NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 24, 2024.

Search: Author = W.H.Dickhoff

Found 73 matches.

Back to query form



2023HE08      J.Phys.(London) G50, 060501 (2023)

C.Hebborn, F.M.Nunes, G.Potel, W.H.Dickhoff, J.W.Holt, M.C.Atkinson, R.B.Baker, C.Barbieri, G.Blanchon, M.Burrows, R.Capote, P.Danielewicz, M.Dupuis, C.Elster, J.E.Escher, L.Hlophe, A.Idini, H.Jayatissa, B.P.Kay, K.Kravvaris, J.J.Manfredi, A.Mercenne, B.Morillon, G.Perdikakis, C.D.Pruitt, G.H.Sargsyan, I.J.Thompson, M.Vorabbi, T.R.Whitehead

Optical potentials for the rare-isotope beam era

doi: 10.1088/1361-6471/acc348
Citations: PlumX Metrics


2022YO02      Phys.Rev. C 105, 014622 (2022)

K.Yoshida, M.C.Atkinson, K.Ogata, W.H.Dickhoff

First application of the dispersive optical model to (p, 2p) reaction analysis within the distorted-wave impulse approximation framework

NUCLEAR REACTIONS 40Ca(p, 2p), (e, e'p)39K, E=200 MeV; analyzed experimental data for differential cross sections; deduced spectroscopic factors using dispersive optical model (DOM) applied to the nonrelativistic distorted-wave impulse approximation (DWIA) framework, using several types of input for the p-p effective interactions: the Franey-Love interaction, the Melbourne g-matrix interaction with zero and mean density.

doi: 10.1103/PhysRevC.105.014622
Citations: PlumX Metrics


2021AT02      Phys.Rev. C 104, 059802 (2021)

M.C.Atkinson, W.H.Dickhoff, M.Piarulli, A.Rios, R.B.Wiringa

Reply to "Comment on 'Reexamining the relation between the binding energy of finite nuclei and the equation of state of infinite nuclear matter'"

doi: 10.1103/PhysRevC.104.059802
Citations: PlumX Metrics


2021AU02      Prog.Part.Nucl.Phys. 118, 103847 (2021)

T.Aumann, C.Barbieri, D.Bazin, C.A.Bertulani, A.Bonaccorso, W.H.Dickhoff, A.Gade, M.Gomez-Ramos, B.P.Kay, A.M.Moro, T.Nakamura, A.Obertelli, K.Ogata, S.Paschalis, T.Uesaka

Quenching of single-particle strength from direct reactions with stable and rare-isotope beams

doi: 10.1016/j.ppnp.2021.103847
Citations: PlumX Metrics


2020AT01      Phys.Rev. C 101, 044303 (2020)

M.C.Atkinson, M.H.Mahzoon, M.A.Keim, B.A.Bordelon, C.D.Pruitt, R.J.Charity, W.H.Dickhoff

Dispersive optical model analysis of 208Pb generating a neutron-skin prediction beyond the mean field

NUCLEAR REACTIONS 208Pb(p, X), (n, X), (p, p), (n, n), E=10-200 MeV; 208Pb(e, e), E=502 MeV; calculated reaction σ(E), differential σ(E, θ), analyzing powers Ay(θ) using dispersive optical model (DOM). Comparison with experimental data.

NUCLEAR STRUCTURE 208Pb; calculated neutron and proton single-particle energy levels, charge density, orbital occupation and depletion numbers, spectroscopic factors, binding energies, momentum distributions of protons and neutrons. 40,48Ca, 208Pb; calculated proton and neutron point distributions, and neutron skins. Hartree-Fock and dispersive optical model (DOM) calculations. Comparison with experimental data. Relevance to nuclear equation of state.

doi: 10.1103/PhysRevC.101.044303
Citations: PlumX Metrics


2020AT02      Phys.Rev. C 102, 044333 (2020)

M.C.Atkinson, W.H.Dickhoff, M.Piarulli, A.Rios, R.B.Wiringa

Reexamining the relation between the binding energy of finite nuclei and the equation of state of infinite nuclear matter

NUCLEAR STRUCTURE 12C, 40,48Ca, 208Pb; calculated binding energies, binding energy as a function of radius in 12C, energy densities using a dispersive optical model. Comparison with ab initio self-consistent Green's-function calculations, and with experimental data. 8Be; calculated total binding-energy density, the kinetic-energy density, the two-body potential-energy density, and the three-body potential-energy density using Green's-function Monte Carlo method, with the Argonne-Urbana two- and three-body interactions. 12C; calculated three-body potential-energy densities for different chiral interactions and the Urbana-X.

