NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = M.C.Atkinson

Found 12 matches.

Back to query form



2023HE08      J.Phys.(London) G50, 060501 (2023)

C.Hebborn, F.M.Nunes, G.Potel, W.H.Dickhoff, J.W.Holt, M.C.Atkinson, R.B.Baker, C.Barbieri, G.Blanchon, M.Burrows, R.Capote, P.Danielewicz, M.Dupuis, C.Elster, J.E.Escher, L.Hlophe, A.Idini, H.Jayatissa, B.P.Kay, K.Kravvaris, J.J.Manfredi, A.Mercenne, B.Morillon, G.Perdikakis, C.D.Pruitt, G.H.Sargsyan, I.J.Thompson, M.Vorabbi, T.R.Whitehead

Optical potentials for the rare-isotope beam era

doi: 10.1088/1361-6471/acc348
Citations: PlumX Metrics


2022AT02      Phys.Rev. C 105, 054316 (2022)

M.C.Atkinson, P.Navratil, G.Hupin, K.Kravvaris, S.Quaglioni

Ab initio calculation of the β decay from 11Be to a 10Be + p resonance

RADIOACTIVITY 11Be(β-p); calculated β-delayed proton emission branching ratio, Gamow-teller transitions strength. Ab-initio no-core shell model with continuum (NCSMC). Comparison to experimental data.

NUCLEAR STRUCTURE 11Be, 11B; calculated levels, J, π, diagonal phase and eigenphase shifts in 10Be+p system, spectroscopic factors, resonances. Comparison to experimental data.

doi: 10.1103/PhysRevC.105.054316
Citations: PlumX Metrics


2022YO02      Phys.Rev. C 105, 014622 (2022)

K.Yoshida, M.C.Atkinson, K.Ogata, W.H.Dickhoff

First application of the dispersive optical model to (p, 2p) reaction analysis within the distorted-wave impulse approximation framework

NUCLEAR REACTIONS 40Ca(p, 2p), (e, e'p)39K, E=200 MeV; analyzed experimental data for differential cross sections; deduced spectroscopic factors using dispersive optical model (DOM) applied to the nonrelativistic distorted-wave impulse approximation (DWIA) framework, using several types of input for the p-p effective interactions: the Franey-Love interaction, the Melbourne g-matrix interaction with zero and mean density.

doi: 10.1103/PhysRevC.105.014622
Citations: PlumX Metrics


2021AT02      Phys.Rev. C 104, 059802 (2021)

M.C.Atkinson, W.H.Dickhoff, M.Piarulli, A.Rios, R.B.Wiringa

Reply to "Comment on 'Reexamining the relation between the binding energy of finite nuclei and the equation of state of infinite nuclear matter'"

doi: 10.1103/PhysRevC.104.059802
Citations: PlumX Metrics


2020AT01      Phys.Rev. C 101, 044303 (2020)

M.C.Atkinson, M.H.Mahzoon, M.A.Keim, B.A.Bordelon, C.D.Pruitt, R.J.Charity, W.H.Dickhoff

Dispersive optical model analysis of 208Pb generating a neutron-skin prediction beyond the mean field

NUCLEAR REACTIONS 208Pb(p, X), (n, X), (p, p), (n, n), E=10-200 MeV; 208Pb(e, e), E=502 MeV; calculated reaction σ(E), differential σ(E, θ), analyzing powers Ay(θ) using dispersive optical model (DOM). Comparison with experimental data.

NUCLEAR STRUCTURE 208Pb; calculated neutron and proton single-particle energy levels, charge density, orbital occupation and depletion numbers, spectroscopic factors, binding energies, momentum distributions of protons and neutrons. 40,48Ca, 208Pb; calculated proton and neutron point distributions, and neutron skins. Hartree-Fock and dispersive optical model (DOM) calculations. Comparison with experimental data. Relevance to nuclear equation of state.

doi: 10.1103/PhysRevC.101.044303
Citations: PlumX Metrics


2020AT02      Phys.Rev. C 102, 044333 (2020)

M.C.Atkinson, W.H.Dickhoff, M.Piarulli, A.Rios, R.B.Wiringa

Reexamining the relation between the binding energy of finite nuclei and the equation of state of infinite nuclear matter

NUCLEAR STRUCTURE 12C, 40,48Ca, 208Pb; calculated binding energies, binding energy as a function of radius in 12C, energy densities using a dispersive optical model. Comparison with ab initio self-consistent Green's-function calculations, and with experimental data. 8Be; calculated total binding-energy density, the kinetic-energy density, the two-body potential-energy density, and the three-body potential-energy density using Green's-function Monte Carlo method, with the Argonne-Urbana two- and three-body interactions. 12C; calculated three-body potential-energy densities for different chiral interactions and the Urbana-X.

