NSR Query Results

Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = C.Elster

Found 76 matches.

Back to query form

2023BA32      Phys.Rev. C 108, 044617 (2023)

R.B.Baker, M.Burrows, Ch.Elster, P.Maris, G.Popa, S.P.Weppner

Nuclear structure and elastic scattering observables obtained consistently with different NN interactions

doi: 10.1103/PhysRevC.108.044617
Citations: PlumX Metrics

2023HE08      J.Phys.(London) G50, 060501 (2023)

C.Hebborn, F.M.Nunes, G.Potel, W.H.Dickhoff, J.W.Holt, M.C.Atkinson, R.B.Baker, C.Barbieri, G.Blanchon, M.Burrows, R.Capote, P.Danielewicz, M.Dupuis, C.Elster, J.E.Escher, L.Hlophe, A.Idini, H.Jayatissa, B.P.Kay, K.Kravvaris, J.J.Manfredi, A.Mercenne, B.Morillon, G.Perdikakis, C.D.Pruitt, G.H.Sargsyan, I.J.Thompson, M.Vorabbi, T.R.Whitehead

Optical potentials for the rare-isotope beam era

doi: 10.1088/1361-6471/acc348
Citations: PlumX Metrics

2022BA43      Phys.Rev. C 106, 064605 (2022)

R.B.Baker, B.McClung, Ch.Elster, P.Maris, S.P.Weppner, M.Burrows, G.Popa

Ab initio nucleon-nucleus elastic scattering with chiral effective field theory uncertainties

NUCLEAR REACTIONS 16O(p, p), E=65, 100, 135, 180 MeV; 12C(p, p), E=65, 100, 122, 160 MeV; 12C(n, n), E=65, 95, 155, 185 MeV; calculated σ(E), σ(θ, E), expansion parameter, analyzing power, spin rotation function, Wolfenstein amplitudes. Quantified the truncation uncertainty arising from each order in the chiral EFT. Calculations in frameworks of the spectator expansion of multiple scattering theory as well as the nocore shell model with chiral interaction from the LENPIC collaboration up to the third chiral order. Comparison to available experimental data.

doi: 10.1103/PhysRevC.106.064605
Citations: PlumX Metrics

2021BA24      Phys.Rev. C 103, 054314 (2021)

R.B.Baker, M.Burrows, Ch.Elster, K.D.Launey, P.Maris, G.Popa, S.P.Weppner

Nuclear spin features relevant to ab initio nucleon-nucleus elastic scattering

NUCLEAR STRUCTURE 4,6,8He; calculated neutron and proton spin-projected, one-body momentum distributions using NNLOopt chiral interaction, magnetic moments of the 2+ excited states in the ground state rotational bands; deduced spin content of a J=0 wave function, connection between reaction observables such as analyzing powers and structure observables such as magnetic moments in the framework of the spectator expansion with no-core shell model. Relevance to effective interactions for elastic nucleon-nucleus scattering.

doi: 10.1103/PhysRevC.103.054314
Citations: PlumX Metrics

2020BU11      Phys.Rev. C 102, 034606 (2020)

M.Burrows, R.B.Baker, Ch.Elster, S.P.Weppner, K.D.Launey, P.Maris, G.Popa

Ab initio leading order effective potentials for elastic nucleon-nucleus scattering

NUCLEAR REACTIONS 1H(n, n), (p, p), E=100, 200 MeV; calculated Wolfenstein amplitudes as function of the scatting angle and momentum transfer for NNLOopt chiral interaction, and CD-Bonn potential. 4,6,8He, 12C, 16O(p, p), (polarized p, p), E=65, 71, 100, 122, 200 MeV; calculated differential σ(θ, E), analyzing powers Ay(θ, E) with NNLOopt chiral interaction; deduced leading order ab initio effective potential for nucleon-nucleus elastic scattering using the spectator expansion of multiple scattering theory. 12C, 16O(n, n), E=60-210 MeV; calculated σ(E). Comparison with experimental data.

doi: 10.1103/PhysRevC.102.034606
Citations: PlumX Metrics

2019BU09      Phys.Rev. C 99, 044603 (2019)

M.Burrows, Ch.Elster, S.P.Weppner, K.D.Launey, P.Maris, A.Nogga, G.Popa

Ab initio folding potentials for nucleon-nucleus scattering based on no-core shell-model one-body densities

NUCLEAR REACTIONS 4,6He, 12C, 16O(p, p), (polarized p, p), E=100, 122, 135, 150, 160, 200 MeV; 16O(n, n), E=60-200 MeV; calculated σ(E, θ), Ay(θ, E), and point-proton rms radii using Lippmann-Schwinger equation with folding potential obtained from translationally invariant no-core shell model (NCSM) one-body density and the off-shell Wolfenstein amplitudes, with chiral next-to-next-to-leading order (NNLO) interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.99.044603
Citations: PlumX Metrics

2019HL01      Phys.Rev. C 100, 034609 (2019)

