NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = V.Eremenko

Found 14 matches.

Back to query form



2014ES03      Phys.Rev. C 89, 054605 (2014)

J.E.Escher, I.J.Thompson, G.Arbanas, Ch.Elster, V.Eremenko, L.Hlophe, F.M.Nunes

Reexamining surface-integral formulations for one-nucleon transfers to bound and resonance states

NUCLEAR REACTIONS 90Zr(d, p), E=11 MeV; 48Ca(d, p), E=13, 19.3, 56 MeV; 20O(d, p), E=21 MeV; calculated σ(θ, E), interior, surface, and exterior contributions to the transfer reaction for bound states and resonances. Improvements to surface-integral approach. R-matrix theory, and finite range distorted-wave Born approximation (DWBA) calculations using reaction code FRESCO. Comparison with experimental data.

doi: 10.1103/PhysRevC.89.054605
Citations: PlumX Metrics


2014HL01      Phys.Rev. C 90, 061602 (2014)

L.Hlophe, V.Eremenko, Ch.Elster, F.M.Nunes, G.Arbanas, J.E.Escher, I.J.Thompson, for the TORUS Collaboration

Separable representation of proton-nucleus optical potentials

NUCLEAR REACTIONS 12C, 48Ca(p, p), E=38 MeV; 208Pb(p, p), E=45 MeV; calculated S-matrix elements and σ(θ); deduced effects of the short-range Coulomb potential on the proton-nucleus form factor. Comparison with coordinate space calculations. Generalization of the Ernst-Shakin-Thaler (EST) scheme.

doi: 10.1103/PhysRevC.90.061602
Citations: PlumX Metrics


2014MC03      Phys.Rev. C 89, 044605 (2014)

M.McCleskey, A.M.Mukhamedzhanov, L.Trache, R.E.Tribble, A.Banu, V.Eremenko, V.Z.Goldberg, Y.-W.Lui, E.McCleskey, B.T.Roeder, A.Spiridon, F.Carstoiu, V.Burjan, Z.Hons, I.J.Thompson

Determination of the asymptotic normalization coefficients for 14C + n ←→ 15C, the (+14)C(n, γ)15C reaction rate, and evaluation of a new method to determine spectroscopic factors

NUCLEAR REACTIONS 13C(14C, 14C), (14C, 15C)12C, E=12 MeV/nucleon; 2H(14C, p)15C, E=11.7 MeV/nucleon; 14C(d, p), E=60 MeV; measured particle spectra, σ(θ) using MDM spectrometer at Texas A-M Cyclotron Institute. 15C; deduced levels, asymptotic normalization coefficient (ANC) and spectroscopic factors for g.s. and first excited state. 13C, 17O; population of g.s. in both and excited levels in 13C. DWBA analysis with Woods-Saxon and doublefolding (DF) potentials for 13C+14C reaction. FRESCO code and adiabatic distorted wave approximation (ADWA) used for analysis of σ(θ) data in 2H+14C reactions. 15C, 15F; analyzed mirror analogy for spectroscopic factors. Deuteron stripping theory. 14C(n, γ), E=10 keV-1 MeV; deduced astrophysical direct-capture rate σ(E) to g.s. and first excited state using RADCAP code and ANCs from the present work. Comparison with previous experimental results.

doi: 10.1103/PhysRevC.89.044605
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2105. Data from this article have been entered in the XUNDL database. For more information, click here.


2014UP02      Phys.Rev. C 90, 014615 (2014)

N.J.Upadhyay, V.Eremenko, L.Hlophe, F.M.Nunes, Ch.Elster, G.Arbanas, J.E.Escher, I.J.Thompson

Coulomb problem in momentum space without screening

NUCLEAR REACTIONS 2H(12C, p), E(cm)=30 MeV; 2H(48Ca, p), E(cm)=36 MeV; 2H(208Pb, p), E(cm)=36, 39 MeV; calculated Coulomb-distorted form factors for (d, p) reactions and dependence on charge, angular momentum, and energy. Regularization techniques using a separable interaction derived from realistic nucleon-nucleus optical potential

doi: 10.1103/PhysRevC.90.014615
Citations: PlumX Metrics


2013HL01      Phys.Rev. C 88, 064608 (2013)

L.Hlophe, Ch.Elster, R.C.Johnson, N.J.Upadhyay, F.M.Nunes, G.Arbanas, V.Eremenko, J.E.Escher, I.J.Thompson

Separable representation of phenomenological optical potentials of Woods-Saxon type

NUCLEAR REACTIONS 48Ca, 132Sn, 208Pb(n, X), E=0-50 MeV; calculated partial wave S matrices, separable representations of two-body transition matrix elements and potentials. Ernst-Shakin-Thaler (EST) scheme with CH89 potential.

doi: 10.1103/PhysRevC.88.064608
Citations: PlumX Metrics


2013SO11      Phys.Rev. C 87, 054329 (2013)

