NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 22, 2024.

Search: Author = Y.V.Orlov

Found 44 matches.

Back to query form



2021OR02      Nucl.Phys. A1010, 122174 (2021)

Y.V.Orlov

A new Δ method for bound state asymptotic normalization coefficients with a finite limit of the nuclear part of the effective-range function at zero energy

doi: 10.1016/j.nuclphysa.2021.122174
Citations: PlumX Metrics


2021OR03      Nucl.Phys. A1014, 122257 (2021), Erratum Nucl.Phys. A1018, 122385 (2022)

Yu.V.Orlov

A new Δh method and its application to the asymptotic normalization constants of the 16O bound states

NUCLEAR STRUCTURE 16O; analyzed available data; deduced asymptotic normalization coefficients (ANC) using the nuclear interaction part of the effective-range function (ERF).

doi: 10.1016/j.nuclphysa.2021.122257
Citations: PlumX Metrics


2020OR06      Nucl.Phys. A1004, 122060 (2020)

Y.V.Orlov

The energies and ANCs for 5Li resonances deduced from experimental p-α scattering phase shifts using the effective-range and Δ methods

NUCLEAR REACTIONS 4He(p, X)5Li, E not given; analyzed available data; calculated phase-shifts, resonance energy and width using delta method.

doi: 10.1016/j.nuclphysa.2020.122060
Citations: PlumX Metrics


2018IR01      Phys.Rev. C 98, 015803 (2018)

B.F.Irgaziev, Yu.V.Orlov

Resonance properties including asymptotic normalization coefficients deduced from phase-shift data without the effective-range function

NUCLEAR REACTIONS 3He(α, α'), E(cm)=0-7 MeV; 4He, 12C(α, α'), E(cm)=0-6 MeV; analyzed experimental data for phase-shifts and resonance energies using a new algorithm (Δ method) for the bound states ANC calculation; deduced asymptotic nuclear coefficients (ANCs). 7,8Be, 16O; calculated resonances, widths of 5/2-, 7/2- states in 7Be, 0+ and 2+ states in 8Be, and 0+, 1-, 2+, and 3- states in 16O. Comparison with experimental values and other theoretical predictions. Possible application for (α, γ) reactions in nuclear astrophysics.

doi: 10.1103/PhysRevC.98.015803
Citations: PlumX Metrics


2017OR03      Phys.Rev. C 96, 025809 (2017)

Yu.V.Orlov, B.F.Irgaziev, J.-U.Nabi

Algorithm for calculations of asymptotic nuclear coefficients using phase-shift data for charged-particle scattering

NUCLEAR REACTIONS 12C(α, α)16O*, E<5 MeV; 4He(3He, 3He)7Be*, E<5 MeV; analyzed elastic phase-shift data with binding energies used as input; deduced asymptotic normalization coefficients (ANC), nuclear vertex constants, and scattering amplitude residues using effective-range expansion (ERE) theory (Delta-method), valid for large charges. Relevance to element creation in supernova explosions, and in the theory using Feynman diagrams to describe the amplitude of the direct nuclear reactions.

doi: 10.1103/PhysRevC.96.025809
Citations: PlumX Metrics


2016OR01      Phys.Rev. C 93, 014612 (2016), Erratum Phys.Rev. C 93, 059901 (2016)

Yu.V.Orlov, B.F.Irgaziev, L.I.Nikitina

Asymptotic normalization coefficients of resonant and bound states from the phase shifts for αα and α12C scattering

NUCLEAR REACTIONS 4He(α, α'), E(cm)<25 MeV; 12C(α, α'), E(cm)<6.0 MeV; analyzed fits of phase shifts of elastic scattering, analytical continuation of renormalized scattering amplitude. 8Be, 16O; calculated energies of levels and asymptotic normalization coefficients (ANC) for first 0+ and 2+ resonances in 8Be, 0+, 1-, and 2+ bound states and 1- and 3- resonances in 16O. S-matrix pole (SMP) and effective-range methods.

doi: 10.1103/PhysRevC.93.014612
Citations: PlumX Metrics


2015IR01      Phys.Rev. C 91, 024002 (2015)

B.F.Irgaziev, Yu.V.Orlov

Resonance-state properties from a phase shift analysis with the S-matrix pole method and the effective-range method