L.Hlophe, J.Lei, Ch.Elster, A.Nogga, F.M.Nunes, D.Jurciukonis, A.Deltuva

Deuteron-α scattering: Separable versus nonseparable Faddeev approach

NUCLEAR REACTIONS 4He(d, d), (d, np), E=10, 20, 50 MeV; calculated differential σ(E) for elastic and breakup reactions using the momentum-space Faddeev Alt-Grassberger-Sandhas (AGS) framework.

doi: 10.1103/PhysRevC.100.034609
Citations: PlumX Metrics

2018BU04      Phys.Rev. C 97, 024325 (2018)

M.Burrows, Ch.Elster, G.Popa, K.D.Launey, A.Nogga, P.Maris

Ab initio translationally invariant nonlocal one-body densities from no-core shell-model theory

NUCLEAR STRUCTURE 4He, 6Li, 12C, 16O; calculated translationally invariant local one-body densities, and K=0 components of the translationally invariant nonlocal one-body density from ab initio no-core shell-model (NCSM) and symmetry-adapted NCSM (SA-NCSM) calculations using the JISP16 nucleon-nucleon interaction; formulation for removing center-of-mass contributions from nonlocal one-body densities.

doi: 10.1103/PhysRevC.97.024325
Citations: PlumX Metrics

2018LE16      Phys.Rev. C 98, 051001 (2018)

J.Lei, L.Hlophe, Ch.Elster, A.Nogga, F.M.Nunes, D.R.Phillips

Few-body universality in the deuteron-α system

NUCLEAR STRUCTURE 6Li; calculated d-α S-wave scattering length and absolute value of the n-p-α three body separation energy using variety of phase-shift equivalent nucleon-nucleon and α-nucleon interactions; interpreted as a deuteron or two-nucleon halo nucleus from dα and 6Li correlation.

doi: 10.1103/PhysRevC.98.051001
Citations: PlumX Metrics

2017CA06      Prog.Part.Nucl.Phys. 94, 68 (2017)

J.Carlson, M.P.Carpenter, R.Casten, C.Elster, P.Fallon, A.Gade, C.Gross, G.Hagen, A.C.Hayes, D.W.Higinbotham, C.R.Howell, C.J.Horowitz, K.L.Jones, F.G.Kondev, S.Lapi, A.Macchiavelli, E.A.McCutchan, J.Natowitz, W.Nazarewicz, T.Papenbrock, S.Reddy, M.J.Savage, G.Savard, B.M.Sherrill, L.G.Sobotka, M.A.Stoyer, M.B.Tsang, K.Vetter, I.Wiedenhoever, A.H.Wuosmaa, S.Yennello

White paper on nuclear astrophysics and low-energy nuclear physics, Part 2: Low-energy nuclear physics

doi: 10.1016/j.ppnp.2016.11.002
Citations: PlumX Metrics

2017HL01      Phys.Rev. C 95, 054617 (2017)

L.Hlophe, Ch.Elster

Separable representation of multichannel nucleon-nucleus optical potentials

NUCLEAR REACTIONS 12C(n, n), (n, n'), E=0-50 MeV; calculated energy-dependent EST separable representation of multichannel S-matrix elements, differential σ(θ, E), real part of the t-matrix elements, asymmetry as function of the off-shell momenta. 12C(p, p), (p, p'), E=35.2, 65 MeV; calculated differential σ(θ, E), real part of half-shell multichannel t-matrix elements. Separable expansion of neutron-nucleus deformed optical model potentials (DOMPs). Solution of momentum space Lippmann-Schwinger integral equations to obtain form factors for energy-dependent separable representation based on generalization of the Ernst-Shakin-Thaler (EST) scheme. Comparison with experimental data.

doi: 10.1103/PhysRevC.95.054617
Citations: PlumX Metrics

2017HL02      Phys.Rev. C 96, 064003 (2017)

L.Hlophe, J.Lei, C.Elster, A.Nogga, F.M.Nunes

6Li in a three-body model with realistic Forces: Separable versus nonseparable approach

NUCLEAR STRUCTURE 6Li; calculated three-body binding energies for the ground state, momentum distributions of different pairs in the ground state of 6Li, by solving momentum-space Faddeev equations using separable interactions based on the Ernst-Shakin-Thaler (EST) scheme, and with CD-Bonn interaction for the np pair and Bang potential for the n(p)-α subsystems.

doi: 10.1103/PhysRevC.96.064003
Citations: PlumX Metrics

2016HL01      Phys.Rev. C 93, 034601 (2016)

L.Hlophe, Ch.Elster

Separable representation of energy-dependent optical potentials

NUCLEAR REACTIONS 48Ca, 208Pb(n, n), E=0-50 MeV; calculated S matrix with the CH89 optical potential, and the energy-dependent Ernst-Shakin-Thaler (eEST) separable representation. 48Ca(n, n'), E=16, 29, 40, 47 MeV; 208Pb(n, n'), E=5, 11, 15, 21, 36, 47 MeV; calculated partial wave off-shell t-matrix elements, and asymmetry from CH89 phenomenological optical potential, and from its energy-independent EST separable representation. Solution of momentum space Lippmann-Schwinger integral equations with standard techniques to obtain form factors for the separable representation of energy-dependent neutron- and proton-optical potentials. Reciprocity theorem.

