NSR Query Results
Output year order : Descending NSR database version of May 24, 2024. Search: Author = M.C.Atkinson Found 12 matches. 2023HE08 J.Phys.(London) G50, 060501 (2023) C.Hebborn, F.M.Nunes, G.Potel, W.H.Dickhoff, J.W.Holt, M.C.Atkinson, R.B.Baker, C.Barbieri, G.Blanchon, M.Burrows, R.Capote, P.Danielewicz, M.Dupuis, C.Elster, J.E.Escher, L.Hlophe, A.Idini, H.Jayatissa, B.P.Kay, K.Kravvaris, J.J.Manfredi, A.Mercenne, B.Morillon, G.Perdikakis, C.D.Pruitt, G.H.Sargsyan, I.J.Thompson, M.Vorabbi, T.R.Whitehead Optical potentials for the rare-isotope beam era
doi: 10.1088/1361-6471/acc348
2022AT02 Phys.Rev. C 105, 054316 (2022) M.C.Atkinson, P.Navratil, G.Hupin, K.Kravvaris, S.Quaglioni Ab initio calculation of the β decay from ^{11}Be to a ^{10}Be + p resonance RADIOACTIVITY ^{11}Be(β^{-}p); calculated β-delayed proton emission branching ratio, Gamow-teller transitions strength. Ab-initio no-core shell model with continuum (NCSMC). Comparison to experimental data. NUCLEAR STRUCTURE ^{11}Be, ^{11}B; calculated levels, J, π, diagonal phase and eigenphase shifts in ^{10}Be+p system, spectroscopic factors, resonances. Comparison to experimental data.
doi: 10.1103/PhysRevC.105.054316
2022YO02 Phys.Rev. C 105, 014622 (2022) K.Yoshida, M.C.Atkinson, K.Ogata, W.H.Dickhoff First application of the dispersive optical model to (p, 2p) reaction analysis within the distorted-wave impulse approximation framework NUCLEAR REACTIONS ^{40}Ca(p, 2p), (e, e'p)^{39}K, E=200 MeV; analyzed experimental data for differential cross sections; deduced spectroscopic factors using dispersive optical model (DOM) applied to the nonrelativistic distorted-wave impulse approximation (DWIA) framework, using several types of input for the p-p effective interactions: the Franey-Love interaction, the Melbourne g-matrix interaction with zero and mean density.
doi: 10.1103/PhysRevC.105.014622
2021AT02 Phys.Rev. C 104, 059802 (2021) M.C.Atkinson, W.H.Dickhoff, M.Piarulli, A.Rios, R.B.Wiringa Reply to "Comment on 'Reexamining the relation between the binding energy of finite nuclei and the equation of state of infinite nuclear matter'"
doi: 10.1103/PhysRevC.104.059802
2020AT01 Phys.Rev. C 101, 044303 (2020) M.C.Atkinson, M.H.Mahzoon, M.A.Keim, B.A.Bordelon, C.D.Pruitt, R.J.Charity, W.H.Dickhoff Dispersive optical model analysis of ^{208}Pb generating a neutron-skin prediction beyond the mean field NUCLEAR REACTIONS ^{208}Pb(p, X), (n, X), (p, p), (n, n), E=10-200 MeV; ^{208}Pb(e, e), E=502 MeV; calculated reaction σ(E), differential σ(E, θ), analyzing powers A_{y}(θ) using dispersive optical model (DOM). Comparison with experimental data. NUCLEAR STRUCTURE ^{208}Pb; calculated neutron and proton single-particle energy levels, charge density, orbital occupation and depletion numbers, spectroscopic factors, binding energies, momentum distributions of protons and neutrons. ^{40,48}Ca, ^{208}Pb; calculated proton and neutron point distributions, and neutron skins. Hartree-Fock and dispersive optical model (DOM) calculations. Comparison with experimental data. Relevance to nuclear equation of state.
doi: 10.1103/PhysRevC.101.044303
2020AT02 Phys.Rev. C 102, 044333 (2020) M.C.Atkinson, W.H.Dickhoff, M.Piarulli, A.Rios, R.B.Wiringa Reexamining the relation between the binding energy of finite nuclei and the equation of state of infinite nuclear matter NUCLEAR STRUCTURE ^{12}C, ^{40,48}Ca, ^{208}Pb; calculated binding energies, binding energy as a function of radius in ^{12}C, energy densities using a dispersive optical model. Comparison with ab initio self-consistent Green's-function calculations, and with experimental data. ^{8}Be; calculated total binding-energy density, the kinetic-energy density, the two-body potential-energy density, and the three-body potential-energy density using Green's-function Monte Carlo method, with the Argonne-Urbana two- and three-body interactions. ^{12}C; calculated three-body potential-energy densities for different chiral interactions and the Urbana-X. NUCLEAR REACTIONS ^{12}C(p, p), (n, n), (polarized p, p), (polarized n, n), (p, X), (n, X), E<200 MeV; calculated differential σ(θ, E) and analyzing powers A_{y}(θ, E) for elastic scattering, proton and neutron total reaction σ(E) generated from the dispersive optical model (DOM). Comparison with experimental data.