NUCLEAR REACTIONS 12C(p, p), (n, n), (polarized p, p), (polarized n, n), (p, X), (n, X), E<200 MeV; calculated differential σ(θ, E) and analyzing powers Ay(θ, E) for elastic scattering, proton and neutron total reaction σ(E) generated from the dispersive optical model (DOM). Comparison with experimental data.

doi: 10.1103/PhysRevC.102.044333
Citations: PlumX Metrics


2020PR09      Phys.Rev.Lett. 125, 102501 (2020)

C.D.Pruitt, R.J.Charity, L.G.Sobotka, M.C.Atkinson, W.H.Dickhoff

Systematic Matter and Binding-Energy Distributions from a Dispersive Optical Model Analysis

NUCLEAR STRUCTURE 16,18O, 40,48Ca, 58,64Ni, 112,124Sn, 208Pb; analyzed available bound-state anscattering data; deduced neutronn skins, the interplay of asymmetry, Coulomb, and shell effects on the skin thickness.

doi: 10.1103/PhysRevLett.125.102501
Citations: PlumX Metrics


2020PR10      Phys.Rev. C 102, 034601 (2020)

C.D.Pruitt, R.J.Charity, L.G.Sobotka, J.M.Elson, D.E.M.Hoff, K.W.Brown, M.C.Atkinson, W.H.Dickhoff, H.Y.Lee, M.Devlin, N.Fotiades, S.Mosby

Isotopically resolved neutron total cross sections at intermediate energies

NUCLEAR REACTIONS 16,18O, 58,64Ni, 103Rh, 112,124Sn(n, X), E=3-450 MeV; measured E(n), I(n), σ(E) by time-of-flight using wave-form-digitizer technology and BC-400 fast plastic scintillators at the WNR facility of the Los Alamos Neutron Science Center; deduced spectroscopic factors for valence proton and neutron levels through a dispersive optical model (DOM) analyses of σ(θ) data. 16,18O, 58,64Ni, 103Rh, 112,124Sn(p, p), (polarized p, p), (n, n), E=10-200 MeV; analyzed experimental σ(E), σ(θ, E), Ay(θ, E) data in literature; deduced dispersive optical model (DOM) parameters, charge radii and binding energies. Comparison with previous experimental measurements of σ(E) using analog methods.

doi: 10.1103/PhysRevC.102.034601
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14661.


2019AT01      Phys.Lett. B 798, 135027 (2019)

M.C.Atkinson, W.H.Dickhoff

Investigating the link between proton reaction cross sections and the quenching of proton spectroscopic factors in 48Ca

NUCLEAR REACTIONS 48Ca(E, X)47K, E not given; 40,48Ca(p, X), E<200 MeV; analyzed available data; deduced σ, spectral strength as a function of excitation energy using a nonlocal dispersive optical model (DOM).

doi: 10.1016/j.physletb.2019.135027
Citations: PlumX Metrics


2018AT02      Phys.Rev. C 98, 044627 (2018)

M.C.Atkinson, H.P.Blok, L.Lapikas, R.J.Charity, W.H.Dickhoff

Validity of the distorted-wave impulse-approximation description of 40Ca(e, e'p)39K data using only ingredients from a nonlocal dispersive optical model

NUCLEAR REACTIONS 40Ca(e, e'p)39K, E=299-532 MeV; measured Ep, Ip, electron spectra, spectral strengths as function of excitation energy, and spectral functions in parallel kinematics using high-resolution magnetic spectrometers for charged particle detection at the Medium Energy Accelerator at Nikhef, Amsterdam. Comparison with calculations using dispersive optical model (DOM) for distorted wave impulse-approximation (DWIA). 39K; deduced levels, J, π, spectroscopic factors. 40Ca(p, p), (n, n), E=10-100 MeV; analyzed σ(θ, E) and analyzing powers Ay(θ, E) by nonlocal DOM description. 40Ca(p, X), E<200 MeV; analyzed σ(E) by nonlocal DOM description. 40Ca; analyzed charge density using the DOM propagator, and compared with experimental data.

doi: 10.1103/PhysRevC.98.044627
Citations: PlumX Metrics


2017MA76      Phys.Rev.Lett. 119, 222503 (2017)

M.H.Mahzoon, M.C.Atkinson, R.J.Charity, W.H.Dickhoff

Neutron Skin Thickness of 48Ca from a Nonlocal Dispersive Optical-Model Analysis

NUCLEAR REACTIONS 48Ca(n, n), E not given; analyzed available data; deduced σ, σ(θ), neutron and proton numbers, and the charge distributions.

doi: 10.1103/PhysRevLett.119.222503
Citations: PlumX Metrics


2017PO13      Eur.Phys.J. A 53, 178 (2017)

G.Potel, G.Perdikakis, B.V.Carlson, M.C.Atkinson, W.H.Dickhoff, J.E.Escher, M.S.Hussein, J.Lei, W.Li, A.O.Macchiavelli, A.M.Moro, F.M.Nunes, S.D.Pain, J.Rotureau

Toward a complete theory for predicting inclusive deuteron breakup away from stability

NUCLEAR REACTIONS 93Nb(d, pn), E=10, 25.5 MeV; calculated σ(ln), σ(θn) assuming both elastic and nonelastic breakup. Compared with published calculations. 40,48,60Ca(d, pn), E=20, 40 MeV; calculated σ(Ep) vs En and vs ln using both elastic and nonelastic breakup and using Hussein-McVoy theory.

doi: 10.1140/epja/i2017-12371-9
Citations: PlumX Metrics


Back to query form