doi: 10.1103/PhysRevC.93.034601
Citations: PlumX Metrics

2014BA37      Few-Body Systems 55, 683 (2014)

B.L.G.Bakker, J.Carbonell, C.Elster, E.Epelbaum, N.Kalantar-Nayestanaki, J.-M.Richard

Panel Session on the Future of Few-Body Physics

doi: 10.1007/s00601-014-0821-7
Citations: PlumX Metrics

2014ES03      Phys.Rev. C 89, 054605 (2014)

J.E.Escher, I.J.Thompson, G.Arbanas, Ch.Elster, V.Eremenko, L.Hlophe, F.M.Nunes

Reexamining surface-integral formulations for one-nucleon transfers to bound and resonance states

NUCLEAR REACTIONS 90Zr(d, p), E=11 MeV; 48Ca(d, p), E=13, 19.3, 56 MeV; 20O(d, p), E=21 MeV; calculated σ(θ, E), interior, surface, and exterior contributions to the transfer reaction for bound states and resonances. Improvements to surface-integral approach. R-matrix theory, and finite range distorted-wave Born approximation (DWBA) calculations using reaction code FRESCO. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.054605
Citations: PlumX Metrics

2014HA36      Phys.Rev. C 90, 054002 (2014)

M.R.Hadizadeh, C.Elster, W.N.Polyzou

Relativistic three-body bound state in a 3D formulation

doi: 10.1103/PhysRevC.90.054002
Citations: PlumX Metrics

2014HL01      Phys.Rev. C 90, 061602 (2014)

L.Hlophe, V.Eremenko, Ch.Elster, F.M.Nunes, G.Arbanas, J.E.Escher, I.J.Thompson, for the TORUS Collaboration

Separable representation of proton-nucleus optical potentials

NUCLEAR REACTIONS 12C, 48Ca(p, p), E=38 MeV; 208Pb(p, p), E=45 MeV; calculated S-matrix elements and σ(θ); deduced effects of the short-range Coulomb potential on the proton-nucleus form factor. Comparison with coordinate space calculations. Generalization of the Ernst-Shakin-Thaler (EST) scheme.

doi: 10.1103/PhysRevC.90.061602
Citations: PlumX Metrics

2014JI12      Phys.Rev. C 90, 044004 (2014)

C.Ji, Ch.Elster, D.R.Phillips

6He nucleus in halo effective field theory

NUCLEAR STRUCTURE 6He; calculated S(2n), two-body amplitudes, properties of the ground state of Borromean halo nucleus 6He described as nnα three-body system in the framework of Halo effective field theory (EFT) built on cluster degrees of freedom. Faddeev formulation. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.044004
Citations: PlumX Metrics

2014UP02      Phys.Rev. C 90, 014615 (2014)

N.J.Upadhyay, V.Eremenko, L.Hlophe, F.M.Nunes, Ch.Elster, G.Arbanas, J.E.Escher, I.J.Thompson

Coulomb problem in momentum space without screening

NUCLEAR REACTIONS 2H(12C, p), E(cm)=30 MeV; 2H(48Ca, p), E(cm)=36 MeV; 2H(208Pb, p), E(cm)=36, 39 MeV; calculated Coulomb-distorted form factors for (d, p) reactions and dependence on charge, angular momentum, and energy. Regularization techniques using a separable interaction derived from realistic nucleon-nucleus optical potential

doi: 10.1103/PhysRevC.90.014615
Citations: PlumX Metrics

2013HL01      Phys.Rev. C 88, 064608 (2013)

L.Hlophe, Ch.Elster, R.C.Johnson, N.J.Upadhyay, F.M.Nunes, G.Arbanas, V.Eremenko, J.E.Escher, I.J.Thompson

Separable representation of phenomenological optical potentials of Woods-Saxon type

NUCLEAR REACTIONS 48Ca, 132Sn, 208Pb(n, X), E=0-50 MeV; calculated partial wave S matrices, separable representations of two-body transition matrix elements and potentials. Ernst-Shakin-Thaler (EST) scheme with CH89 potential.

doi: 10.1103/PhysRevC.88.064608
Citations: PlumX Metrics

2013OR02      Phys.Rev. C 88, 034610 (2013)

A.Orazbayev, Ch.Elster, S.P.Weppner

Open shell effects in a microscopic optical potential for elastic scattering of 6(8)He

NUCLEAR REACTIONS 6,8He(p, p), E=71, 100, 200 MeV/nucleon; calculated differential σ(θ, E) and analyzing power Ay(θ, E) as function of momentum transfer, and with variation of matter and charge radii. Optical potential model with single-particle density matrix for 6,8He from simple harmonic oscillator. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.034610
Citations: PlumX Metrics

2012WE02      Phys.Rev. C 85, 044617 (2012)

S.P.Weppner, Ch.Elster

Elastic scattering of 6He based on a cluster description

NUCLEAR REACTIONS 4,6He(p, p), E=71, 100, 200 MeV/nucleon; calculated differential cross section, σ(q), analyzing powers. Optical potential. Cluster description of 6He as 4He+2n system. Folding-cluster model. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.044617
Citations: PlumX Metrics

2010GL04      Eur.Phys.J. A 43, 339 (2010)

