NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 11, 2024.

Search: Author = Y.Lim

Found 19 matches.

Back to query form



2024LI22      Phys.Rev. C 109, 035801 (2024)

Y.Lim, A.Schwenk

Symmetry energy and neutron star properties constrained by chiral effective field theory calculations

doi: 10.1103/PhysRevC.109.035801
Citations: PlumX Metrics


2023XA01      Phys.Rev. C 108, 064310 (2023)

L.Xayavong, Y.Lim

Realistic evaluation of the Coulomb potential in spherical nuclei and a test of the traditional approach

doi: 10.1103/PhysRevC.108.064310
Citations: PlumX Metrics


2021LI15      Phys.Rev. C 103, 025807 (2021)

Y.Lim, J.W.Holt

Proton pairing in neutron stars from chiral effective field theory

doi: 10.1103/PhysRevC.103.025807
Citations: PlumX Metrics


2021LI48      Phys.Rev. C 104, L032802 (2021)

Y.Lim, A.Bhattacharya, J.W.Holt, D.Pati

Radius and equation of state constraints from massive neutron stars and GW190814

doi: 10.1103/PhysRevC.104.L032802
Citations: PlumX Metrics


2021WH01      Phys.Rev.Lett. 127, 182502 (2021)

T.R.Whitehead, Y.Lim, J.W.Holt

Global Microscopic Description of Nucleon-Nucleus Scattering with Quantified Uncertainties

NUCLEAR REACTIONS 14N, 16O, 34S, 56Fe, 90Zr, 121Sb, 138Ba, 182W, 208Pb(n, n), E<75 MeV; 16O, 27Al, 48Ti, 60Ni, 80Se, 120Sn, 182W, 194Pt, 206Pb(p, p), E<135 MeV; analyzed available data; deduced s(θ), optical potentials from a set of five nuclear forces from chiral effective field theory for 1800 target nuclei.

doi: 10.1103/PhysRevLett.127.182502
Citations: PlumX Metrics


2020KI14      Int.J.Mod.Phys. E29, 2030007 (2020)

M.Kim, C.-H.Lee, Y.-M.Kim, K.Kwak, Y.Lim, C.H.Hyun

Neutron star equations of state and their applications

NUCLEAR STRUCTURE 16,28O, 40,48,60Ca, 90Zr, 132Sn, 208Pb; calculated binding energies, charge radii and neutron skin from five selected Skyrme type models.

doi: 10.1142/S0218301320300076
Citations: PlumX Metrics


2020WH01      Phys.Rev. C 101, 064613 (2020)

T.R.Whitehead, Y.Lim, J.W.Holt

Neutron elastic scattering on calcium isotopes from chiral nuclear optical potentials

NUCLEAR STRUCTURE 40,48Ca; calculated matter density distributions using mean-field theory with the Skyrme Skχ450 effective interaction constrained by chiral effective field theory.

NUCLEAR REACTIONS 40,48Ca(n, n), E=3.2, 30, 85 MeV; calculated real, imaginary, and spin-orbit terms of the microscopic chiral optical potential. 40Ca(n, n), E=3.2, 5.3, 6.52, 11.9, 16.9, 21.7, 25.5, 30, 40, 65, 85, 107.5, 155, 185 MeV; 48Ca(n, n), E=7.97, 11.9, 16.9 MeV; calculated differential σ(E, θ). 48Ca(polarized n, n), E=11.9, 16.9 MeV; calculated vector analyzing powers Ay(E, θ). Calculated used the chiral optical potential, and Koning-Delaroche phenomenological optical potential. 40,48Ca(n, x), E=10-200 MeV; calculated total σ(E) using the chiral optical potential. Comparison with experimental data. Improved microscopic optical potential based on nuclear two- and three-body interactions from chiral effective field theory.

doi: 10.1103/PhysRevC.101.064613
Citations: PlumX Metrics


2019LI43      Phys.Rev. C 100, 035802 (2019)

Y.Lim, J.W.Holt, R.J.Stahulak

Predicting the moment of inertia of pulsar J0737-3039A from Bayesian modeling of the nuclear equation of state

doi: 10.1103/PhysRevC.100.035802
Citations: PlumX Metrics


2019LI53      Eur.Phys.J. A 55, 209 (2019)

Y.Lim, J.W.Holt

Bayesian modeling of the nuclear equation of state for neutron star tidal deformabilities and GW170817

doi: 10.1140/epja/i2019-12917-9
Citations: PlumX Metrics


2019WH01      Phys.Rev. C 100, 014601 (2019)

T.R.Whitehead, Y.Lim, J.W.Holt

Proton elastic scattering on calcium isotopes from chiral nuclear optical potentials

NUCLEAR REACTIONS 40Ca(p, p), E=2.35, 35, 100 MeV; calculated real, imaginary, and spin-orbit terms of the microscopic optical potential from chiral EFT, and from fits to the Koning-Delaroche (KD) form. 40,42,44,48Ca; calculated nucleon density distributions in mean field theory using the Skyrme Skχ450 effective interaction. 40Ca(p, p), E=2.35, 25, 35, 45, 55, 65, 80, 135, 160 MeV; 42,44,48Ca(p, p), E=25, 35, 45 MeV; 40,42,44,48Ca(p, X), E=20-50 MeV; calculated differential elastic σ(θ, E), and total reaction σ(E) using microscopic optical potentials calculated from chiral effective field theory, and from the chiral optical potential by the Koning-Delaroche (KD) phenomenological imaginary part, and using the reaction code TALYS. Comparison with experimental data.