NUCLEAR REACTIONS 4He(n, n), (p, p), E(cm)=0-16 MeV; 12C(α, α), E=2-7 MeV; analyzed experimental phase-shift data and effective-range functions by the S-matrix pole method and effective-range method. 5He, 5Li, 16O; deduced asymptotic normalization coefficients (ANCs), levels, J, π, energies and widths of resonance states. Possible application to reaction rates at low energy collisions.

doi: 10.1103/PhysRevC.91.024002
Citations: PlumX Metrics


2014BL10      Few-Body Systems 55, 1009 (2014)

L.D.Blokhintsev, L.I.Nikitina, Yu.V.Orlov, D.A.Savin

Characteristics of d + α Bound and Resonant States from Analytic Continuation of the Effective-Range Expansion

NUCLEAR REACTIONS 2H(α, X)6Li, E not given; calculated asymptotic normalization coefficients, resonance width, J, π. Comparison with available data.

doi: 10.1007/s00601-013-0755-5
Citations: PlumX Metrics


2012BL08      Bull.Rus.Acad.Sci.Phys. 76, 909 (2012); Izv.Akad.Nauk RAS, Ser.Fiz 76, 1012 (2012)

L.D.Blokhintsev, V.O.Eremenko, Yu.V.Orlov, D.A.Savin

Studying the general properties of potentials by means of dimensionless scaling variables

doi: 10.3103/S1062873812080072
Citations: PlumX Metrics


2012OR02      Bull.Rus.Acad.Sci.Phys. 76, 446 (2012); Izv.Akad.Nauk RAS, Ser.Fiz 76, 503 (2012)

Yu.V.Orlov, L.I.Nikitina

The characteristics of the 8Be ground state in the effective-range approximation

NUCLEAR STRUCTURE 8Be; calculated ground state Gamow wave function, resonances, J, π, NVC and ANC values. Comparison with available data.

doi: 10.3103/S1062873812040284
Citations: PlumX Metrics


2011BL06      Bull.Rus.Acad.Sci.Phys. 75, 505 (2011); Izv.Akad.Nauk RAS, Ser.Fiz 75, 541 (2011)

L.D.Blokhintsev, V.O.Eremenko, B.F.Irgaziev, Yu.V.Orlov

Calculating the characteristics of neutron-deuteron and proton-deuteron systems in a two-body potential model

NUCLEAR STRUCTURE 3H, 3He; calculated binding energy, asymptotic normalization coefficients. Two-body potential model.

doi: 10.3103/S1062873811040095
Citations: PlumX Metrics


2011IR01      Bull.Rus.Acad.Sci.Phys. 75, 511 (2011); Izv.Akad.Nauk RAS, Ser.Fiz 75, 547 (2011)

B.F.Irgaziev, A.M.Mukhamedzhanov, Yu.V.Orlov, L.D.Blokhintsev

Extracting the complex energy of broad resonances by the S-matrix pole method

NUCLEAR REACTIONS 12C(α, α), 26Mg(n, n), E not given; calculated energies and width for p-wave resonances, phase shifts. R-matrix and S-matrix pole fitting methods.

doi: 10.3103/S1062873811040204
Citations: PlumX Metrics


2011OR02      Phys.Atomic Nuclei 74, 1610 (2011); Yad.Fiz. 74, 1636 (2011)

Yu.V.Orlov, L.I.Nikitina

Nuclear vertex constants for the virtual decay 7Be → 3He + 4He of the 7Be bound states from a phase-shift analysis in the effective-range theory

RADIOACTIVITY 7Be(α); calculated absolute values of the asymptotic normalization and nuclear vertex constant. S-factor calculation implication.

doi: 10.1134/S1063778811110159
Citations: PlumX Metrics


2010MU03      Phys.Rev. C 81, 054314 (2010)

A.M.Mukhamedzhanov, B.F.Irgaziev, V.Z.Goldberg, Yu.V.Orlov, I.Qazi

Bound, virtual, and resonance S-matrix poles from the Schrodinger equation

NUCLEAR STRUCTURE 11Be, 11N, 14N, 15F; calculated S-matrix pole parameters for lowest 1/2+, 1/2- and 5/2+ states in 11Be and 11N, 1/2+ resonance state in 11N, 1+ ground state of 14N, 1/2+ and 5/2+ resonance states in 15F using the potential S-matrix pole method based on numerical solution to Schrodinger equation. Comparison of S-matrix and R-matrix methods for resonances in 14O+p and 26Mg+n systems.