W.Glockle, I.Fachruddin, Ch.Elster, J.Golak, R.Skibinski, H.Witala

3N scattering in a three-dimensional operator formulation

doi: 10.1140/epja/i2010-10920-4
Citations: PlumX Metrics

2010GO03      Phys.Rev. C 81, 034006 (2010)

J.Golak, W.Glockle, R.Skibinski, H.Witala, D.Rozpedzik, K.Topolnicki, I.Fachruddin, Ch.Elster, A.Nogga

Two-nucleon systems in three dimensions

NUCLEAR REACTIONS 1n(n, n'), 1n(p, p'), E=13, 150, 300 MeV; calculated σ, σ(θ) and other observables using chiral next-to-next leading order (NNLO) nucleon-nucleon force potential, and Bonn B potential.

doi: 10.1103/PhysRevC.81.034006
Citations: PlumX Metrics

2010GO17      Eur.Phys.J. A 43, 241 (2010)

J.Golak, D.Rozpedzik, R.Skibinski, K.Topolnicki, H.Witala, W.Glockle, A.Nogga, E.Epelbaum, H.Kamada, Ch.Elster, I.Fachruddin

A new way to perform partial-wave decompositions of few-nucleon forces

doi: 10.1140/epja/i2009-10903-6
Citations: PlumX Metrics

2010KH04      Phys.Rev. C 82, 054002 (2010)

K.Khaldi, Ch.Elster, W.Glockle

The n+n+α system in a continuum Faddeev formulation

NUCLEAR REACTIONS 4He(2n, γ)6He, E not given; calculated matrix elements for the capture process equivalent to time-reversed photodisintegration process of 6He into three free particles. Continuum Faddeev equations.

doi: 10.1103/PhysRevC.82.054002
Citations: PlumX Metrics

2009YA14      Phys.Rev. C 80, 034002 (2009)

C.-J.Yang, Ch.Elster, D.R.Phillips

Subtractive renormalization of the chiral potentials up to next-to-next-to-leading order in higher NN partial waves

doi: 10.1103/PhysRevC.80.034002
Citations: PlumX Metrics

2009YA16      Phys.Rev. C 80, 044002 (2009)

C.-J.Yang, Ch.Elster, D.R.Phillips

Subtractive renormalization of the NN interaction in chiral effective theory up to next-to-next-to-leading order: S waves

doi: 10.1103/PhysRevC.80.044002
Citations: PlumX Metrics

2008EL08      Phys.Rev. C 78, 034002 (2008)

Ch.Elster, T.Lin, W.Glockle, S.Jeschonnek

Faddeev and Glauber calculations at intermediate energies in a model for n+d scattering

NUCLEAR REACTIONS 2H(n, n), E=100-2000 MeV; calculated elastic scattering σ. Fadeev Glauber calculations.

doi: 10.1103/PhysRevC.78.034002
Citations: PlumX Metrics

2008LI04      Phys.Lett. B 660, 345 (2008)

T.Lin, Ch.Elster, W.N.Polyzou, W.Glockle

Relativistic effects in exclusive pd breakup scattering at intermediate energies

NUCLEAR REACTIONS 2H(p, 2p), E=508 MeV; analyzed σ(θ, E) using relativistic Faddeev equation and three-nucleon Hilbert space.

doi: 10.1016/j.physletb.2008.01.012
Citations: PlumX Metrics

2008LI35      Phys.Rev. C 78, 024002 (2008)

T.Lin, Ch.Elster, W.N.Polyzou, H.Witala, W.Glockle

Poincare invariant three-body scattering at intermediate energies

NUCLEAR REACTIONS 2H(p, 2p), E=508 MeV; 1H(d, 2p), E=2 GeV; calculated σ(θ). Poincare invariant quantum mechanics. Relativistic Faddeev equations.

doi: 10.1103/PhysRevC.78.024002
Citations: PlumX Metrics

2008YA02      Phys.Rev. C 77, 014002 (2008)

C.-J.Yang, Ch.Elster, D.R.Phillips

Subtractive renormalization of the NN scattering amplitude at leading order in chiral effective theory

NUCLEAR REACTIONS p(p, X), E=0-80 keV; calculated phase shifts, wave functions.

doi: 10.1103/PhysRevC.77.014002
Citations: PlumX Metrics

2007LI38      Phys.Rev. C 76, 014010 (2007)

T.Lin, Ch.Elster, W.N.Polyzou, W.Glockle

First order relativistic three-body scattering

doi: 10.1103/PhysRevC.76.014010
Citations: PlumX Metrics

2007LI46      Nucl.Phys. A790, 262c (2007)

H.Liu, Ch.Elster, W.Glockle

Three-body elastic and inelastic scattering at intermediate energies

NUCLEAR REACTIONS 2H(p, p), (p, p'), (p, 2p), E=1 GeV; calculated elastic, inelastic and breakup σ(θ). Faddeev equation.

doi: 10.1016/j.nuclphysa.2007.03.147
Citations: PlumX Metrics

2006GA08      Phys.Rev. C 73, 024002 (2006)

A.Gardestig, D.R.Phillips, Ch.Elster

Near-threshold NN → dπ reaction in chiral perturbation theory

NUCLEAR REACTIONS 1H(n, π0), E ≈ threshold; calculated σ. Chiral perturbation theory.

doi: 10.1103/PhysRevC.73.024002
Citations: PlumX Metrics

2006MA70      Phys.Rev. C 74, 042201 (2006)

V.Malafaia, M.T.Pena, Ch.Elster, J.Adam, Jr.