NUCLEAR REACTIONS 12C(p, p), (n, n), (polarized p, p), (polarized n, n), (p, X), (n, X), E<200 MeV; calculated differential σ(θ, E) and analyzing powers Ay(θ, E) for elastic scattering, proton and neutron total reaction σ(E) generated from the dispersive optical model (DOM). Comparison with experimental data.

doi: 10.1103/PhysRevC.102.044333
Citations: PlumX Metrics


2020PR09      Phys.Rev.Lett. 125, 102501 (2020)

C.D.Pruitt, R.J.Charity, L.G.Sobotka, M.C.Atkinson, W.H.Dickhoff

Systematic Matter and Binding-Energy Distributions from a Dispersive Optical Model Analysis

NUCLEAR STRUCTURE 16,18O, 40,48Ca, 58,64Ni, 112,124Sn, 208Pb; analyzed available bound-state anscattering data; deduced neutronn skins, the interplay of asymmetry, Coulomb, and shell effects on the skin thickness.

doi: 10.1103/PhysRevLett.125.102501
Citations: PlumX Metrics


2020PR10      Phys.Rev. C 102, 034601 (2020)

C.D.Pruitt, R.J.Charity, L.G.Sobotka, J.M.Elson, D.E.M.Hoff, K.W.Brown, M.C.Atkinson, W.H.Dickhoff, H.Y.Lee, M.Devlin, N.Fotiades, S.Mosby

Isotopically resolved neutron total cross sections at intermediate energies

NUCLEAR REACTIONS 16,18O, 58,64Ni, 103Rh, 112,124Sn(n, X), E=3-450 MeV; measured E(n), I(n), σ(E) by time-of-flight using wave-form-digitizer technology and BC-400 fast plastic scintillators at the WNR facility of the Los Alamos Neutron Science Center; deduced spectroscopic factors for valence proton and neutron levels through a dispersive optical model (DOM) analyses of σ(θ) data. 16,18O, 58,64Ni, 103Rh, 112,124Sn(p, p), (polarized p, p), (n, n), E=10-200 MeV; analyzed experimental σ(E), σ(θ, E), Ay(θ, E) data in literature; deduced dispersive optical model (DOM) parameters, charge radii and binding energies. Comparison with previous experimental measurements of σ(E) using analog methods.

doi: 10.1103/PhysRevC.102.034601
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14661.


2019AT01      Phys.Lett. B 798, 135027 (2019)

M.C.Atkinson, W.H.Dickhoff

Investigating the link between proton reaction cross sections and the quenching of proton spectroscopic factors in 48Ca

NUCLEAR REACTIONS 48Ca(E, X)47K, E not given; 40,48Ca(p, X), E<200 MeV; analyzed available data; deduced σ, spectral strength as a function of excitation energy using a nonlocal dispersive optical model (DOM).

doi: 10.1016/j.physletb.2019.135027
Citations: PlumX Metrics


2018AT02      Phys.Rev. C 98, 044627 (2018)

M.C.Atkinson, H.P.Blok, L.Lapikas, R.J.Charity, W.H.Dickhoff

Validity of the distorted-wave impulse-approximation description of 40Ca(e, e'p)39K data using only ingredients from a nonlocal dispersive optical model

NUCLEAR REACTIONS 40Ca(e, e'p)39K, E=299-532 MeV; measured Ep, Ip, electron spectra, spectral strengths as function of excitation energy, and spectral functions in parallel kinematics using high-resolution magnetic spectrometers for charged particle detection at the Medium Energy Accelerator at Nikhef, Amsterdam. Comparison with calculations using dispersive optical model (DOM) for distorted wave impulse-approximation (DWIA). 39K; deduced levels, J, π, spectroscopic factors. 40Ca(p, p), (n, n), E=10-100 MeV; analyzed σ(θ, E) and analyzing powers Ay(θ, E) by nonlocal DOM description. 40Ca(p, X), E<200 MeV; analyzed σ(E) by nonlocal DOM description. 40Ca; analyzed charge density using the DOM propagator, and compared with experimental data.

doi: 10.1103/PhysRevC.98.044627
Citations: PlumX Metrics


2017DI03      J.Phys.(London) G44, 033001 (2017)

W.H.Dickhoff, R.J.Charity, M.H.Mahzoon

Novel applications of the dispersive optical model

doi: 10.1088/1361-6471/44/3/033001
Citations: PlumX Metrics


2017MA76      Phys.Rev.Lett. 119, 222503 (2017)

M.H.Mahzoon, M.C.Atkinson, R.J.Charity, W.H.Dickhoff

Neutron Skin Thickness of 48Ca from a Nonlocal Dispersive Optical-Model Analysis

NUCLEAR REACTIONS 48Ca(n, n), E not given; analyzed available data; deduced σ, σ(θ), neutron and proton numbers, and the charge distributions.

doi: 10.1103/PhysRevLett.119.222503
Citations: PlumX Metrics


2017PO13      Eur.Phys.J. A 53, 178 (2017)

G.Potel, G.Perdikakis, B.V.Carlson, M.C.Atkinson, W.H.Dickhoff, J.E.Escher, M.S.Hussein, J.Lei, W.Li, A.O.Macchiavelli, A.M.Moro, F.M.Nunes, S.D.Pain, J.Rotureau

Toward a complete theory for predicting inclusive deuteron breakup away from stability

NUCLEAR REACTIONS 93Nb(d, pn), E=10, 25.5 MeV; calculated σ(ln), σ(θn) assuming both elastic and nonelastic breakup. Compared with published calculations. 40,48,60Ca(d, pn), E=20, 40 MeV; calculated σ(Ep) vs En and vs ln using both elastic and nonelastic breakup and using Hussein-McVoy theory.

doi: 10.1140/epja/i2017-12371-9
Citations: PlumX Metrics


2016DI12      Phys.Rev. C 94, 025802 (2016); Pub.Note Phys.Rev. C 94, 029901 (2016)