doi: 10.1103/PhysRevC.81.054314
Citations: PlumX Metrics


2008BL11      Bull.Rus.Acad.Sci.Phys. 72, 811 (2008)

L.D.Blokhintsev, V.O.Eremenko, B.F.Irgaziev, Yu.V.Orlov

Characteristics of scattering of Λ hyperons from nuclei within the potential model

NUCLEAR STRUCTURE 7He, 6,7,8,9Be, 6,7,8Li, 11C, 14N, 15O, 39Ca, 88Zr, 207Pb; calculated scattering lengths, phase shifts, and effective radii for low energy Λ scattering using Woods-Saxon, Hulthen, and Yukawa potentials.

doi: 10.3103/S106287380806021X
Citations: PlumX Metrics


2007BL11      Bull.Rus.Acad.Sci.Phys. 71, 408 (2007); Izv.Akad.Nauk RAS, Ser.Fiz. 71, 423 (2007)

L.D.Blokhintsev, V.O.Eremenko, B.F.Irgaziev, Yu.V.Orlov

Vertex Constants (Asymptotic Normalization Coefficients) and Mean-Square Radii, of Hypernuclei in the Potential Model

NUCLEAR STRUCTURE A=7-208; calculated vertex constants, asymptotic normalization coefficients and mean-square radii for a number of hypernuclei using the potential approach.

doi: 10.3103/S1062873807030215
Citations: PlumX Metrics


2007ER05      Bull.Rus.Acad.Sci.Phys. 71, 791 (2007); Izv.Akad.Nauk RAS, Ser.Fiz. 71, 819 (2007)

V.O.Eremenko, L.I.Nikitina, Yu.V.Orlov

The vertex constant for the virtual decay of a nucleus into two charged particles within the effective range theory

doi: 10.3103/S1062873807060081
Citations: PlumX Metrics


2006IR01      Bull.Rus.Acad.Sci.Phys. 70, 254 (2006)

B.F.Irgaziev, Yu.V.Orlov

Virtual state in configuration space

NUCLEAR STRUCTURE 3H; calculated virtual state energy.


2006IR02      Bull.Rus.Acad.Sci.Phys. 70, 257 (2006)

B.F.Irgaziev, L.I.Nikitina, Yu.V.Orlov

Nucleon-deuteron system at low energies within a two-body potential model

NUCLEAR STRUCTURE 3H, 3He; calculated binding energies, effective radius functions.


2006OR03      Phys.Atomic Nuclei 69, 607 (2006); Yad.Fiz. 69, 631 (2006)

Yu.V.Orlov, L.I.Nikitina

Effective-Range Function for Doublet nd Scattering from an Analysis of Modern Data

NUCLEAR REACTIONS 2H(n, n), E ≈ 0-10 MeV; analyzed doublet scattering data; deduced effective-range function.

NUCLEAR STRUCTURE 3H; analyzed data; deduced effective-range function.

doi: 10.1134/S1063778806040077
Citations: PlumX Metrics


2006OR07      Phys.Atomic Nuclei 69, 828 (2006); Yad.Fiz. 69, 855 (2006)

Yu.V.Orlov, Yu.P.Orevkov

Doublet Coulomb-Nuclear Scattering Length and Other Parameters of the Effective-Range Function for Proton-Deuteron Scattering from an Analysis of Present-Day Data

NUCLEAR REACTIONS 2H(p, p), E ≈ 0.5-3 MeV; analyzed data; deduced scattering length, parameters of effective-range function.

doi: 10.1134/S106377880605005X
Citations: PlumX Metrics


2005OR03      Bull.Rus.Acad.Sci.Phys. 69, 149 (2005)

Yu.V.Orlov, Yu.P.Orevkov

Convergence of effective radius expansion for doublet nd-scattering and its parameters from analysis of present-day calculation results

NUCLEAR REACTIONS 2H(n, n), E ≈ 0-3 MeV; analyzed effective radius function, related parameters.


2005OR04      Bull.Rus.Acad.Sci.Phys. 69, 157 (2005)

Yu.V.Orlov

Doublet Coulomb-nuclear length of pd-scattering and pole of effective-radius function from analysis of modern data

NUCLEAR REACTIONS 2H(p, p), E ≈ 0-3 MeV; analyzed effective radius function, related parameters.