Charged- and neutral-pion production in the S-matrix approach

NUCLEAR REACTIONS 1H(p, pπ0), (p, pπ+), (n, pπ-), E=280-330 MeV; calculated pion production σ. S-matrix approach, comparison with data.

doi: 10.1103/PhysRevC.74.042201
Citations: PlumX Metrics

2005LI52      Phys.Rev. C 72, 054003 (2005)

H.Liu, Ch.Elster, W.Glockle

Three-body scattering at intermediate energies

NUCLEAR REACTIONS 2H(p, p), (p, p'), (p, np), E=0.01-1 GeV; calculated elastic, inelastic, and breakup σ(θ), σ. Faddeev equation.

doi: 10.1103/PhysRevC.72.054003
Citations: PlumX Metrics

2004FA15      Phys.Rev. C 69, 064002 (2004)

I.Fachruddin, W.Glockle, Ch.Elster, A.Nogga

Operator form of 3H (3He) and its spin structure

NUCLEAR STRUCTURE 3H, 3He; calculated wave functions, nucleon momentum distributions. Operator form.

doi: 10.1103/PhysRevC.69.064002
Citations: PlumX Metrics

2003FA14      Phys.Rev. C 68, 054003 (2003)

I.Fachruddin, Ch.Elster, W.Glockle

Nd breakup process in leading order in a three-dimensional approach

NUCLEAR REACTIONS 2H(p, n), E=100, 197 MeV; calculated σ(θ), Ay(θ), polarization transfer coefficient; deduced relativistic effects, other reaction mechanism features. Three-dimensional approach, comparisons with data.

doi: 10.1103/PhysRevC.68.054003
Citations: PlumX Metrics

2003FA19      Mod.Phys.Lett. A 18, 452 (2003)

I.Fachruddin, C.Elster, W.Glockle

The proton-deuteron break-up process in a three-dimensional approach

NUCLEAR REACTIONS 2H(p, np), E=197 MeV; calculated σ(E, θ), Ay(E, θ). Three-dimensional approach, comparison with data.

doi: 10.1142/S0217732303010673
Citations: PlumX Metrics

2003KA73      Mod.Phys.Lett. A 18, 124 (2003)

H.Kamada, W.Glockle, J.Golak, Ch.Elster

Lorentz boosted NN potential for few-body systems: application to the three-nucleon bound state

NUCLEAR STRUCTURE 3H; calculated binding energy, relativistic effects.

doi: 10.1142/S0217732303010089
Citations: PlumX Metrics

2003LI57      Few-Body Systems 33, 241 (2003)

H.Liu, Ch.Elster, W.Glockle

Model Study of Three-Body Forces in the Three-Body Bound State

doi: 10.1007/s00601-003-0019-x
Citations: PlumX Metrics

2003SC37      Eur.Phys.J. A 18, 421 (2003)

S.Schneider, A.Sibirtsev, Ch.Elster, J.Haidenbauer, S.Krewald, J.Speth

ηN final-state interaction in incoherent photoproduction of η-mesons from the deuteron

NUCLEAR REACTIONS 2H(γ, X), E=630-681 MeV; calculated η-meson production σ, σ(θ), final-state interaction effects.

doi: 10.1140/epja/i2002-10250-2
Citations: PlumX Metrics

2002CA45      Phys.Rev. C66, 044006 (2002)

G.Caia, J.W.Durso, Ch.Elster, J.Haidenbauer, A.Sibirtsev, J.Speth

Pseudovector vs pseudoscalar coupling in one-boson exchange NN potentials

NUCLEAR STRUCTURE 2H; calculated binding energy, quadrupole moment, related quantities. Several models compared, comparison with data.

doi: 10.1103/PhysRevC.66.044006
Citations: PlumX Metrics

2002EP01      Phys.Rev. C65, 044001 (2002)

E.Epelbaum, Ulf.-G.Meissner, W.Glockle, C.Elster

Resonance Saturation for Four-Nucleon Operators

doi: 10.1103/PhysRevC.65.044001
Citations: PlumX Metrics

2002KA56      Phys.Rev. C66, 044010 (2002)

H.Kamada, W.Glockle, J.Golak, Ch.Elster

Lorentz boosted NN potential for few-body systems: Application to the three-nucleon bound state

NUCLEAR STRUCTURE 3H; calculated binding energy. Lorentz boosted potential, relativistic Fadeev equations.

doi: 10.1103/PhysRevC.66.044010
Citations: PlumX Metrics

2002MO37      Phys.Rev. C 66, 054002 (2002)

A.Motzke, C.Elster, C.Hanhart

Toy model for pion production in nucleon-nucleon collisions. II. The role of three-particle singularities

doi: 10.1103/PhysRevC.66.054002
Citations: PlumX Metrics

2002SI08      Phys.Rev. C65, 044007 (2002)