L.G.Sobotka, W.W.Buhro, R.J.Charity, J.M.Elson, M.F.Jager, J.Manfredi, M.H.Mahzoon, A.M.Mukhamedzhanov, V.Eremenko, M.McCleskey, R.G.Pizzone, B.T.Roeder, A.Spiridon, E.Simmons, L.Trache, M.Kurokawa, P.Navratil

Proton decay of excited states in 12N and 13O and the astrophysical 11C(p, γ)12N reaction rate

NUCLEAR REACTIONS 9Be(13O, X), E=30.3 MeV/nucleon, [13O secondary beam from 1H(14N, X), E=38 MeV/nucleon primary reaction]; measured particle spectra, E(p), I(p), widths using MARS spectrometer at Texas AM cyclotron facility. Invariant mass method. R-matrix analysis. 11C, 12N, 13O; deduced levels, J, π, one-proton and two-proton decay branching ratios. 11C(p, γ)12N; deduced astrophysical reaction rates and S(E) factors.

doi: 10.1103/PhysRevC.87.054329
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetC2031. Data from this article have been entered in the XUNDL database. For more information, click here.


2012BL05      Bull.Rus.Acad.Sci.Phys. 76, 438 (2012); Izv.Akad.Nauk RAS, Ser.Fiz 76, 494 (2012)

L.D.Blokhintsev, V.O.Eremenko, D.A.Savin

The possibility of using screened coulomb potentials in calculating asymptotic normalization coefficients

doi: 10.3103/S1062873812040090
Citations: PlumX Metrics


2012BL08      Bull.Rus.Acad.Sci.Phys. 76, 909 (2012); Izv.Akad.Nauk RAS, Ser.Fiz 76, 1012 (2012)

L.D.Blokhintsev, V.O.Eremenko, Yu.V.Orlov, D.A.Savin

Studying the general properties of potentials by means of dimensionless scaling variables

doi: 10.3103/S1062873812080072
Citations: PlumX Metrics


2012MU10      Phys.Rev. C 86, 034001 (2012)

A.M.Mukhamedzhanov, V.Eremenko, A.I.Sattarov

Generalized Faddeev equations in the Alt-Grassberger-Sandhas form for deuteron stripping with explicit inclusion of target excitations and Coulomb interaction

doi: 10.1103/PhysRevC.86.034001
Citations: PlumX Metrics


2011BL06      Bull.Rus.Acad.Sci.Phys. 75, 505 (2011); Izv.Akad.Nauk RAS, Ser.Fiz 75, 541 (2011)

L.D.Blokhintsev, V.O.Eremenko, B.F.Irgaziev, Yu.V.Orlov

Calculating the characteristics of neutron-deuteron and proton-deuteron systems in a two-body potential model

NUCLEAR STRUCTURE 3H, 3He; calculated binding energy, asymptotic normalization coefficients. Two-body potential model.

doi: 10.3103/S1062873811040095
Citations: PlumX Metrics


2008BL11      Bull.Rus.Acad.Sci.Phys. 72, 811 (2008)

L.D.Blokhintsev, V.O.Eremenko, B.F.Irgaziev, Yu.V.Orlov

Characteristics of scattering of Λ hyperons from nuclei within the potential model

NUCLEAR STRUCTURE 7He, 6,7,8,9Be, 6,7,8Li, 11C, 14N, 15O, 39Ca, 88Zr, 207Pb; calculated scattering lengths, phase shifts, and effective radii for low energy Λ scattering using Woods-Saxon, Hulthen, and Yukawa potentials.

doi: 10.3103/S106287380806021X
Citations: PlumX Metrics


2007BL11      Bull.Rus.Acad.Sci.Phys. 71, 408 (2007); Izv.Akad.Nauk RAS, Ser.Fiz. 71, 423 (2007)

L.D.Blokhintsev, V.O.Eremenko, B.F.Irgaziev, Yu.V.Orlov

Vertex Constants (Asymptotic Normalization Coefficients) and Mean-Square Radii, of Hypernuclei in the Potential Model

NUCLEAR STRUCTURE A=7-208; calculated vertex constants, asymptotic normalization coefficients and mean-square radii for a number of hypernuclei using the potential approach.

doi: 10.3103/S1062873807030215
Citations: PlumX Metrics


2007ER05      Bull.Rus.Acad.Sci.Phys. 71, 791 (2007); Izv.Akad.Nauk RAS, Ser.Fiz. 71, 819 (2007)

V.O.Eremenko, L.I.Nikitina, Yu.V.Orlov

The vertex constant for the virtual decay of a nucleus into two charged particles within the effective range theory

doi: 10.3103/S1062873807060081
Citations: PlumX Metrics


2006BL16      Bull.Rus.Acad.Sci.Phys. 70, 262 (2006)

L.D.Blokhintsev, V.O.Eremenko, A.A.Sudarenko

Square-with-diagonal diagram for nuclear processes

NUCLEAR REACTIONS 2H(d, d), (d, n), 6Li(d, d), (d, p), (d, α), E not given; calculated singularity energies.


Back to query form


Note: The following list of authors and aliases matches the search parameter V.Eremenko: , V.O.EREMENKO