D.Ding, A.Rios, H.Dussan, W.H.Dickhoff, S.J.Witte, A.Carbone, A.Polls

Pairing in high-density neutron matter including short- and long-range correlations

doi: 10.1103/PhysRevC.94.025802
Citations: PlumX Metrics


2015RO17      Phys.Rev. C 92, 044607 (2015)

A.Ross, L.J.Titus, F.M.Nunes, M.H.Mahzoon, W.H.Dickhoff, R.J.Charity

Effects of nonlocal potentials on (p, d) transfer reactions

NUCLEAR REACTIONS 40Ca(p, d)39Ca, E=20, 35, 50 MeV; 40Ca(p, p), E=50 MeV; calculated σ(θ) distributions using nonlocal potential obtained from non-local dispersive optical model (DOM) and DOM-phase equivalent (PE), combined with DWBA. Comparison with Perey-Buck (PB) optical potential predictions, and with experimental data.

doi: 10.1103/PhysRevC.92.044607
Citations: PlumX Metrics


2014CH08      Eur.Phys.J. A 50, 23 (2014), Erratum Eur.Phys.J. A 50, 64 (2014)

R.J.Charity, W.H.Dickhoff, L.G.Sobotka, S.J.Waldecker

Isospin dependence of nucleon correlations in ground-state nuclei

NUCLEAR STRUCTURE 102,106,112,124,130,132Sn; calculated proton orbit strength function, spectroscopic factor. 154Sn; calculated proton hole spectroscopic factor. 132Sn, 208Pb; calculated neutron states above the core, spectroscopic factor. Dispersive optical model.

doi: 10.1140/epja/i2014-14023-0
Citations: PlumX Metrics


2014DU15      Phys.Rev. C 90, 061603 (2014)

H.Dussan, M.H.Mahzoon, R.J.Charity, W.H.Dickhoff, A.Polls

Elastic nucleon-nucleus scattering as a direct probe of correlations beyond the independent-particle model

NUCLEAR REACTIONS 40Ca(p, p), (n, n), E<200 MeV; analyzed scattering and structure data using the full nonlocal treatment of the dispersive optical model (DOM). Discussed application for inverse kinematics reactions.

doi: 10.1103/PhysRevC.90.061603
Citations: PlumX Metrics


2014MA18      Phys.Rev.Lett. 112, 162503 (2014)

M.H.Mahzoon, R.J.Charity, W.H.Dickhoff, H.Dussan, S.J.Waldecker

Forging the Link between Nuclear Reactions and Nuclear Structure

NUCLEAR REACTIONS 40Ca(n, n), (p, p), E<200 MeV; calculated σ, σ(θ), spectral strength. Comparison with experimental data.

doi: 10.1103/PhysRevLett.112.162503
Citations: PlumX Metrics


2014RI02      Phys.Rev. C 89, 044303 (2014)

A.Rios, A.Polls, W.H.Dickhoff

Density and isospin-asymmetry dependence of high-momentum components

NUCLEAR STRUCTURE 2H; calculated momentum distribution for neutrons and protons in asymmetric nuclear matter, ratio of the neutron, proton and nucleon momentum distributions to corresponding deuteron distribution at high momenta, density and isospin dependence, integrated single-particle strengths and kinetic energies for neutrons and protons. High-momentum components dominated by tensor correlations. Self-consistent Green's function (SCGF) ladder calculations and dilute Fermi gas (DFG) model.

doi: 10.1103/PhysRevC.89.044303
Citations: PlumX Metrics


2011DU21      Phys.Rev. C 84, 044319 (2011)

H.Dussan, S.J.Waldecker, W.H.Dickhoff, H.Muther, A.Polls

Microscopic self-energy of 40Ca from the charge-dependent Bonn potential

NUCLEAR STRUCTURE 40Ca; calculated spectral functions, single-particle levels, spectroscopic factors, natural orbits; comparison of microscopic CD Bonn Self-Energy and Dispersive Optical Model fit. 40Ca(n, n), E=0-100 MeV; calculated total and differential cross sections. Comparison with experimental data; analyzed non-locality of the imaginary part of the CD Bonn Self-energy.

doi: 10.1103/PhysRevC.84.044319
Citations: PlumX Metrics


2011MU10      Phys.Rev. C 83, 064605 (2011)

J.M.Mueller, R.J.Charity, R.Shane, L.G.Sobotka, S.J.Waldecker, W.H.Dickhoff, A.S.Crowell, J.H.Esterline, B.Fallin, C.R.Howell, C.Westerfeldt, M.Youngs, B.J.Crowe, III, R.S.Pedroni

Asymmetry dependence of nucleon correlations in spherical nuclei extracted from a dispersive-optical-model analysis