A.Sibirtsev, S.Schneider, Ch.Elster, J.Haidenbauer, S.Krewald, J.Speth

ηN Final State Interaction in Incoherent Photoproduction of η Mesons from the Deuteron Near Threshold

NUCLEAR REACTIONS 2H(γ, X), E=620-800 MeV; calculated η meson production σ; deduced role of final state interactions. Comparison with data.

doi: 10.1103/PhysRevC.65.044007
Citations: PlumX Metrics

2002SI14      Phys.Rev. C65, 067002 (2002)

A.Sibirtsev, S.Schneider, Ch.Elster, J.Haidenbauer, S.Krewald, J.Speth

Incoherent η Photoproduction from the Deuteron Near Threshold

NUCLEAR REACTIONS 2H(γ, npX), E=620-680 MeV; calculated η meson photoproduction σ, σ(θ). Impulse approximation plus corrections, comparison with data.

doi: 10.1103/PhysRevC.65.067002
Citations: PlumX Metrics

2001FA06      Phys.Rev. C63, 054003 (2001)

I.Fachruddin, Ch.Elster, W.Glockle

New Forms of Deuteron Equations and Wave Function Representations

NUCLEAR STRUCTURE 2H; calculated wave functions in helicity representation, momentum dependent spin densities.

doi: 10.1103/PhysRevC.63.054003
Citations: PlumX Metrics

2001FA13      Nucl.Phys. A689, 507c (2001)

I.Fachruddin, Ch.Elster, W.Glockle

Nucleon-Nucleon Scattering in a Three-Dimensional Approach

NUCLEAR REACTIONS 1H(p, p), (n, n), E=300 MeV; calculated σ(θ), Ay(θ).

doi: 10.1016/S0375-9474(01)00892-2
Citations: PlumX Metrics

2001SI28      Phys.Rev. C64, 024006 (2001)

A.Sibirtsev, Ch.Elster, J.Haidenbauer, J.Speth

Incoherent Photoproduction of η Mesons from the Deuteron Near Threshold

NUCLEAR REACTIONS 1H(γ, X), E =700-800 MeV; 2H(γ, npX), E=620-800 MeV; calculated η meson production σ, σ(E); deduced final state interaction effects, other reaction mechanism features. Comparison with data.

doi: 10.1103/PhysRevC.64.024006
Citations: PlumX Metrics

2000FA19      Phys.Rev. C62, 044002 (2000)

I.Fachruddin, Ch.Elster, W.Glockle

Nucleon-Nucleon Scattering in a Three Dimensional Approach

NUCLEAR REACTIONS 1n, 1H(p, X), (n, X), E=100, 300 MeV; calculated t-matrix elements. Realistic NN potentials.

doi: 10.1103/PhysRevC.62.044002
Citations: PlumX Metrics

2000WE03      Phys.Rev. C61, 044601 (2000)

S.P.Weppner, O.Garcia, Ch.Elster

Sensitivities of the Proton-Nucleus Elastic Scattering Observables of 6He and 8He at Intermediate Energies

NUCLEAR REACTIONS 6,8He(polarized p, p), E=66-100 MeV; calculated σ(θ), Ay(θ); deduced sensitivity to structure effects. Several models compared.

doi: 10.1103/PhysRevC.61.044601
Citations: PlumX Metrics

1999WI05      Phys.Rev. C59, 3035 (1999)

H.Witala, H.Kamada, A.Nogga, W.Glockle, Ch.Elster, D.Huber

Modern NN Force Predictions for the Total nd Cross Section up to 300 MeV

NUCLEAR REACTIONS 2H(n, X), E=10-300 MeV; calculated total σ; deduced rescattering, relativistic, three-nucleon force effects. Fadeev calculations, several potentials compared. Comparison with data.

doi: 10.1103/PhysRevC.59.3035
Citations: PlumX Metrics

1998AB21      Phys.Rev.Lett. 81, 57 (1998)

W.P.Abfalterer, F.B.Bateman, F.S.Dietrich, Ch.Elster, R.W.Finlay, W.Glockle, J.Golak, R.C.Haight, D.Huber, G.L.Morgan, H.W.Witala

Inadequacies of the Nonrelativistic 3N Hamiltonian in Describing the n + d Total Cross Section

NUCLEAR REACTIONS 1,2H(n, X), E=7-600 MeV; measured σ; deduced possible relativistic effects. Fadeev calculations.

doi: 10.1103/PhysRevLett.81.57
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset13889.