2005OR05      Bull.Rus.Acad.Sci.Phys. 69, 844 (2005)

Yu.V.Orlov, L.I.Nikitina

Phillips and Girard-Fuda plots in light of latest calculation results for nd-system

NUCLEAR STRUCTURE 3H; calculated binding energy vs nd scattering length.


2004OR06      Bull.Rus.Acad.Sci.Phys. 68, 293 (2004)

Yu.V.Orlov, Yu.P.Orevkov

Two-body approach to Nd-system at low energies

NUCLEAR STRUCTURE 3H, 3He; calculated Coulomb difference of binding energies. Two-body approach.

NUCLEAR REACTIONS 2H(p, X), E=low; calculated effective radius function.


2003OR01      Yad.Fiz. 66, 83 (2003); Phys.Atomic Nuclei 66, 81 (2003)

Yu.V.Orlov, Yu.P.Orevkov

nd Scattering at Low Energies in the Two-Body Potential Model

NUCLEAR REACTIONS 2H(n, n), E ≈ 0-12 MeV; calculated S-wave phase shift for spin-doublet scattering. Two-body potential model.

doi: 10.1134/1.1540660
Citations: PlumX Metrics


2002OR02      Yad.Fiz. 65, 396 (2002); Phys.Atomic Nuclei 65, 371 (2002)

Yu.V.Orlov, Yu.P.Orevkov, L.I.Nikitina

T → d + n Vertex Function and Its Correlation with the Triton Binding Energy and with the Doublet nd Scattering Length

NUCLEAR STRUCTURE 3H; calculated normalization constant, binding energy; deduced correlation with nd scattering length.

doi: 10.1134/1.1451956
Citations: PlumX Metrics


2002OR07      Bull.Rus.Acad.Sci.Phys. 65, 1700 (2002)

Yu.V.Orlov, Yu.P.Orevkov

Two-Body Model for Doublet nd-System and Asymptotics of Effective Potential


2002OR08      Bull.Rus.Acad.Sci.Phys. 66, 57 (2002)

Yu.V.Orlov

Correlations between Asymptotic Normalization Constant for Wavefunction of Triton, Its Binding Energy, and Doublet Length of nd-Scattering

NUCLEAR STRUCTURE 3H; calculated asymptotic normalization factors for radial wave function.


2002OR09      Bull.Rus.Acad.Sci.Phys. 66, 763 (2002)

Yu.V.Orlov, Yu.P.Orevkov

2S1/2 Phase of nd-Scattering at Low Energy within Framework of Two-Body Model

NUCLEAR REACTIONS 2H(n, n), E=0-10 MeV; calculated doublet scattering phase. Two-body approach.


2000NI10      Bull.Rus.Acad.Sci.Phys. 64, 111 (2000)

L.I.Nikitina, Yu.V.Orlov

Poles of k cot δ and Analytical Properties of the Scattering Amplitude for the Woods-Saxon Potential


2000OR02      Yad.Fiz. 63, No 3, 394 (2000); Phys.Atomic Nuclei 63, 328 (2000)

Yu.V.Orlov, Yu.P.Orevkov, L.I.Nikitina

Two-Body Potential Model for the Doublet Neutron-Deuteron System and Effects of Long-Range Interaction

NUCLEAR STRUCTURE 3H; calculated long-range interaction effects in doublet neutron-deuteron system. Two-body potential model.

doi: 10.1134/1.855639
Citations: PlumX Metrics


2000OR05      Yad.Fiz. 63, No 11, 1982 (2000); Phys.Atomic Nuclei 63, 1889 (2000)

Yu.V.Orlov

Special Analytic Properties of the Amplitude for Scattering on the Woods-Saxon Potential

NUCLEAR REACTIONS 208Pb(n, n), E not given; calculated scattering length vs interaction potential strength. Optical model, Woods-Saxon potential.

doi: 10.1134/1.1326979
Citations: PlumX Metrics


1998BL17      Bull.Rus.Acad.Sci.Phys. 62, 64 (1998)

L.D.Blokhintsev, L.I.Nikitina, Yu.V.Orlov

Hypertriton in a Potential Model

NUCLEAR STRUCTURE 3H; calculated hypernucleus virtual decay form factor, vertex constant. Two-body model, Hulthen and Yukawa potentials.