NUCLEAR REACTIONS 40,48Ca(n, n), E=11.9, 16.9 MeV; measured E(n), I(n), σ, σ(E, θ), time-of-flight spectra. 40Ca(n, n), E=9.9-85.0; 48Ca(n, n), E=7.97-16.9 MeV; 54Ca(n, n), E=5.5-26.0 MeV; 58,60Ni(n, n), E=4.5-24.0 MeV; 92Mo(n, n), E=7.0-30.4 MeV; 116,118Sn(n, n), E=9.95-24.0 MeV; 120Sn(n, n), E=9.94-16.91 MeV; 124Sn(n, n), E=11.0-24.0 MeV; 208Pb(n, n), E=4.0-185.0 MeV; 50Ti(p, p), E=6.0-65.0 MeV; 52Cr(p, p), E=10.77-39.9 MeV; 54Fe, 64Ni(p, p), E=9.69-65.0 MeV; 58Ni(p, p), E=7.0-192.0 MeV; 60Ni(p, p), E=7.0-178.0 MeV; 62Ni(p, p), E=8.02-156.0 MeV; 90Zr(p, p), E=5.57-185.0 MeV; 92Mo(p, p), E=12.5-49.45 MeV; 114Sn(p, p), E=30.4 MeV; 116Sn(p, p), E=16.0-61.4 MeV; 118,122,124Sn(p, p), E=16.0-49.35 MeV; 120Sn(p, p), E=9.8-156.0 MeV; 208Pb(p, p), E=9.0-200.0 MeV; analyzed total cross sections, σ(E, θ), single-particle levels, spectroscopic factors, occupation probabilities, mass dependence on cross section. Dispersal optical model (DOM) analysis.

doi: 10.1103/PhysRevC.83.064605
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 dataset14303.


2011NG04      Phys.Rev. C 84, 044611 (2011)

N.B.Nguyen, S.J.Waldecker, F.M.Nunes, R.J.Charity, W.H.Dickhoff

Transfer reactions and the dispersive optical model

NUCLEAR REACTIONS 40Ca(d, p), E=20, 56 MeV; 48Ca(d, p), E=2, 13, 19.3, 56 MeV; 132Sn(d, p), E=9.46 MeV; 208Pb(d, p), E=8, 20 MeV; analyzed optical potentials, σ(θ, E), spectroscopic factors. Test of dispersive optical potentials. Comparison with experimental data and with predictions of a standard global optical potential. Finite-range adiabatic (FR-ADWA) calculations in the range of closed-shell nuclei.

doi: 10.1103/PhysRevC.84.044611
Citations: PlumX Metrics


2011WA24      Phys.Rev. C 84, 034616 (2011)

S.J.Waldecker, C.Barbieri, W.H.Dickhoff

Microscopic self-energy calculations and dispersive optical-model potentials

NUCLEAR STRUCTURE 40,48,60Ca; calculated nucleon self energies, volume integrals, angular momentum dependence for the volume integrals, asymmetry dependence of the absorption for neutrons and protons. Dispersive optical model (DOM), and Faddeev-random-phase approximation (FRPA) method.

doi: 10.1103/PhysRevC.84.034616
Citations: PlumX Metrics


2010BA36      Nucl.Phys. A834, 788c (2010)

C.Barbieri, R.J.Charity, W.H.Dickhoff, L.G.Sobotka

Toward a Global Dispersive Optical Model for the Driplines

NUCLEAR REACTIONS 40Ca(n, n), E=9-185 MeV; 40Ca(p, p), E=17.6-200 MeV; 42,44Ca(p, p), E=21-65 MeV; 48Ca(p, p), E=8-200 MeV; calculated σ(θ), analyzing power. 40,48Ca calculated levels, J, widths, radii, spectroscopic factors; deduced dispersive optical model parameters. 58,60,62,64Ni(p, p), E not given; calculated σ(θ). Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.147
Citations: PlumX Metrics


2010DI12      Phys.Rev. C 82, 054306 (2010)

W.H.Dickhoff, D.Van Neck, S.J.Waldecker, R.J.Charity, L.G.Sobotka

Nonlocal extension of the dispersive optical model to describe data below the Fermi energy

NUCLEAR REACTIONS 40Ca(e, e'p), (p, 2p), E<150 MeV; calculated spectral functions, quasihole energies, spectroscopic factors, radii and charge density for proton orbits in 40Ca using dispersive-optical-model (DOM) analysis. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.054306
Citations: PlumX Metrics


2009RI06      Phys.Rev. C 79, 064308 (2009)

A.Rios, A.Polls, W.H.Dickhoff

Depletion of the nuclear Fermi sea

doi: 10.1103/PhysRevC.79.064308
Citations: PlumX Metrics


2007CH72      Phys.Rev. C 76, 044314 (2007)

R.J.Charity, J.M.Mueller, L.G.Sobotka, W.H.Dickhoff

Dispersive-optical-model analysis of the asymmetry dependence of correlations in Ca isotopes

NUCLEAR REACTIONS 40Ca(p, p), E=17.57-200.0 MeV; 42,44Ca(p, p), E=21.0-65.0 MeV; 48Ca(p, p), E=8.0-200.0 MeV; 40Ca(n, n), E=9.9-185.0 MeV; analyzed differential cross sections, angular distributions, polarization asymmetry, widths, rms radii and spectroscopic factors. Deduced optical-model parameters. 60Ca, 70Ca deduced prediction for particle stability.

doi: 10.1103/PhysRevC.76.044314
Citations: PlumX Metrics


2006CH46      Phys.Rev.Lett. 97, 162503 (2006)

R.J.Charity, L.G.Sobotka, W.H.Dickhoff

Asymmetry Dependence of Proton Correlations

NUCLEAR REACTIONS 40,48Ca(p, X), E=5-50 MeV; analyzed reaction σ. 40Ca(p, p), E=18-135 MeV; 48Ca(p, p), E=8-65 MeV; analyzed σ(θ), analyzing powers. 40,48Ca deduced proton states energies, widths, occupation probabilities, asymmetry dependence of proton correlations. Dispersive optical model.