1998EL01      Phys.Rev. C57, 189 (1998); Comment Phys.Rev. C59, 1813 (1999)

Ch.Elster, S.P.Weppner

Energy Dependence of the NN t Matrix in the Optical Potential for Elastic Nucleon-Nucleus Scattering

NUCLEAR REACTIONS 16O, 40Ca, 208Pb(polarized p, p), E=65-200 MeV; calculated σ(θ), A(y), spin rotation function; deduced NN t matrix energy dependence. Full-folding model, impulse approximation. Comparison with data.

doi: 10.1103/PhysRevC.57.189
Citations: PlumX Metrics

1998EL13      Phys.Rev. C58, 3109 (1998)

Ch.Elster, W.Schadow, H.Kamada, W.Glockle

Shadowing and Antishadowing Effects in a Model for the n + d Total Cross Section

NUCLEAR REACTIONS 2H(n, n), E=50-5000 MeV; calculated σ; deduced rescattering effects.

doi: 10.1103/PhysRevC.58.3109
Citations: PlumX Metrics

1998WE03      Phys.Rev. C57, 1378 (1998)

S.P.Weppner, Ch.Elster, D.Huber

Off-Shell Structures of Nucleon-Nucleon t Matrices and Their Influence on Nucleon-Nucleus Elastic Scattering Observables

NUCLEAR REACTIONS 16O(polarized p, p), E=135, 200 MeV; 40Ca(polarized p, p), E=160, 200 MeV; 208Pb(polarized p, p), E=200 MeV; analyzed σ(θ), A(y)(θ), spin rotation function; deduced sensitivity to off-shell structures.

doi: 10.1103/PhysRevC.57.1378
Citations: PlumX Metrics

1997EL02      Phys.Rev. C55, 1058 (1997)

Ch.Elster, W.Glockle

Nucleon Scattering from Very Light Nuclei: Intermediate energy expansions for transition potentials and breakup processes

doi: 10.1103/PhysRevC.55.1058
Citations: PlumX Metrics

1997EL13      Phys.Rev. C56, 2080 (1997)

Ch.Elster, S.P.Weppner, C.R.Chinn

Full-Folding Optical Potentials for Elastic Nucleon-Nucleus Scattering Based on Realistic Densities

NUCLEAR REACTIONS 16O(polarized p, p), E=400, 500 MeV; 40Ca(polarized p, p), E=100 MeV; 90Zr(polarized p, p), E=80 MeV; 208Pb(polarized p, p), E=200 MeV; analyzed σ(θ), A(y), spin rotation function; deduced optical model parameters. 12C, 16O, 28Si, 40Ca, 90Zr, 208Pb(n, n), E=50-500 MeV; analyzed total σ. Full-folding integral, realistic densities.

doi: 10.1103/PhysRevC.56.2080
Citations: PlumX Metrics

1996EL17      Few-Body Systems 21, 25 (1996)

Ch.Elster, E.E.Evans, H.Kamada, W.Glockle

Nonlocality in the Nucleon-Nucleon Interaction Due to Minimal-Relativity Factors: Effects on two-nucleon observables and the three-nucleon binding energy

NUCLEAR STRUCTURE 2H; calculated momentum space wave function change, minimal-relativity factors into local static potential. Nucleon-nucleon scattering also considered.

doi: 10.1007/s006010050039
Citations: PlumX Metrics

1995CH08      Phys.Rev. C51, 1033 (1995)

C.R.Chinn, Ch.Elster, R.M.Thaler, S.P.Weppner

Total Cross Sections for Neutron Scattering

NUCLEAR REACTIONS 16O, 40Ca(n, n), E ≈ 50-700 MeV; calculated σ(E). 16O(polarized n, n), E=100, 500 MeV; calculated σ(θ), analyzing power, spin rotation function vs θ. 16O(n, n), E=50-700 MeV; calculated elastic, reaction σ(E). Watson expansion based microscopic first-order optical potential.

doi: 10.1103/PhysRevC.51.1033
Citations: PlumX Metrics

1995CH12      Phys.Rev. C51, 1418 (1995)

C.R.Chinn, Ch.Elster, R.M.Thaler, S.P.Weppner

Application of Multiple Scattering Theory to Lower-Energy Elastic Nucleon-Nucleus Scattering

NUCLEAR REACTIONS 12C, 16O, 28Si, 40Ca, 56Fe, 90Zr, 208Pb(polarized p, p), (polarized n, n), E=65 MeV; analyzed σ(θ), analyzing power, spin rotation function vs θ. First-order multiple scattering theory.

doi: 10.1103/PhysRevC.51.1418
Citations: PlumX Metrics

1995CH44      Phys.Rev. C52, 1992 (1995)

C.R.Chinn, Ch.Elster, R.M.Thaler, S.P.Weppner

Propagator Modifications in Elastic Nucleon-Nucleus Scattering within the Spectator Expansion

NUCLEAR REACTIONS 12C, 16O, 28Si, 40Ca, 90Zr, 208Pb(n, n), E ≤ 400 MeV; analyzed σ(E). 12C(polarized p, p), E=200 MeV; 16O(polarized p, p), E=100-318 MeV; 28Si(polarized p, p), E=80-200 MeV; 40Ca(polarized p, p), E=80 MeV; 90Zr(polarized p, p), E=65-160 MeV; 208Pb(polarized p, p), E=80, 200 MeV; analyzed σ(θ), analyzing power, spin rotation function vs θ data. Spectator expansion of optical potential.

doi: 10.1103/PhysRevC.52.1992
Citations: PlumX Metrics

1993CH14      Phys.Rev. C47, 2242 (1993)