1998OR06      Bull.Rus.Acad.Sci.Phys. 62, 1824 (1998)

Yu.V.Orlov, L.I.Nikitina

Poles of k cot δ and Discrete Symmetry of Bound and Virtual Levels


1997NI14      Bull.Rus.Acad.Sci.Phys. 61, 1752 (1997)

L.I.Nikitina, Yu.V.Orlov, Yu.P.Orevkov

Separable Approximation of t-Matrix for a System with Resonant or Virtual State


1996OR07      Bull.Rus.Acad.Sci.Phys. 60, 1782 (1996)

Yu.V.Orlov, Yu.P.Orevkov, L.I.Nikitina

Vertex Constant in a Potential Model and the Effective Range Expansion

NUCLEAR STRUCTURE 2,3H; calculated ground, virtual states characteristics; deduced pole related features. Two-body model, Yukawa potential.


1994NI15      Bull.Rus.Acad.Sci.Phys. 58, 1877 (1994)

L.I.Nikitina, Yu.P.Orevkov, Yu.V.Orlov

Coupling Constant for d → np Vertex in the Potential Model and Effective Range Approximation

NUCLEAR STRUCTURE 2H; calculated binding energy. Potential model, effective range approximation, vertex coupling constant evaluated.

NUCLEAR REACTIONS 1H(n, n), E=low; calculated scattering length. Potential model, effective range approximation, vertex coupling constant evaluated.


1992OR02      Yad.Fiz. 55, 38 (1992); Sov.J.Nucl.Phys. 55, 23 (1992)

Yu.V.Orlov, N.M.Petrov, G.N.Teneva

Description of the Virtual Decay T → d + n The Two-Body Potential Model

NUCLEAR STRUCTURE 3H; calculated vertex constant vs binding energy. Virtual decay to d+n, two-body model.


1989MO24      Fiz.Elem.Chastits At.Yadra 20, 1341 (1989); Sov.J.Part.Nucl 20, 569 (1989)

K.Moller, Yu.V.Orlov

Resonances in Three-Particle Systems

NUCLEAR REACTIONS 3He(π-, γ), (π-, π0), (π-, π+), 3H(n, p), E not given; compiled data analyses. Three-particle system resonances, two-body potential problem, Faddeev formalism. Other aspects included.


1987VA32      Ukr.Fiz.Zh. 32, 1125 (1987)

V.M.Vainberg, Yu.V.Orlov, V.S.Popov, V.V.Turovtsev

Virtual and Resonance Levels in the Yukawa Potential

NUCLEAR REACTIONS 1H(n, n), 1n(n, n), 1H(p, p), E not given; calculated scattering amplitude real, virtual pole positions; deduced Yukawa potential.


1980BA55      Yad.Fiz. 32, 369 (1980); Sov.J.Nucl.Phys. 32, 191 (1980)

A.G.Baryshnikov, V.B.Belyaev, L.D.Blokhintsev, B.F.Irgaziev, Yu.V.Orlov

Scattering and Reactions in a 4-Nucleon System within the Framework of the K-Matrix Formalism

NUCLEAR REACTIONS 3He(p, p), E=9.75, 19.48, 30.6 MeV; 3H(p, p), E=13.6, 19.48 MeV; calculated σ(θ); deduced nucleon-nucleon interaction dependence. Multi-channel K-matrix formalism.


1973OR09      Yad.Fiz. 18, 1028 (1973); Sov.J.Nucl.Phys. 18, 529 (1974)

Y.V.Orlov

Peripheral-Model Analysis of (p, d) Reactions with Allowance for the Nuclear Form Factor

NUCLEAR REACTIONS 18O(p, d), E=17.6 MeV; 19F(p, d), E=18.9 MeV; calculated σ(Ed, θ).


1970OR06      Izv.Akad.Nauk SSSR, Ser.Fiz. 34, 2201 (1970);Bull.Acad.Sci. USSR, Phys.Ser. 34, 1963 (1971)

Y.V.Orlov

Vertex Part in a Three-Body Model for 3H → n + d

NUCLEAR STRUCTURE 3H; analyzed n+d vertex part.


Back to query form