NUCLEAR STRUCTURE 40,48,60Ca; calculated proton single-particle level energies.

doi: 10.1103/PhysRevLett.97.162503
Citations: PlumX Metrics


2005BA66      J.Phys.(London) G31, S1301 (2005)

C.Barbieri, W.H.Dickhoff

Self-consistent Green's function calculations of 16O at small missing energies

NUCLEAR STRUCTURE 16O; calculated one-hole spectral function, level energies and configurations. Self-consistent Green's function approach.

doi: 10.1088/0954-3899/31/8/008
Citations: PlumX Metrics


2005MU29      Phys.Rev. C 72, 054313 (2005)

H.Muther, W.H.Dickhoff

Pairing properties of nucleonic matter employing dressed nucleons

doi: 10.1103/PhysRevC.72.054313
Citations: PlumX Metrics


2005RO28      Phys.Rev. C 72, 024320 (2005)

N.J.Robertson, W.H.Dickhoff

Correlation effects on the nonmesonic weak decay of the Λ hyperon in nuclear matter

doi: 10.1103/PhysRevC.72.024320
Citations: PlumX Metrics


2004BA61      Phys.Rev. C 70, 014606 (2004)

C.Barbieri, C.Giusti, F.D.Pacati, W.H.Dickhoff

Effects of nuclear correlations on the 16O(e, e'pN) reactions to discrete final states

NUCLEAR REACTIONS 16O(e, e'np), (e, e'2p), E=855 MeV; calculated σ(E, θ); deduced sensitivity to short-range and long-range correlations.

doi: 10.1103/PhysRevC.70.014606
Citations: PlumX Metrics


2004DI08      Prog.Part.Nucl.Phys. 52, 377 (2004)

W.H.Dickhoff, C.Barbieri

Self-consistent Greens's function method for nuclei and nuclear matter

doi: 10.1016/j.ppnp.2004.02.038
Citations: PlumX Metrics


2004RO36      Phys.Rev. C 70, 044301 (2004)

N.J.Robertson, W.H.Dickhoff

Correlation effects on Λ propagation in nuclear matter

doi: 10.1103/PhysRevC.70.044301
Citations: PlumX Metrics


2003BA56      Phys.Rev. C 68, 014311 (2003)

C.Barbieri, W.H.Dickhoff

Extension of the random phase approximation including the self-consistent coupling to two-phonon contributions

NUCLEAR STRUCTURE 16O; calculated levels, J, π, configurations. Extended RPA, coupling to two particle-hole phonons.

doi: 10.1103/PhysRevC.68.014311
Citations: PlumX Metrics


2003DE10      Phys.Rev.Lett. 90, 152501 (2003)

Y.Dewulf, W.H.Dickhoff, D.Van Neck, E.R.Stoddard, M.Waroquier

Saturation of Nuclear Matter and Short-Range Correlations

doi: 10.1103/PhysRevLett.90.152501
Citations: PlumX Metrics


2003RA16      Eur.Phys.J. A 17, 65 (2003)

M.Radici, A.Meucci, W.H.Dickhoff

Spectroscopic information from different theoretical descriptions of (un)polarized (e, e'p) reactions

NUCLEAR REACTIONS 16O(e, e'p), (polarized e, e'p), E=high; analyzed σ(E, θ), polarization observables; deduced spectroscopic parameters. Two theoretical approaches considered.

doi: 10.1140/epja/i2002-10137-2
Citations: PlumX Metrics


2002BA59      Phys.Rev. C65, 064313 (2002)

C.Barbieri, W.H.Dickhoff

Faddeev Treatment of Long-Range Correlations and the One-Hole Spectral Function of 16O

NUCLEAR STRUCTURE 16O; calculated spectroscopic factors, one-hole spectral function, role of particle-particle and particle-hole phonons. Fadeev equations, iterative procedure.

doi: 10.1103/PhysRevC.65.064313
Citations: PlumX Metrics


2002DI03      Acta Phys.Pol. B33, 65 (2002)

W.H.Dickhoff, E.P.Roth

Nuclear Equation of State and Spectral Functions


2002RA35      Phys.Rev. C66, 014613 (2002)

M.Radici, W.H.Dickhoff, E.Roth Stoddard

Consistency of Spectroscopic Factors from (e, e'p) Reactions at Different Momentum Transfers

NUCLEAR REACTIONS 16O(e, e'p), E=90 MeV; analyzed σ(E, θ), asymmetry, structure functions; deduced spectroscopic factors.

doi: 10.1103/PhysRevC.66.014613
Citations: PlumX Metrics


2001BA15      Phys.Rev. C63, 034313 (2001)

C.Barbieri, W.H.Dickhoff

Faddeev Description of Two-Hole-One-Particle Motion and the Single-Particle Spectral Function

doi: 10.1103/PhysRevC.63.034313
Citations: PlumX Metrics


2000ST02      Phys.Lett. 474B, 33 (2000)

R.Starink, M.F.van Batenburg, E.Cisbani, W.H.Dickhoff, S.Frullani, F.Garibaldi, C.Giusti, D.L.Groep, P.Heimberg, W.H.A.Hesselink, M.Iodice, E.Jans, L.Lapikas, R.De Leo, C.J.G.Onderwater, F.D.Pacati, R.Perrino, J.Ryckebusch, M.F.M.Steenbakkers, J.A.Templon, G.-M.Urciuoli, L.B.Weinstein