C.R.Chinn, Ch.Elster, R.M.Thaler

Isospin Effects in Elastic Proton-Nucleus Scattering

NUCLEAR REACTIONS 208Pb, 4He, 12C, 40Ca(polarized p, p), E=200, 500 MeV; analyzed σ(θ), analyzing power, spin rotation function vs θ; deduced n, p surfaces differences. Multiple scattering treatment.

doi: 10.1103/PhysRevC.47.2242
Citations: PlumX Metrics

1993CH42      Phys.Rev. C48, 2956 (1993)

C.R.Chinn, Ch.Elster, R.M.Thaler

Microscopic Formulation of Medium Contributions to the First-Order Optical Potential

NUCLEAR REACTIONS 40Ca(polarized p, p), E=48-200 MeV; 40Ca(polarized n, n), E=80 MeV; analyzed σ(θ), analyzing power, spin rotation function vs θ.

doi: 10.1103/PhysRevC.48.2956
Citations: PlumX Metrics

1993EL05      J.Phys.(London) G19, 2123 (1993)

Ch.Elster, L.C.Liu, R.M.Thaler

A Practical Calculational Method for Treating Coulomb Scattering in Momentum Space

NUCLEAR STRUCTURE Z=20, 82; calculated (p, p) phase shifts for E=200 MeV for these targets. Coulomb scattering, exact treatment in momentum space.

doi: 10.1088/0954-3899/19/12/015
Citations: PlumX Metrics

1991CH28      Phys.Rev. C44, 1569 (1991)

C.R.Chinn, Ch.Elster, R.M.Thaler

Momentum-Space Treatment of Coulomb Distortions in a Multiple-Scattering Expansion

NUCLEAR REACTIONS 208Pb, 16O, 40Ca(polarized p, p), E=100-500 MeV; calculated σ(θ), analyzing power, spin rotation function vs θ. Multiple scattering expansion, Coulomb distortions, momentum space treatment.

doi: 10.1103/PhysRevC.44.1569
Citations: PlumX Metrics

1990EL01      Phys.Rev. C41, 814 (1990)

Ch.Elster, T.Cheon, E.F.Redish, P.C.Tandy

Full-Folding Optical Potential in Elastic Proton-Nucleus Scattering

NUCLEAR REACTIONS 16O(polarized p, p), E=200, 500 MeV; calculated σ(θ), analyzing power, spin rotation function. Full-folding optical potentials.

doi: 10.1103/PhysRevC.41.814
Citations: PlumX Metrics

1990EL03      Nucl.Phys. A508, 197c (1990)


Nucleon-Nucleon Interaction at Intermediate Energies and Related Nuclear Processes

NUCLEAR REACTIONS 16O(polarized p, p), E=200, 500 MeV; calculated analyzing power, spin rotation function vs θ.

doi: 10.1016/0375-9474(90)90475-2
Citations: PlumX Metrics

1989CH17      Prog.Theor.Phys.(Kyoto) 81, 559 (1989)

T.Cheon, C.Elster

Effective Mass of the Nucleon at Intermediate Energies

NUCLEAR REACTIONS 40Ca(p, p), (polarized p, p), E=200 MeV; calculated σ(θ), analyzing power, spin rotation parameter vs θ. Effective nucleon mass.

doi: 10.1143/PTP.81.559
Citations: PlumX Metrics

1989EL02      Phys.Rev. C40, 881 (1989)

Ch.Elster, P.C.Tandy

Off-Shell Effects from Meson Exchange in the Nuclear Optical Potential

NUCLEAR REACTIONS 40Ca(polarized p, p), E=200, 500 MeV; 16O(polarized p, p), E=500 MeV; calculated σ(θ), analyzing power, spin rotation parameter vs θ.

doi: 10.1103/PhysRevC.40.881
Citations: PlumX Metrics

1989KE09      Few-Body Systems 7, 31 (1989)

H.Kellermann, H.M.Hofmann, Ch.Elster

Gaussian Parametrization of a Meson-Theoretical N-N Potential for Microscopic Nuclear-Structure Calculations

NUCLEAR STRUCTURE 2H; calculated binding energy, rms radius, quadrupole moment, μ, D-state probability. Bonn potential.

doi: 10.1007/BF01078436
Citations: PlumX Metrics

1988CH12      Phys.Rev. C37, 1549 (1988)

G.S.Chulick, Ch.Elster, R.Machleidt, A.Picklesimer, R.M.Thaler

Neutron-Proton Scattering Observables at 325 MeV, the ϵ1 Parameter, and the Tensor Force

NUCLEAR REACTIONS 1H(polarized n, n), E=325 MeV; calculated polarization observables; deduced tensor force role.

doi: 10.1103/PhysRevC.37.1549
Citations: PlumX Metrics

1988EL04      Phys.Rev. C38, 1828 (1988)

Ch.Elster, K.Holinde, D.Schutte, R.Machleidt

Extension of the Bonn Meson Exchange NN Potential above Pion Production Threshold: Role of the delta isobar

NUCLEAR REACTIONS 1H(p, p), 1H(n, n), 1H(p, p), E=0.4-1 GeV; calculated phase shifts σ vs E. Bonn meson exchange potential.

doi: 10.1103/PhysRevC.38.1828
Citations: PlumX Metrics

Back to query form