doi: 10.1103/PhysRevC.100.014601
Citations: PlumX Metrics


2018KI19      Phys.Rev. C 98, 065805 (2018)

Y.-M.Kim, Y.Lim, K.Kwak, C.H.Hyun, C.-H.Lee

Tidal deformability of neutron stars with realistic nuclear energy density functionals

doi: 10.1103/PhysRevC.98.065805
Citations: PlumX Metrics


2018LI39      Phys.Rev.Lett. 121, 062701 (2018)

Y.Lim, J.W.Holt

Neutron Star Tidal Deformabilities Constrained by Nuclear Theory and Experiment

doi: 10.1103/PhysRevLett.121.062701
Citations: PlumX Metrics


2018PA03      Phys.Rev. C 97, 014312 (2018)

P.Papakonstantinou, T.-S.Park, Y.Lim, C.H.Hyun

Density dependence of the nuclear energy-density functional

doi: 10.1103/PhysRevC.97.014312
Citations: PlumX Metrics


2018XI02      At.Data Nucl.Data Tables 121-122, 1 (2018)

X.W.Xia, Y.Lim, P.W.Zhao, H.Z.Liang, X.Y.Qu, Y.Chen, H.Liu, L.F.Zhang, S.Q.Zhang, Y.Kim, J.Meng

The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory

NUCLEAR STRUCTURE Z=8-120; calculated ground-state properties using the spherical relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1.

doi: 10.1016/j.adt.2017.09.001
Citations: PlumX Metrics


2017LI09      Phys.Rev. C 95, 034311 (2017)

Ye.Lim, Y.Oh

Nuclear energy density functional and the nuclear α decay

RADIOACTIVITY 271Sg, 270,272Bh, 275Hs, 274,275,276Mt, 279Ds, 278,279,280Rg, 283,285Cn, 282,283,284Nh, 286,287,288,289Fl, 287,288Mc, 290,291,292,293Lv, 294Og(α); calculated half-lives for α decay using the Skyrme SLy4 and Gogny D1S models as nonrelativistic models and the relativistic mean-field DD-ME2 model, and using experimental Q(α) values, half-lives compared with experimental values. 293,294,295,296,297,298Ts, 293,294,295,296,297,298Og, 293,294,295,296,297,298119, 299,300,301,302,303,304120, 301,302,303,304,305,306121, 302,303,304,305,306,307122(α); calculated half-lives for α decay using the Skyrme SLy4 and Gogny D1S models as nonrelativistic models and the relativistic mean-field DD-ME2 model, and Q(α) values calculated from liquid-drop model (LDM) and from a local formula. Nuclear energy density functional formalism applied to α decay, using a Skyrme-type force model to obtain the nuclear potential of the α particle as a functional of proton and neutron density profiles of the daughter nucleus obtained from non-relativistic Skyrme SLy4, Gogny D1S, and relativistic mean-field DD-ME2 models.

doi: 10.1103/PhysRevC.95.034311
Citations: PlumX Metrics


2017LI20      Phys.Rev. C 95, 065805 (2017)

Y.Lim, J.W.Holt

Structure of neutron star crusts from new Skyrme effective interactions constrained by chiral effective field theory

doi: 10.1103/PhysRevC.95.065805
Citations: PlumX Metrics


2016LI04      Phys.Rev. C 93, 014314 (2016)

Y.Lim, X.Xia, Y.Kim

Proton radioactivity in relativistic continuum Hartree-Bogoliubov theory

RADIOACTIVITY 109I, 112,113Cs, 144,145,146,146m,147,147mTm, 150,150m,151,151mLu, 155,156,156m,157Ta, 159m,160,161,161mRe, 164m,165m,166,166m,167,167mIr, 170,170m,171,171mAu, 176,177,177mTl, 185Bi(p); calculated half-lives, nonoccupation probabilities u2 of corresponding orbitals in the daughter nuclei. Wentzel-Kramers-Brillouin (WKB) method for half-lives, with continuum effect treated by using relativistic continuum Hartree-Bogoliubov theory with energy density functional PC-PK1. Comparison with experimental half-lives.

doi: 10.1103/PhysRevC.93.014314
Citations: PlumX Metrics


2016SH26      Phys.Rev. C 94, 024320 (2016)

E.Shin, Y.Lim, C.H.Hyun, Y.Oh

Nuclear isospin asymmetry in α decay of heavy nuclei

RADIOACTIVITY 270Db, 271Sg, 270,272,274Bh, 275Hs, 274,275,276,278Mt, 279Ds, 278,279,280,282Rg, 285Cn, 282,283,284,286Nh, 286,287,288,289Fl, 287,288,290Mc, 290,291,292,293Lv, 293,294,295,296,297,298Ts, 293,294,295,296,297,298Og, 293,294,295,296,297,298119, 299,300,301,302,303,304120, 301,302,303,304,305,306121, 302,303,304,305,306,307122(α); calculated half-lives using various phenomenological models of the nuclear potential for the α particle and Wentzel-Kramers-Brillouin (WKB) approximation: square-well potential, Woods-Saxon potential modified by including an isospin asymmetry term, energy density functional approach using Skyrme force model, and modified Viola and Seaborg formula to include isospin asymmetry effect. Comparison with available experimental results.

doi: 10.1103/PhysRevC.94.024320
Citations: PlumX Metrics


2014LI23      Phys.Rev. C 89, 055804 (2014)

Y.Lim, K.Kwak, C.H.Hyun, C.-H.Lee

Kaon condensation in neutron stars with Skyrme-Hartree-Fock models

doi: 10.1103/PhysRevC.89.055804
Citations: PlumX Metrics


Back to query form