Evidence for Short-Range Correlations in 16O

NUCLEAR REACTIONS 16O(e, e'2p), E=580-585 MeV; measured σ(E), missing momentum spectra. 16O deduced short-range correlations.

doi: 10.1016/S0370-2693(99)01510-5
Citations: PlumX Metrics


1999DI19      Phys.Rev. C60, 064319 (1999)

W.H.Dickhoff, C.C.Gearhart, E.P.Roth, A.Polls, A.Ramos

Phase Shifts and In-Medium Cross Sections for Dressed Nucleons in Nuclear Matter

doi: 10.1103/PhysRevC.60.064319
Citations: PlumX Metrics


1998DI10      Phys.Rev. C58, 2807 (1998)

W.H.Dickhoff

Scattering of Dressed Nucleons in Nuclear Matter

doi: 10.1103/PhysRevC.58.2807
Citations: PlumX Metrics


1998GI05      Phys.Rev. C57, 1691 (1998)

C.Giusti, F.D.Pacati, K.Allaart, W.J.W.Geurts, W.H.Dickhoff, H.Muther

Selectivity of the 16O(e, e'pp) Reaction to Discrete Final States

NUCLEAR REACTIONS 16O(e, e'2p), E=475, 584, 855 MeV; calculated σ(E, θ); deduced final state selectivity.

doi: 10.1103/PhysRevC.57.1691
Citations: PlumX Metrics


1998ON02      Phys.Rev.Lett. 81, 2213 (1998)

C.J.G.Onderwater, K.Allaart, E.C.Aschenauer, Th.S.Bauer, D.J.Boersma, E.Cisbani, W.H.Dickhoff, S.Frullani, F.Garibaldi, W.J.W.Geurts, C.Giusti, D.L.Groep, W.H.A.Hesselink, M.Iodice, E.Jans, N.Kalantar-Nayestanaki, W.-J.Kasdorp, C.Kormanyos, L.Lapikas, J.J.van Leeuwe, R.De Leo, A.Misiejuk, H.Muther, F.D.Pacati, A.R.Pellegrino, R.Perrino, R.Starink, M.Steenbakkers, G.van der Steenhoven, J.J.M.Steijger, M.A.van Uden, G.M.Urciuoli, L.B.Weinstein, H.W.Willering

Signatures for Short-Range Correlations in 16O Observed in the Reaction 16O(e, e'pp)14C

NUCLEAR REACTIONS 16O(e, e'2p), E=584 MeV; measured σ(Ee, θ(e), Ep, θ(p)), missing momentum; deduced short-range correlations role.

doi: 10.1103/PhysRevLett.81.2213
Citations: PlumX Metrics


1997PO01      Phys.Rev. C55, 810 (1997)

A.Polls, M.Radici, S.Boffi, W.H.Dickhoff, H.Muther

High-Momentum Proton Removal from 16O and the (e, e'p) Cross Section

NUCLEAR REACTIONS 16O(e, e'p), E not given; calculated reduced σ vs missing momentum. Single-hole spectral function evaluated with short-range, tensor correlations.

doi: 10.1103/PhysRevC.55.810
Citations: PlumX Metrics


1996GE01      Phys.Rev. C53, 2207 (1996)

W.J.W.Geurts, K.Allaart, W.H.Dickhoff, H.Muther

Spectroscopic Factors for Nucleon Knock-Out from 16O at Small Missing Energy

NUCLEAR STRUCTURE 16O; calculated one-nucleon knock-out spectroscopic factors. Green's function formalism.

doi: 10.1103/PhysRevC.53.2207
Citations: PlumX Metrics


1996GE03      Phys.Rev. C54, 1144 (1996)

W.J.W.Geurts, K.Allaart, W.H.Dickhoff, H.Muther

Two-Nucleon Spectral Function of 16O at High Momenta

NUCLEAR STRUCTURE 16O; calculated two-nucleon spectral functions.

NUCLEAR REACTIONS 16O(e, e'X), E=700 MeV; calculated longitudinal differential σ for 2p knockout. Plane wave approximation.

doi: 10.1103/PhysRevC.54.1144
Citations: PlumX Metrics


1996GE09      Int.J.Mod.Phys. E5, 461 (1996)

C.C.Gearhart, W.H.Dickhoff, A.Polls, A.Ramos

Some Consequences of Dressing Nucleons

doi: 10.1142/S0218301396000220
Citations: PlumX Metrics


1996RI01      Phys.Rev. C53, 201 (1996)

G.A.Rijsdijk, W.J.W.Geurts, K.Allaart, W.H.Dickhoff

Hole Spectral Function and Two-Particle-One-Hole Response Propagator

NUCLEAR STRUCTURE 48Ca, 90Zr; calculated hole-state spectral functions. 47K, 89Y; calculated quasihole states spectroscopic factors.

doi: 10.1103/PhysRevC.53.201
Citations: PlumX Metrics


1995MU09      Phys.Rev. C51, 3040 (1995)

H.Muther, A.Polls, W.H.Dickhoff

Momentum and Energy Distributions of Nucleons in Finite Nuclei Due to Short-Range Correlations

