.

doi: 10.1103/PhysRevLett.97.062504
Citations: PlumX Metrics

Data from this article have been entered in the XUNDL database. For more information, click here.

2005HO29      Phys.Rev. C 72, 041304 (2005)

J.D.Holt, J.W.Holt, T.T.S.Kuo, G.E.Brown, S.K.Bogner

Low momentum shell model effective interactions with all-order core polarizations

NUCLEAR STRUCTURE 18O, 18F; calculated levels, J, π. All-order summation of core-polarization diagrams.

doi: 10.1103/PhysRevC.72.041304
Citations: PlumX Metrics

Back to query form