doi: 10.1103/PhysRevC.102.044333
2020PR09 Phys.Rev.Lett. 125, 102501 (2020) C.D.Pruitt, R.J.Charity, L.G.Sobotka, M.C.Atkinson, W.H.Dickhoff Systematic Matter and Binding-Energy Distributions from a Dispersive Optical Model Analysis NUCLEAR STRUCTURE ^{16,18}O, ^{40,48}Ca, ^{58,64}Ni, ^{112,124}Sn, ^{208}Pb; analyzed available bound-state anscattering data; deduced neutronn skins, the interplay of asymmetry, Coulomb, and shell effects on the skin thickness.
doi: 10.1103/PhysRevLett.125.102501
2020PR10 Phys.Rev. C 102, 034601 (2020) C.D.Pruitt, R.J.Charity, L.G.Sobotka, J.M.Elson, D.E.M.Hoff, K.W.Brown, M.C.Atkinson, W.H.Dickhoff, H.Y.Lee, M.Devlin, N.Fotiades, S.Mosby Isotopically resolved neutron total cross sections at intermediate energies NUCLEAR REACTIONS ^{16,18}O, ^{58,64}Ni, ^{103}Rh, ^{112,124}Sn(n, X), E=3-450 MeV; measured E(n), I(n), σ(E) by time-of-flight using wave-form-digitizer technology and BC-400 fast plastic scintillators at the WNR facility of the Los Alamos Neutron Science Center; deduced spectroscopic factors for valence proton and neutron levels through a dispersive optical model (DOM) analyses of σ(θ) data. ^{16,18}O, ^{58,64}Ni, ^{103}Rh, ^{112,124}Sn(p, p), (polarized p, p), (n, n), E=10-200 MeV; analyzed experimental σ(E), σ(θ, E), A_{y}(θ, E) data in literature; deduced dispersive optical model (DOM) parameters, charge radii and binding energies. Comparison with previous experimental measurements of σ(E) using analog methods.
doi: 10.1103/PhysRevC.102.034601
2019AT01 Phys.Lett. B 798, 135027 (2019) Investigating the link between proton reaction cross sections and the quenching of proton spectroscopic factors in ^{48}Ca NUCLEAR REACTIONS ^{48}Ca(E, X)^{47}K, E not given; ^{40,48}Ca(p, X), E<200 MeV; analyzed available data; deduced σ, spectral strength as a function of excitation energy using a nonlocal dispersive optical model (DOM).
doi: 10.1016/j.physletb.2019.135027
2018AT02 Phys.Rev. C 98, 044627 (2018) M.C.Atkinson, H.P.Blok, L.Lapikas, R.J.Charity, W.H.Dickhoff Validity of the distorted-wave impulse-approximation description of ^{40}Ca(e, e'p)^{39}K data using only ingredients from a nonlocal dispersive optical model NUCLEAR REACTIONS ^{40}Ca(e, e'p)^{39}K, E=299-532 MeV; measured Ep, Ip, electron spectra, spectral strengths as function of excitation energy, and spectral functions in parallel kinematics using high-resolution magnetic spectrometers for charged particle detection at the Medium Energy Accelerator at Nikhef, Amsterdam. Comparison with calculations using dispersive optical model (DOM) for distorted wave impulse-approximation (DWIA). ^{39}K; deduced levels, J, π, spectroscopic factors. ^{40}Ca(p, p), (n, n), E=10-100 MeV; analyzed σ(θ, E) and analyzing powers A_{y}(θ, E) by nonlocal DOM description. ^{40}Ca(p, X), E<200 MeV; analyzed σ(E) by nonlocal DOM description. ^{40}Ca; analyzed charge density using the DOM propagator, and compared with experimental data.
doi: 10.1103/PhysRevC.98.044627
2017MA76 Phys.Rev.Lett. 119, 222503 (2017) M.H.Mahzoon, M.C.Atkinson, R.J.Charity, W.H.Dickhoff Neutron Skin Thickness of ^{48}Ca from a Nonlocal Dispersive Optical-Model Analysis NUCLEAR REACTIONS ^{48}Ca(n, n), E not given; analyzed available data; deduced σ, σ(θ), neutron and proton numbers, and the charge distributions.
doi: 10.1103/PhysRevLett.119.222503
2017PO13 Eur.Phys.J. A 53, 178 (2017) G.Potel, G.Perdikakis, B.V.Carlson, M.C.Atkinson, W.H.Dickhoff, J.E.Escher, M.S.Hussein, J.Lei, W.Li, A.O.Macchiavelli, A.M.Moro, F.M.Nunes, S.D.Pain, J.Rotureau Toward a complete theory for predicting inclusive deuteron breakup away from stability NUCLEAR REACTIONS ^{93}Nb(d, pn), E=10, 25.5 MeV; calculated σ(l_{n}), σ(θ_{n}) assuming both elastic and nonelastic breakup. Compared with published calculations. ^{40,48,60}Ca(d, pn), E=20, 40 MeV; calculated σ(Ep) vs En and vs l_{n} using both elastic and nonelastic breakup and using Hussein-McVoy theory.
doi: 10.1140/epja/i2017-12371-9
Back to query form |