NUCLEAR STRUCTURE 16O; calculated nucleon momentum, energy distributions. Short range correlations, realistic meson-exchange potential.

doi: 10.1103/PhysRevC.51.3040
Citations: PlumX Metrics


1994CZ01      J.Phys.(London) G20, 425 (1994)

P.Czerski, H.Muther, W.H.Dickhoff

Effective Local Interactions and the Equation of State for Nuclear Matter and Finite Nuclei

NUCLEAR STRUCTURE 16O; calculated binding energy per nucleon, two-nucleon density. Equation of state, effective nuclear interactions.

doi: 10.1088/0954-3899/20/3/004
Citations: PlumX Metrics


1994GE04      Phys.Rev. C50, 514 (1994)

W.J.W.Geurts, K.Allaart, W.H.Dickhoff

Gamow-Teller (p, n) and (n, p) Strength in a Dressed Extended Random Phase Approximation

NUCLEAR STRUCTURE 48Ca; calculated (p, n) Gamow-Teller transition strength. Dressed, extended RPA.

doi: 10.1103/PhysRevC.50.514
Citations: PlumX Metrics


1994MU01      Phys.Rev. C49, R17 (1994)

H.Muther, W.H.Dickhoff

Single-Particle Spectral Function of 16O

NUCLEAR STRUCTURE 16O; calculated single particle spectral function; deduced short range correlations role.

doi: 10.1103/PhysRevC.49.R17
Citations: PlumX Metrics


1994PO07      Phys.Rev. C49, 3050 (1994)

A.Polls, A.Ramos, J.Ventura, S.Amari, W.H.Dickhoff

Energy Weighted Sum Rules for Spectral Functions in Nuclear Matter

doi: 10.1103/PhysRevC.49.3050
Citations: PlumX Metrics


1993RI08      Phys.Rev. C48, 1752 (1993)

G.A.Rijsdijk, W.J.W.Geurts, M.G.E.Brand, K.Allaart, W.H.Dickhoff

Spin-Isospin Strength and Spectral Functions

NUCLEAR REACTIONS 90Zr, 48Ca(p, n), (n, p), E not given; calculated Gamow-Teller, spin-dipole response functions. Dressed independent particle, RPA approaches.

doi: 10.1103/PhysRevC.48.1752
Citations: PlumX Metrics


1992RI08      Nucl.Phys. A550, 159 (1992)

G.A.Rijsdijk, K.Allaart, W.H.Dickhoff

Hole Spectral Functions and Collective Excitations

NUCLEAR STRUCTURE 48Ca, 90Zr; calculated spectral strength distributions, occupation probabilities. Large configuration space, realistic G-matrix interaction.

doi: 10.1016/0375-9474(92)91137-E
Citations: PlumX Metrics


1991BR22      Nucl.Phys. A531, 253 (1991)

M.G.E.Brand, G.A.Rijsdijk, F.A.Muller, K.Allaart, W.H.Dickhoff

Fragmentation of Single-Particle Strength and the Validity of the Shell Model

NUCLEAR REACTIONS 90Zr, 48Ca(e, e'p), E not given; calculated spectral functions, several l-values; deduced shell model validity features. Green function Dyson equation.

doi: 10.1016/0375-9474(91)90612-A
Citations: PlumX Metrics


1990BR03      Nucl.Phys. A509, 1 (1990)

M.G.E.Brand, K.Allaart, W.H.Dickhoff

Nuclear Response Beyond Mean Field Theory

NUCLEAR STRUCTURE 48Ca; calculated levels, transition densities, currents, B(λ), electric quadrupole, dipole resonance strength functions. 48Sc; calculated levels, Gamow-Teller resonance strength functions. Extended RPA.

NUCLEAR REACTIONS 48Ca(e, e'), E not given; calculated form factor. Extended RPA.

doi: 10.1016/0375-9474(90)90374-U
Citations: PlumX Metrics


1988BR33      Phys.Lett. 214B, 483 (1988)

M.G.E.Brand, K.Allaart, W.H.Dickhoff

Conserving RPA and the Response of 48Ca

NUCLEAR STRUCTURE 48Ca; calculated electric quadrupole, dipole resonance strength functions. 48Sc; calculated Gamow-Teller resonance strength functions.

doi: 10.1016/0370-2693(88)90104-9
Citations: PlumX Metrics


1987CZ01      Nucl.Phys. A465, 189 (1987)

P.Czerski, H.Muther, P.K.Rath, A.Faessler, W.H.Dickhoff

Effective Operator for the Transition Density

NUCLEAR STRUCTURE 58Ni; calculated level energy, electric transition density.

doi: 10.1016/0375-9474(87)90430-1
Citations: PlumX Metrics


1987TE02      J.Phys.(London) G13, 463 (1987)

A.Tereno, H.Muther, W.H.Dickhoff

High-Momentum Phonon Exchange and the Effective Shell-Model Interaction

NUCLEAR STRUCTURE A=18; calculated levels, isospin. Effective shell model interaction.

doi: 10.1088/0305-4616/13/4/009
Citations: PlumX Metrics


1986CZ01      Phys.Rev. C33, 1753 (1986)

P.Czerski, W.H.Dickhoff, A.Faessler, H.Muther

Δ Isobars in Finite Nuclei and Nuclear Matter

NUCLEAR STRUCTURE 16O; calculated levels, B(λ). 12C; calculated M1 form factor. RPA, isobar effects.

doi: 10.1103/PhysRevC.33.1753
Citations: PlumX Metrics


1986HE07      Nucl.Phys. A451, 269 (1986)

W.Hengeveld, W.H.Dickhoff, K.Allaart

Self-Consistent Medium Polarization in RPA

NUCLEAR REACTIONS 56Ni(e, e'), E not given; calculated form factors. RPA, self-consistent medium polarization.

NUCLEAR STRUCTURE 56Ni; calculated levels, B(M1), transition density. 56Co; calculated levels. RPA, self-consistent medium polarization.

doi: 10.1016/0375-9474(86)90415-X
Citations: PlumX Metrics


1985HE04      Nucl.Phys. A435, 381 (1985)

W.Hengeveld, K.Allaart, W.H.Dickhoff

Application of Realistic Meson-Exchange Forces in the Broken-Pair Model

NUCLEAR REACTIONS 88Sr(e, e'), E not given; calculated form factor. DWBA, broken pair model functions, meson exchange.

NUCLEAR STRUCTURE 58Ni, 88Sr; calculated levels, transition charge density. Broken pair model, meson exchange.

doi: 10.1016/0375-9474(85)90470-1
Citations: PlumX Metrics


1985IS01      J.Phys.(London) G11, 763 (1985)

M.Ismail, A.Faessler, M.Trefz, W.H.Dickhoff

The Volume and Surface Contributions to the Ion-Ion Optical Potential

NUCLEAR REACTIONS 12C, 40,48Ca, 16O(12C, 12C), 16O, 40,48Ca(16O, 16O), 40,48Ca(40Ca, 40Ca), 48Ca(48Ca, 48Ca), E=5.18-82.94 MeV/nucleon; calculated ion-ion potential volume, surface contributions, parameter energy dependence, reaction σ(E). Bethe-Goldstone equation, Reid soft core potential.

doi: 10.1088/0305-4616/11/6/013
Citations: PlumX Metrics


1985TR04      Nucl.Phys. A443, 499 (1985)

M.Trefz, A.Faessler, W.H.Dickhoff

Microscopic Description of Heavy-Ion Scattering in the Nuclear Matter Picture

NUCLEAR REACTIONS 60Ni, 120Sn, 208Pb(40Ar, X), E=1760 MeV; calculated reaction σ; deduced potential parametes, nucleon-nucleon collision dominance. Microscopic description, nuclear matter approach.

doi: 10.1016/0375-9474(85)90415-4
Citations: PlumX Metrics


1984CZ01      Phys.Lett. 146B, 1 (1984)

P.Czerski, W.H.Dickhoff, A.Faessler, H.Muther

Spin-Isospin Excitations in Finite Nuclei and Nuclear Matter

NUCLEAR STRUCTURE 16O; calculated spin-isospin excitations, B(λ). Brueckner G-matrix, realistic meson exchange potential.

doi: 10.1016/0370-2693(84)90630-0
Citations: PlumX Metrics


1984CZ02      Nucl.Phys. A427, 224 (1984)

P.Czerski, W.H.Dickhoff, A.Faessler, H.Muther

Local Forces and the 16O Reaction Matrix

NUCLEAR STRUCTURE 16O; calculated levels. RPA, local forces, reaction matrix.

doi: 10.1016/0375-9474(84)90083-6
Citations: PlumX Metrics


1984FA12      Nucl.Phys. A428, 271c (1984)

A.Faessler, W.H.Dickhoff, M.Trefz, M.Rhoades-Brown

Microscopic Approach to Real and Imaginary Part of the Heavy Ion Potential

NUCLEAR REACTIONS 12C(12C, 12C), (12C, 12C'), E=1016 MeV; 12C(12C, 12C), E=360 MeV; calculated σ(θ), potential parameters. Microscopic model.

doi: 10.1016/0375-9474(84)90256-2
Citations: PlumX Metrics


1984TR14      Phys.Lett. 149B, 459 (1984)

M.Trefz, A.Faessler, W.H.Dickhoff, M.Rhoades-Brown

The Reaction Mechanism of Heavy Ion Scattering at Intermediate Energies

NUCLEAR REACTIONS 12C(12C, 12C), E=1016 MeV; calculated σ(θ). 12C(12C, X), E=0.16-2.25 GeV; calculated reaction σ(E); deduced reaction mechanism. Microscopic parameter free calculation.

doi: 10.1016/0370-2693(84)90366-6
Citations: PlumX Metrics


1982VA07      Nucl.Phys. A379, 35 (1982)

P.Van Nes, W.H.A.Hesselink, W.H.Dickhoff, J.J.Van Ruyven, M.J.A.DeVoigt, H.Verheul

A Neutron Decoupled from a Rotating Odd Core in 114Sb and 116Sb

NUCLEAR REACTIONS 113,115In(α, 3nγ), E=36-48 MeV; 117Sn(p, 2nγ), E=15-25 MeV; measured Eγ, Iγ, γγ-coin, Iγ(θ, t), I(ce). 114,116Sb deduced levels, J, π, γ-branching, δ, T1/2, ICC. Enriched targets, Ge(Li), Si-Li detectors, mini-orange electron spectrometer.

doi: 10.1016/0375-9474(82)90555-3
Citations: PlumX Metrics


Back to query form